- Manuals
- Brands
- Bonfiglioli Manuals
- DC Drives
- act 401
Manuals and User Guides for Bonfiglioli act 401. We have 2 Bonfiglioli act 401 manuals available for free PDF download: Operating Instructions Manual, Quick Start Manual
Bonfiglioli act 401 Operating Instructions Manual (218 pages)
Vectron Active 201/401 Series 230V/400V 0.55 kW … 132. kW frequency inverter
Brand: Bonfiglioli
|
Category: DC Drives
|
Size: 4.71 MB
Table of Contents
-
Installation Instructions
3
-
Table of Contents
4
-
Operating Instructions ACTIVE Operating Instructions ACTIVE 5
7
-
Operating Instructions ACTIVE Operating Instructions ACTIVE 7
9
-
1 General Safety Instructions and Information on Use
10
-
General Information
10
-
Purpose of the Frequency Inverters
11
-
Transport and Storage
11
-
Handling and Installation
11
-
Electrical Connection
12
-
Information on Use
12
-
Maintenance and Service
12
-
-
2 Scope of Supply
13
-
ACT 201 (up to 3.0 Kw) and ACT 401 (up to 4.0 Kw)
13
-
ACT 201 (4.0 up to 9.2 Kw) and ACT 401 (5.5 up to 15.0 Kw)
14
-
ACT 401 (18.5 up to 30.0 Kw)
15
-
ACT 401 (37.0 up to 65.0 Kw)
16
-
ACT 401 (75.0 up to 132.0 Kw)
17
-
-
3 Technical Data
18
-
General Technical Data
18
-
Technical Data of Control Electronics
19
-
ACT 201 (0.55 up to 3.0 Kw, 230 V)
20
-
ACT 201 (4.0 up to 9.2 Kw, 230 V)
21
-
ACT 401 (0.55 up to 4.0 Kw, 400 V)
22
-
ACT 401 (5.5 up to 15.0 Kw, 400 V)
23
-
ACT 401 (18.5 up to 30.0 Kw, 400 V)
24
-
ACT 401 (37.0 up to 65.0 Kw, 400 V)
25
-
ACT 401 (75.0 up to 132.0 Kw, 400 V)
26
-
Operation Diagrams
27
-
-
4 Mechanical Installation
28
-
ACT 201 (up to 3.0 Kw) and ACT 401 (up to 4.0 KW)
28
-
ACT 201 (4.0 up to 9.2 Kw) and ACT 401 (5.5 up to 15.0 Kw)
29
-
ACT 401 (18.5 up to 30.0 Kw)
30
-
ACT 401 (37.0 up to 65.0 Kw)
31
-
ACT 401 (75.0 up to 132.0 Kw)
32
-
-
5 Electrical Installation
33
-
EMC Information
34
-
Block Diagram
35
-
Optional Components
36
-
Connection of the Device
37
-
Dimensioning of the Conductor Cross Section
37
-
Typical Conductor Cross Sections
37
-
-
Mains Connection
38
-
Motor Connection
39
-
Motor Cable Length, Without Filter
39
-
Motor Cable Length, with Output Filter Du/Dt
39
-
Motor Cable Length, with Sine Filter
39
-
Group Drive
40
-
Speed Sensor Connection
40
-
-
Connection of a Brake Resistor
40
-
-
Connection of the Construction Sizes
41
-
ACT 201 (up to 3.0 Kw) and ACT 401 (up to 4.0 Kw)
41
-
ACT 201 (4.0 up to 9.2 Kw) and ACT 401 (5.5 up to 15.0 Kw)
43
-
ACT 401 (18.5 up to 30.0 Kw)
45
-
ACT 401 (37.0 up to 65.0 Kw)
47
-
ACT 401 (75.0 up to 132.0 Kw)
49
-
-
Control Terminals
51
-
Relay Output
52
-
Control Terminals — Terminal Diagram
53
-
Configuration 110 — Sensorless Control
53
-
Configuration 111 — Sensorless Control with Technology Controller
54
-
Configuration 410 — Sensorless Field-Oriented Control
54
-
Configuration 411 — Sensorless Field-Oriented Control with Technology Controller
55
-
Configuration 430 — Sensorless Field-Oriented Control, Speed or Torque Controlled
55
-
Configuration 210 — Field-Oriented Control, Speed Controlled
56
-
Configuration 211 — Field-Oriented Control, with Technology Controller
56
-
Configuration 230 — Field-Oriented Control, Speed and Torque Controlled
57
-
-
-
-
6 Control Unit KP500
58
-
Menu Structure
59
-
Main Menu
59
-
Actual Value Menu (VAL)
60
-
Parameter Menu (PARA)
61
-
Copy Menu (CPY)
62
-
Reading the Stored Information
62
-
Menu Structure
63
-
Selecting the Source
63
-
Selecting the Destination
64
-
Copy Operation
64
-
Error Messages
65
-
-
Read Data from the KP 500 Control Unit
66
-
Activating
66
-
Transfer Data
67
-
Reset to Normal Mode
68
-
-
Control Menu (CTRL)
68
-
Controlling the Motor Via the Control Unit
69
-
-
7 Commissioning of the Frequency Inverter
72
-
Switching on Mains Voltage
72
-
Setup Using the Control Unit
72
-
Configuration
73
-
Data Set
74
-
Motor Type
74
-
Machine Data
75
-
Plausibility Check
76
-
Parameter Identification
77
-
Application Data
79
-
Acceleration and Deceleration
79
-
Set Points at Multi-Functional Input
80
-
Selection of an Actual Value for Display
80
-
-
-
Check Direction of Rotation
81
-
Speed Sensor
82
-
Speed Sensor 1
82
-
Speed Sensor 2
83
-
-
Set-Up Via the Communication Interface
84
-
-
8 Inverter Data
86
-
Serial Number
86
-
Optional Modules
86
-
Inverter Software Version
86
-
Set Password
86
-
Control Level
87
-
User Name
87
-
Configuration
87
-
Language
90
-
Programming
90
-
-
9 Machine Data
91
-
Rated Motor Parameters
91
-
Further Motor Parameters
92
-
Stator Resistance
92
-
Leakage Coefficient
92
-
Magnetizing Current
93
-
Rated Slip Correction Factor
93
-
-
Internal Values
94
-
Speed Sensor 1
94
-
Operation Mode Speed Sensor 1
94
-
Division Marks, Speed Sensor 1
95
-
-
-
10 System Data
96
-
Actual Value System
96
-
Volume Flow and Pressure
96
-
-
11 Operational Behavior
97
-
Starting Behavior
97
-
Starting Behavior of Sensorless Control System
97
-
Starting Current
99
-
Frequency Limit
99
-
-
Flux Formation
99
-
-
Stopping Behavior
100
-
Switch-Off Threshold
102
-
Holding Time
102
-
-
Direct Current Brake
102
-
Auto Start
103
-
Search Run
104
-
Positioning
105
-
Reference Positioning
106
-
Error and Warning Behavior
111
-
-
-
Overload Ixt
111
-
Temperature
111
-
Controller Status
112
-
IDC Compensation Limit
112
-
Frequency Switch-Off Limit
112
-
Motor Temperature
113
-
Phase Failure
113
-
Automatic Error Acknowledgment
114
-
-
13 Reference Values
115
-
Frequency Limits
115
-
Slip Frequency
115
-
Percentage Value Limits
115
-
Frequency Reference Channel
116
-
Block Diagram
117
-
-
Reference Percentage Channel
119
-
Block Diagram
119
-
-
Fixed Reference Values
121
-
Fixed Frequencies
121
-
JOG-Frequency
121
-
Fixed Percentages
122
-
-
Frequency Ramps
122
-
Percentage Value Ramps
125
-
Block Frequencies
125
-
Motor Potentiometer
126
-
Motorpoti (MP)
127
-
Motorpoti (KP)
127
-
Controlling the Motor Via the Control Unit
128
-
-
Repetition Frequency Input
129
-
-
14 Control Inputs and Outputs
130
-
Multi-Function Input MFI1
130
-
Analog Input MFI1A
130
-
Characteristic
130
-
Scaling
132
-
Tolerance Band and Hysteresis
132
-
Filter Time Constant
133
-
Error and Warning Behavior
134
-
-
-
Multi-Function Output MFO1
134
-
Analog Output MFO1A
135
-
Output Characteristic
135
-
-
Frequency Output MFO1F
136
-
Scaling
136
-
-
-
Digital Outputs
137
-
Setting Frequency
138
-
Reference Value Reached
138
-
06/07 Operating Instructions ACTIVE
138
-
Flux Formation Ended
139
-
Open Brake
139
-
Current Limitation
139
-
External Fan
139
-
Warning Mask
140
-
-
Digital Inputs
142
-
Start Command
145
-
3-Wire-Control
145
-
Error Acknowledgment
146
-
Timer
146
-
Thermo-Contact
146
-
N-/M-Control Change-Over
146
-
Data Set Change-Over
147
-
Fixed Value Change-Over
148
-
Motor Potentiometer
149
-
-
Function Modules
149
-
Timer
149
-
Time Constant
150
-
-
Comparator
152
-
Logic Modules
153
-
-
-
15 F — Characteristic
158
-
Dynamic Voltage Pre-Control
159
-
-
16 Control Functions
160
-
Intelligent Current Limits
160
-
Voltage Controller
161
-
Technology Controller
165
-
Functions of Sensorless Control
173
-
Slip Compensation
173
-
Current Limit Value Controller
173
-
-
Functions of Field-Orientated Control
174
-
Current Controller
174
-
Torque Controller
176
-
Limit Value Sources
176
-
-
Speed Controller
177
-
Limitation of Speed Controller
179
-
Limit Value Sources
180
-
-
Acceleration Pre-Control
180
-
Field Controller
181
-
Limitation of Field Controller
182
-
-
Modulation Controller
182
-
Limitation of Modulation Controller
183
-
-
-
-
17 Special Functions
184
-
Pulse Width Modulation
184
-
Fan
185
-
Bus Controller
185
-
Brake Chopper and Brake Resistance
187
-
Dimensioning of Brake Resistor
188
-
-
Motor Circuit Breaker
189
-
V-Belt Monitoring
190
-
Motor Chopper
191
-
Temperature Adjustment
192
-
Encoder Monitoring
193
-
Actual Values
194
-
Actual Values of the Frequency Inverter
194
-
Actual Values of the Machine
195
-
Actual Value Memory
196
-
Actual Values of the System
197
-
Error Protocol
199
-
Error List Description
199
-
Error Messages
199
-
Error Environment
201
-
Operational and Error Diagnosis
203
-
Status Display
203
-
Status of Digital Signals
203
-
Controller Status
204
-
Warning Status
205
-
Parameter List
206
-
-
Advertisement
BONFIGLIOLI act 401 Quick Start Manual (96 pages)
Brand: BONFIGLIOLI
|
Category: DC Drives
|
Size: 6.97 MB
Table of Contents
-
Italiano
3
-
Table of Contents
3
-
Installazione Meccanica
4
-
Installazione Elettrica
7
-
Avvertenze EMI
7
-
ACT 201 (a 3,0 Kw) E ACT 401 (a 4,0 Kw)
8
-
ACT 201 (da 4,0 Kw a 9,2 Kw) E ACT 401 (da 5,5 Kw a 15,0 Kw)
8
-
ACT 401 (da 18,5 Kw a 30,0 Kw)
9
-
ACT 401 (da 37,0 Kw a 65,0 Kw)
9
-
ACT 401 (da 75,0 Kw a 132,0 Kw)
10
-
Messa in Servizio con Unità DI Comando KP500
11
-
Morsetti DI Comando
11
-
Funzioni Dei Tasti
12
-
Messa in Servizio Guidata
12
-
Impostazioni Dei Parametri
14
-
Grandezze DI Funzionamento
17
-
Messaggi Dell’unità DI Comando
17
-
Messaggi DI Avviso Ed Errore Durante Il Funzionamento
18
-
Messaggi DI Avviso Ed Errore Durante la Messa in Servizio
19
-
-
English
21
-
Mechanical Installation
22
-
Electrical Installation
25
-
EMC Information
25
-
ACT 201 (4.0 Kw to 9.2 Kw) and ACT 401 (5.5 Kw to 15.0 Kw)
26
-
ACT 201 (up to 3.0 Kw) and ACT 401 (up to 4.0 Kw)
26
-
ACT 401 (18.5 Kw to 30.0 Kw)
27
-
ACT 401 (37.0 Kw to 65.0 Kw)
27
-
ACT 401 (75.0 Kw to 132.0 Kw)
28
-
Commissioning Via the Control Unit KP500
29
-
Control Terminals
29
-
Functions of Keys
30
-
Guided Commissioning
30
-
Parameter Settings
32
-
Actual Values
35
-
Control Unit Messages
35
-
Warning and Error Messages During Operation
36
-
Warning and Error Messages During Guided Commissioning
37
-
-
Deutsch
39
-
Mechanische Installation
40
-
Elektrische Installation
43
-
EMV — Hinweise
43
-
ACT 201 (4,0 Kw bis 9,2 Kw) und ACT 401 (5,5 Kw bis 15,0 Kw)
44
-
ACT 201 (bis 3,0 Kw) und ACT 401 (bis 4,0 Kw)
44
-
ACT 401 (18,5 Kw bis 30,0 Kw)
45
-
ACT 401 (37,0 Kw bis 65,0 Kw)
45
-
ACT 401 (75,0 Kw bis 132,0 Kw)
46
-
Inbetriebnahme mit der Bedieneinheit KP500
47
-
Steuerklemmen
47
-
Geführte Inbetriebnahme
48
-
Tastenfunktionen
48
-
Parametereinstellungen
51
-
Istwerte
54
-
Meldungen der Bedieneinheit
54
-
Warn- und Fehlermeldungen während des Betriebs
55
-
Warn- und Fehlermeldungen während der Inbetriebnahme
56
-
-
Français
59
-
Installation Mécanique
60
-
Avertissements EMI
63
-
Installation Électrique
63
-
ACT 201 (de 4,0 Kw À 9,2 Kw) Et ACT 401 (de 5,5 Kw À 15,0 Kw)
64
-
ACT 201 (À 3,0 Kw) Et ACT 401 (À 4,0 Kw)
64
-
ACT 401 (de 18,5 Kw À 30,0 Kw)
65
-
ACT 401 (de 37,0 Kw À 65,0 Kw)
65
-
ACT 401 (de 75,0 Kw À 132,0 Kw)
66
-
Bornes de Commande
67
-
Mise en Service Avec Unité de Commande KP500
67
-
Fonction des Touches
68
-
Mise en Service Guidée
68
-
Configuration des Paramètres
70
-
Grandeurs de Fonctionnement
73
-
Messages de L’unité de Commande
73
-
Messages D’avertissement Et D’erreur Pendant Le Fonctionnement
74
-
Messages D’avertissement Et D’erreur Pendant la Mise en Service
75
-
-
Español
77
-
Instalación Mecánica
78
-
Advertencias EMI
81
-
Instalación Eléctrica
81
-
ACT 201 (a 3,0 Kw) y ACT 401 (a 4,0 Kw)
82
-
ACT 201 (de 4,0 Kw a 9,2 Kw) y ACT 401 (de 5,5 Kw a 15,0 Kw)
82
-
ACT 401 (de 18,5 a 30,0 Kw)
83
-
ACT 401 (de 37,0 Kw a 65,0 Kw)
83
-
ACT 401 (de 75,0 Kw a 132,0 Kw)
84
-
Bornes de Control
85
-
Puesta en Servicio con Consola de Programación KP500
85
-
Funciones de las Teclas
86
-
Puesta en Servicio Guiada
86
-
Ajustes de Los Parámetros
88
-
Mensajes de la Consola de Programación
91
-
Valores de Funcionamiento
91
-
Mensajes de Aviso y Error Durante el Funcionamiento
92
-
Mensajes de Aviso y Error Durante la Puesta en Servicio
93
-
Advertisement
Related Products
-
BONFIGLIOLI Active ACT 401-05
-
BONFIGLIOLI Active ACT 401-07
-
BONFIGLIOLI Active ACT 401-09
-
BONFIGLIOLI Active ACT 401-11
-
BONFIGLIOLI Active ACT 401-12
-
BONFIGLIOLI Active ACT 401-13
-
BONFIGLIOLI Active ACT 401-21
-
BONFIGLIOLI Active ACT 401-22
-
BONFIGLIOLI Active ACT 401-23
-
BONFIGLIOLI Active ACT 401-25
Bonfiglioli Categories
DC Drives
Engine
Inverter
Industrial Equipment
Controller
More Bonfiglioli Manuals
INDUSTRY PROCESS AND AUTOMATION SOLUTIONS Expansion module EM-IO-02 Frequency Inverter 230 V / 400 V 0.55 kW ... 30.0 kW ACTIVE General points on the documentation The present supplement of the documentation is valid for the frequency inverter series ACT 201 and ACT 401. The information necessary for the assembly and application of the EM-IO-02 expansion module is documented in this guidance. For better clarity, the user documentation is structured according to the customerspecific demands made of the frequency inverter. Brief instructions The brief instructions describe the fundamental steps for mechanical and electrical installation of the frequency inverter. The guided commissioning supports you in the selection of necessary parameters and the software configuration of the frequency inverter. Operating instructions The operating instructions document the complete functionality of the frequency inverter. The parameters necessary for specific applications for adaptation to the application and the extensive additional functions are described in detail. Application manual The application manual supplements the documentation for purposeful installation and commissioning of the frequency inverter. Information on various subjects connected with the use of the frequency inverter is described specific to the application. Installation Instructions Complementing the Brief Instructions and the Operating Instructions, the Installation Instructions provide information on how to install and use the additional/optional components. The documentation and additional information can be requested via your local representation of the company of BONFIGLIOLI. The following pictograms and signal words are used for the purposes of the present documentation: Danger! means a directly threatening danger. Death, serious damage to persons and considerable damage to property will occur if the precautionary measure is not taken. Warning! marks a possible threat. Death, serious damage to persons and considerable damage to property can be the consequence if attention is not paid to the text. Caution! refers to an indirect threat. Damage to people or property can be the result. Attention! refers to a possible operational behavior or an undesired condition, which can occur in accordance with the reference text. Note marks information, which facilitates handling for you and supplements the corresponding part of the documentation. Warning! In installation and commissioning, comply with the information in the documentation. You as a qualified person must have read the documentation carefully and understood it. Comply with the safety instructions. For the purposes of the instructions, "qualified person" designates a person acquainted with the erection, assembly, commissioning and operation of the frequency inverters and possessing the qualification corresponding to the activity. 06/05 1 TABLE OF CONTENTS General points on the documentation .................................................................................. 1 1 General safety and application information .................................................................. 5 1.1 General information................................................................................................. 5 1.2 Proper use................................................................................................................ 5 1.3 Transport and storage ............................................................................................. 6 1.4 Handling and positioning......................................................................................... 6 1.5 Electrical connection................................................................................................ 6 1.6 Operation information ............................................................................................. 6 1.7 Maintenance and service ......................................................................................... 6 2 Introduction ................................................................................................................... 7 3 Installation of the EM-IO-02 expansion module ........................................................... 8 3.1 General .................................................................................................................... 8 3.2 Mechanical installation ............................................................................................ 8 3.3 Electrical installation ............................................................................................. 10 3.3.1 Circuit diagram ...................................................................................................... 10 3.3.2 Control terminals ................................................................................................... 11 4 System bus interface.................................................................................................... 12 4.1 Bus termination ..................................................................................................... 12 4.2 Cables .................................................................................................................... 13 4.3 Socket X410B......................................................................................................... 13 4.4 Baud rate setting/line length ................................................................................ 14 4.5 Setting node address ............................................................................................. 14 4.6 Functional overview .............................................................................................. 15 4.7 Network management ........................................................................................... 15 4.7.1 SDO channels (parameter data) .............................................................................. 16 4.7.2 PDO channels (process data) .................................................................................. 16 4.8 Master functionality............................................................................................... 17 4.8.1 Control boot-up sequence, network management ..................................................... 17 4.8.2 SYNC telegram, generation..................................................................................... 19 4.8.3 Emergency message, reaction................................................................................. 20 4.8.4 Client SDO (system bus master).............................................................................. 21 4.9 Slave functionality ................................................................................................. 22 4.9.1 Implement boot-up sequence, network management................................................ 22 4.9.1.1 Boot-up message ............................................................................................ 22 4.9.1.2 Status control ................................................................................................. 22 4.9.2 Process SYNC telegram .......................................................................................... 23 4.9.3 Emergency message, fault switch-off....................................................................... 24 4.9.4 Server SDO1/SDO2 ................................................................................................ 25 2 06/05 TABLE OF CONTENTS 4.10 Communication channels, SDO1/SDO2.............................................................. 27 4.10.1 SDO telegrams (SDO1/SDO2) ................................................................................. 27 4.10.2 Communication via field bus connection (SDO1) ....................................................... 29 4.10.2.1 Profibus-DP .................................................................................................... 29 4.10.2.2 RS232/RS485 with VECTRON bus protocol ........................................................ 29 4.11 Process data channels, PDO ............................................................................... 31 4.11.1 Identifier assignment process data channel.............................................................. 31 4.11.2 Operation modes process data channel.................................................................... 32 4.11.3 Timeout monitoring process data channel ................................................................ 33 4.11.4 Communication relationships of the process data channel ......................................... 34 4.11.5 Virtual links ........................................................................................................... 35 4.11.5.1 Input parameters of the TxPDO’s for data to be transmitted ............................... 38 4.11.5.2 Source numbers of the RxPDO’s for received data.............................................. 40 4.11.5.3 Examples of virtual links .................................................................................. 41 4.12 Control parameters............................................................................................. 42 4.13 Handling of the parameters of the system bus .................................................. 43 4.14 Utilities ............................................................................................................... 45 4.14.1 Definition of the communication relationships........................................................... 46 4.14.2 Production of the virtual links.................................................................................. 47 4.14.3 Capacity planning of the system bus........................................................................ 48 5 Control inputs and outputs .......................................................................................... 50 5.1 Analog input EM-S1INA ......................................................................................... 50 5.1.1 General................................................................................................................. 50 5.1.2 Configuration voltage/current input ......................................................................... 50 5.1.3 Characteristic ........................................................................................................ 51 5.1.4 Operation modes ................................................................................................... 51 5.1.4.1 Examples........................................................................................................ 52 5.1.5 Scaling.................................................................................................................. 54 5.1.6 Tolerance band and hysteresis................................................................................ 55 5.1.7 Error and warning behavior .................................................................................... 56 5.1.8 Adjustment ........................................................................................................... 57 5.1.9 Filter time constant ................................................................................................ 57 5.2 Analog output EM- S1OUTA ................................................................................... 58 5.2.1 General................................................................................................................. 58 5.2.2 Operation modes ................................................................................................... 58 5.2.3 Adjustment ........................................................................................................... 58 5.2.4 Zero adjustment and amplification .......................................................................... 59 5.2.4.1 Examples........................................................................................................ 59 5.3 Digital output EM-S1OUTD .................................................................................... 60 5.3.1 General................................................................................................................. 60 5.3.2 Operation modes ................................................................................................... 60 5.4 Digital inputs EM-SxIND........................................................................................ 60 5.4.1 Fixed reference values and fixed value switch-over ................................................... 60 5.5 Digital inputs EM-SxIND for speed sensor EM-ENC............................................... 61 5.5.1 Division marks....................................................................................................... 61 5.5.2 Actual speed source ............................................................................................... 62 5.5.3 Actual value comparison......................................................................................... 62 06/05 3 TABLE OF CONTENTS 6 7 5.6 Frequency and percentage reference channel ...................................................... 63 5.7 Actual value display ............................................................................................... 63 5.8 Status of the digital signals ................................................................................... 64 5.9 Motor temperature ................................................................................................ 65 Parameter list............................................................................................................... 67 6.1 Actual value menu (VAL) ....................................................................................... 67 6.2 Parameter menu (PARA) ....................................................................................... 67 Annex ........................................................................................................................... 70 7.1 4 Error messages ...................................................................................................... 70 06/05 1 General safety and application information This documentation has been created with greatest care and has been extensively and repeatedly checked. For reasons of clarity, we have not been able to take all detailed information on all the types of the products and also not every imaginable case of positioning, operation or maintenance into account. If you require further information or if particular problems not treated extensively enough in the operating instructions occur, you can obtain the necessary information via the local representation of the company BONFIGLIOLI. In addition, we would point out that the contents of these operating instructions are not part of an earlier or existing agreement, assurance or legal relationship, nor are they intended to amend them. All the manufacturer's obligations result from the purchase contract in question, which also contains the completely and solely valid warranty regulation. These contractual warranty provisions are neither extended nor limited by the implementation of these operating instructions. The manufacturer reserves the right to correct or amend the contents and product information as well as omissions without specific announcement and assumes no kind of liability for damage, injuries or expenditure to be put down to the aforementioned reasons. 1.1 General information Warning! VECTRON frequency inverters have high voltage levels during operating, depending on their protection class, drive moving parts and have hot surfaces. In the event of inadmissible removal of the necessary covers, improper use, wrong installation or operation, there is the risk of serious damage to persons or property. To avoid the damage, only qualified staff may carry out the transport, installation, setup or maintenance work required. Comply with the standards EN 50178, IEC 60364 (Cenelec HD 384 or DIN VDE 0100), IEC 60664-1 (Cenelec HD 625 or VDE 0110-1), BGV A2 (VBG 4) and national provisions. Qualified persons within the meaning of this principal safety information are people acquainted with the erection, fitting, commissioning and operating of frequency inverters and the possible hazards and in possession of qualifications matching their activities. 1.2 Proper use Warning! The frequency inverters are electrical drive components intended for installation in industrial plant or machines. Commissioning and start of intended operation are not allowed until it has been established that the machine corresponds to the provisions of the EC machine directive 98/37/EEC and EN 60204. According to the CE sign, the frequency inverters additionally fulfill the requirements of the low-voltage directive 73/23/EEC and the standards EN 50178 / DIN VDE 0160 and EN 61800-2. Responsibility for compliance with the EMC directive 89/336/EEC is with the user. Frequency inverters are available in a limited way and as components exclusively intended for professional use within the meaning of the standard EN 61000-3-2. With the issue of the UL certificate according to UL508c, the requirements of the CSA Standard C22.2-No. 14-95 have also been fulfilled. The technical data and the information on connection and ambient conditions stated on the rating plate and the documentation must be complied with. The instructions must have been read and understood before starting work at the device. 06/05 5 1.3 Transport and storage Transport and storage are to be done appropriate in the original packing. Store the units only in dry rooms, which are protected against dust and moisture and are subjected to little temperature deviations only. Observe the climatic conditions according to standard EN 50178 and to the information on the label of the original packing. The duration of storage without connection to the admissible reference voltage may not exceed one year. 1.4 Handling and positioning Warning! Damaged or destroyed components may not be put into operation because they may be a health hazard. The frequency inverters are to be used according to the documentation, the directives and the standards. Handle carefully and avoid mechanical overload. Do not bend the components or change the isolation distances. Do not touch electronic components or contacts. The devices contain construction elements with a risk of electrostatic, which can easily be damaged by improper handling. Any use of damaged or destroyed components shall be considered as a non-compliance with the applicable standards. Do not remove any warning signs from the device. 1.5 Electrical connection Warning! Before any assembly or connection work, de-energize the frequency inverter. Do not touch the sockets, because the capacitors may still be charged. Make sure that the frequency inverter is de-energized. Comply with the information given in the operating instructions and on the frequency inverter label. While working on the frequency inverters, obey the applicable standards BGV A2 (VBG 4), VDE 0100 and other national directives. Comply with the information in the documentation on electrical installation and the relevant directives. Responsibility for compliance with and examination of the limit values of the EMC product standard EN 61800-3 for variable-speed electrical drive mechanisms is with the manufacturer of the industrial plant or machine. The documentation contains information on installation correct for EMC. The cables connected to the frequency inverters may not be subjected to an isolation test with a high test voltage without previous circuit measures. 1.6 Operation information Warning! Before commissioning and the start of the intended operation, attach all the covers and check the sockets. Check additional monitoring and protective devices pursuant to EN 60204 and the safety directives applicable in each case (e.g. Working Machines Act, Accident Prevention Directives etc.). No connection work may be performed, while the system is in operation. 1.7 Maintenance and service Warning! Unauthorized opening and improper interventions can lead to physical injury or damage to property. Repairs on the frequency inverters may only be done by the manufacturer or persons authorized by the latter. 6 06/05 2 Introduction This document describes the possibilities and the properties of the EM-IO-02 expansion module for the frequency inverters of the ACT device series. Note: This document exclusively describes the EM-IO-02 expansion module. It does not provide basic information on the operation of the ACT series frequency inverters. The EM-IO-02 expansion module is an optional hardware component to extend the functionality of the frequency inverter. It enables the data exchange within the network between the components which have been directly connected, for example control and regulation elements. The EM-IO-02 expansion module is supported as from software version 4.1.0 of device series ACT 201 and ACT 401. The EM-IO-02 module extends the functionality of the frequency inverters of the ACT device series by the following additional functions: − CAN system bus (CAN interface ISO-DIS 11898; CAN High Speed; max. 1 MBaud) − Analog input (second bipolar analog input) − Analog output (second bipolar analog output) − Three digital inputs (second speed sensor input) − Relay output (make contacts) − PTC thermistor connection Note: The EM-IO-02 expansion module has been enclosed with the frequency inverter as a separate component and must be fitted by the user. This is described in detail in the chapter "Mechanical Installation". To assemble the expansion module it can be simply plugged into the frequency inverters of the ACT device series. Warning! The assembly is done before the frequency inverter is put into operation, and only in a voltage-free state. The pluggable sockets of the expansion module enable economical overall fitting with a safe function. 06/05 7 3 Installation of the EM-IO-02 expansion module 3.1 General The mechanical and electrical installation of the EM-IO-02 expansion module is to be carried out by qualified personnel according to the general and regional safety and installation directives. Safe operation of the frequency inverter requires that the documentation and the device specification be complied with during installation and start of operation. For specific areas of application further provisions and guidelines must be complied with where applicable. The frequency inverters are designed according to the requirements and limit values of product standard EN 61800-3 with an interference immunity factor (EMI) for operation in industrial applications. The electromagnetic interference is to be avoided by expert installation and observation of the specific product information. For further information, refer to the chapter "Electrical Installation" of the frequency inverter operating instructions. Warning! 3.2 Danger! Mechanical installation If the following instructions are not complied with, there is direct danger with possible consequences of death or severe injury by electrical current. To disregard the instructions can lead to destruction of the frequency converter and/or of the expansion module. • Before assembly or disassembly of the EM-IO-02 expansion module, the frequency inverter must be de-energized. Take appropriate measures to make sure it is not energized unintentionally. • Make sure that the frequency inverter is de-energized. Danger! 8 All connection terminals where dangerous voltage levels may be present (e.g. motor connection terminals, mains terminals, fuse connection terminals, etc.), must be protected against direct contact. The mains, direct voltage and motor sockets can have dangerous voltages even after disconnection of the frequency converter. Work may only be done on the device after a waiting period of some minutes until the DC link capacitors have been discharged. 06/05 The EM-IO-02 expansion module is supplied in a housing for assembly on the lower slot of the frequency inverter. • Remove the lower cover (1) of the frequency inverter. The slot for the EM-IO-02 expansion module becomes accessible. 1 Caution! • The EM-IO-02 expansion module (2) is pre-fitted in a housing. Do NOT touch the PCB visible on the back, as modules may be damaged. Plug the EM-IO-02 expansion module (2) onto the slot (3). 2 3 • Re-install the lower cover (1). This completes the assembly procedure. When the supply voltage of the frequency inverter is switched on, the EM-IO-02 expansion module is ready for operation. 1 06/05 9 3.3 Danger! Electrical installation If the following instructions are not complied with, there is direct danger with the possible consequences of death or severe injury by electrical current. Further, failure to comply can lead to destruction of the frequency inverter and/or of the expansion module. • Before assembly or disassembly of the EM-IO-02 expansion module, the frequency inverter must be de-energized. Take appropriate measures to make sure it is not energized unintentionally. • Make sure that the frequency inverter is de-energized. Danger! The mains, direct voltage and motor sockets can have dangerous voltages even after disconnection of the frequency inverter. Work may only be done on the device after a waiting period of some minutes until the DC link capacitors have been discharged. 3.3.1 Circuit diagram X410A A B 1 +20 V / 180mA 2 GND 20 V EM-S1IND 3 EM-S2IND 4 EM-S3IND 5 EM-S1OUTD 6 7 X410B EM-MPTC 1 C 2 EM-S1INA D 3 A D E 4 EM-S1OUTA A F CAN-Low 5 CAN-High 6 7 GND D SYS A Digital inputs EM-S1IND ... EM-S3IND Digital signal, response time approx. 16 ms, Umax= 30 V, 10 mA at 24 V, PLC compatible, frequency signal, 0 ... 30 V, 10 mA at 24 V, fmax = 150 kHz B Relay connection EM-S1OUTD Make contact, response time approx. 40 ms, 24 V AC / 1 A , 24 V DC / 1 A (ohmic) C Motor PTC Resistor Connection EM-MPTC Rated response resistance 2.85 kΩ (PTC) according to DIN 44081, PTC or bimetal temperature sensor (break contact) D Analog input EM-S1INA Analog signal, resolution 12 Bit, Umax = ±10 V (Ri= 100 kΩ), Imax = ±20 mA (Ri= 250 Ω) E Analog output EM- S1OUTA Analog signal, Umax= ±10 V, Imax = 2 mA, overload and short-circuit proof Communication interface system bus CAN actuation of the system bus according to ISO-DIS 11898 (CAN High Speed) F 10 06/05 3.3.2 Control terminals The control and software functionality can be freely configured for economical operation with a safe function. Expansion module EM-IO-02 Wieland DST85 / RM3,5 0.14 … 1.5 mm2 AWG 30 … 16 0.14 … 1.5 mm2 AWG 30 … 16 0.25 … 1.0 mm2 AWG 22 … 18 0.25 … 0.75 mm2 AWG 22 … 20 0.2 … 0.3 Nm 1.8 … 2.7 lb-in Caution! • • The control inputs and outputs must be connected and disconnected free of electrical power. Otherwise, components may be damaged. The unit may only be connected with the power supply switched off. Make sure that the frequency inverter is de-energized. Socket X410A Ter. Description 1 Voltage output 20 V, Imax = 180 mA 1) 2 Earth / GND 20 V 3 Digital input EM-S1IND, Umax = 30 V, 10 mA at 24 V, PLC compatible, response time approx. 16 ms 4 Digital input EM-S2IND, Umax = 30 V, 10 mA at 24 V, PLC compatible, response time approx. 16 ms 5 Digital input EM-S3IND, Umax = 30 V, 10 mA at 24 V, PLC compatible, response time approx. 16 ms 6-7 Digital output EM-S1OUTD, make contact, Umax = 24 V AC/DC, 1 A (ohmic) Socket X410B Ter. Description 1-2 Motor PTC connection EM-MPTC, rated response resistance > 2.85 kOhm (PTC) according DIN 44081 3 Analog input EM-S1INA, resolution 12 bit, Umax= ±10 V (Ri = 100 kΩ), Imax = ±20 mA (Ri = 250 Ω) 4 Analog output EM-S1OUTA, Umax= ±10 V, Imax = 2 mA, overload and short circuit proof 5 System bus, CAN low 6 System bus, CAN high 7 Earth / GND 1) 06/05 The power supply at terminal X210A.1 may be loaded with a maximum current of Imax = 180 mA. Relative to the application, the maximum current available will be reduced by the further control outputs in the basic device and the expansion module. 11 4 System bus interface The CAN connection of the system bus is physically designed according to ISODIS 11898 (CAN High Speed). The bus topology is the line structure. In the default version, the frequency inverter supports a CAN protocol controller, which may exist in either the CM-CAN communication module with CANopen interface OR in an expansion module for the system bus, such as the EM-IO-02 expansion module. Attention! 4.1 Installation of two optional components with CAN-Protocol controller results in a deactivation of the system bus interface in the EM-IO-02 expansion module. Bus termination The necessary bus terminator at the physically first and last node can alternatively be activated via the two DIP switches S1 and S2 on the EM-IO-02 expansion module. • Either set S1 to ON and S2 to OFF for a regular passive termination, • or switch S1 and S2 to ON for an active termination. This results in an improved edge shape of the CAN signals, which improves the signal shapes, in particular in extended systems. Switch S3 is used to configure the analog input (see chapter "Analog input EM-S1INA“). ON S3 X410A S1 ON ON Note: S2 X410B Attention! The factory setting for the bus termination is OFF. The active termination via the DIP switches S1 and S2 may only be activated in one expansion module. The other bus termination must be passive. Data line CAN high (X410B.6) 120 Ω Data line CAN low (X410B.5) passive 12 332 Ω Data line CAN high (X410B.6) Data line CAN low (X410B.5) 332 Ω active 06/05 4.2 Cables For the bus line, use twisted cable with harness shield (no foil shield). Attention! The control and communication lines are to be laid physically separate from the power lines. The harness screen of the data lines is to be connected to ground (PE) on both sides on a large area and with good conductivity. 4.3 Socket X410B The system bus is connected via the terminals 5, 6 and 7 of the socket X410B on the EM-IO-02 expansion module. X410A X410B 5 Terminal (5): X410B.5 (6): X410B.6 (7): X410B.7 06/05 X410B 6 Socket X410B Input/Output CAN-Low CAN-High GND 7 Description CAN-Low (System bus) CAN-High (System bus) CAN-GND (System bus) 13 4.4 Baud rate setting/line length The setting of the baud rate must be identical in all nodes on the system bus. The maximum possible baud rate is based on the necessary overall line length of the system bus. The baud rate is set via the parameter Baud-Rate 903 and thus defines the possible line length. Operation mode 3 - 50 kBaud 4 - 100 kBaud 5 - 125 kBaud 6 - 250 kBaud 7 - 500 kBaud 8 - 1000 kBaud Function Transmission rate 50 kBaud Transmission rate 100 kBaud Transmission rate 125 kBaud Transmission rate 250 kBaud Transmission rate 500 kBaud Transmission rate 1000 kBaud max. line length 1000 meters 800 meters 500 meters 250 meters 100 meters 25 meters A baud rate under 50 kBaud, as is defined according to CANopen, is not sensible for the system bus as the data throughput is too low. The maximum line lengths stated are guidelines. If they are made complete use of, a calculation of the admissible length is to be done on the basis of the line parameters and the bus driver (PCA82C250T). 4.5 Setting node address A maximum of 63 slaves or frequency inverters with system bus can be operated on the system bus. Each frequency inverter is given a node ID, which may only exist once in the system, for its unambiguous identification. The setting of the system bus node ID is done via the parameter Node-ID 900. No. 900 Parameter Description Node-ID min. -1 max. 63 Setting Factory setting -1 Thus, the system bus possesses a maximum number of 63 nodes (Network nodes), plus one frequency inverter as a master. Note: 14 With the factory setting of parameter Node-ID 900 = -1, the system bus is deactivated for this frequency inverter. If the Node-ID 900 = 0 is set, the frequency inverter is defined as a master. Only one frequency inverter on the system bus may be defined as a master. 06/05 4.6 Functional overview To start with, the system bus produces the physical connection between the frequency inverters. Logical communication channels are produced via this physical medium. These channels are defined via the identifiers. As CAN does not possess a nodeoriented, but a message-oriented addressing via the identifiers, the logical channels can be displayed via it. In the basic state (factory setting) the identifiers are set according to the Predefined Connection Set of CANopen. These settings are aimed at one master serving all the channels. In order to be able to build up process data movement via the PDO channels between individual or a number of inverters (transverse movement), the setting of the identifiers in the nodes has to be adapted. Note: For understanding, it is important to observe that the data exchange is done message-oriented. The frequency inverter can transmit and receive a number of messages, identified via various identifiers. As a special feature, the properties of the CAN bus mean that the messages transmitted by one node can be received by a number of nodes simultaneously. The error monitoring methods of the CAN bus result in the message being rejected by all recipients and automatically transmitted again if there is a faulty reception in one receiver. 4.7 Network management The network management controls the start of all the nodes on the system bus. Nodes can be started or stopped individually or together. For node recognition in a CAL or CANopen system, the slaves on the system bus generate a starting telegram (boot-up report). If a fault occurs, the slaves automatically transmit a fault report (emergency message). For the functions of the network management, the methods and NMT telegrams (network management telegrams) defined according to CANopen (CiA DS 301) are used. PLC Field bus System bus Master Parameter Function Parameter Function SDO 2 SDO 1 PDO SDO 2 SDO 1 PDO System bus Controller / PC 06/05 System bus Slave System bus System bus 15 4.7.1 SDO channels (parameter data) Each frequency inverter possesses two SDO channels for the exchange of parameter data. In a slave device, these are two server SDO's, in a device defined as a master a client SDO and a server SDO. Attention must be paid to the fact that only one master for each SDO channel may exist in a system. Note: Only one master can initiate by the system bus an exchange of data via its client SDO. The identifier assignment for the SDO channels (Rx/Tx) is done according to the Predefined Connection Set. This assignment can be amended by parameterization, in order to solve identifier conflicts in a larger system in which further devices are on the CAN bus alongside the frequency inverters. Attention! In a system in which a frequency inverter works as a master, the identifier allocations for the SDO channel may not be altered. In this way, an addressing of individual nodes via the field bus/system bus path of the master frequency inverter is possible. Parameters are read/written via the SDO channels. With the limitation to the SDO Segment Protocol Expedited, which minimizes the handling needed for the parameter exchange, the transmittable data are limited to the uint / int / long types. This permits complete parameterization of the frequency inverters via the system bus, as all the settings and practically all the actual values are displayed via these data types. 4.7.2 PDO channels (process data) Each frequency inverter possesses three PDO channels (Rx/Tx) for the exchange of process data. The identifier assignment for the PDO channel (Rx/Tx) is done by default according to the Predefined Connection Set. This assignment corresponds to an alignment to a central master control. In order to produce the logical channels between the devices (transverse movement) on the system bus, the amendment of the PDO identifiers for Rx/Tx is necessary. Each PDO channel can be operated with time or SYNC control. In this way, the operation behavior can be set for each PDO channel: The setting of the operation mode is done via the following parameters: TxPDO1 Function 930, TxPDO2 Function 932 und TxPDO3 Function 934 RxPDO1 Function 936, RxPDO2 Function 937 und RxPDO3 Function 938 Operation mode 0 -deactivated 1 -time-controlled 2 -SYNC controlled Function no exchange of data via the PDO channel (Rx and/or Tx) Tx-PDO’s cyclically transmit according to the time specification Rx-PDO‘s are read in with Ta = 1 ms and forward the data received to the application Tx-PDO’s transmit the data from the application that are then current after the arrival of the SYNC telegram. Rx-PDO’s forward the last data received to the application after the arrival of the SYNC telegram. For synchronous PDO’s, the master (PC, PLC or frequency inverter) generates the SYNC telegram. The identifier assignment for the SYNC telegram is done by default according to the Predefined Connection Set. This assignment can be altered by parameterization. 16 06/05 4.8 Master functionality An external control or a frequency inverter defined as a master (node ID = 0) can be used as a master. The fundamental tasks of the master are controlling the start of the network (boot-up sequence), generating the SYNC telegram and evaluating the emergency messages of the slaves. Further, there can be access to the parameterization of all the frequency inverters on the system bus by means of a field bus connection via the client SDO of the master frequency inverter. 4.8.1 Control boot-up sequence, network management The Minimum Capability Boot-Up method defined according to CANopen is used for the state control of the nodes (nodes). This method knows the pre-operational, operational and stopped states. After the initialization phase, all the nodes are in the pre-operational state. The system bus master transmits the NMT command Start-Remote-Node. With this command, individual nodes or all the nodes can be started together. The frequency inverter defined as a master starts all the nodes with one command. After receipt of the Start Remote Node command, the nodes change into the Operational state. From this time on, process data exchange via the PDO channels is activated. A master in the form of a PLC/PC can start the nodes on the system bus individually and also stop them again. As the slaves on the system bus need different lengths of time to conclude their initialization phases (especially if external components exist alongside the frequency inverters), an adjustable delay for the change to Operational is necessary. The setting is done in a frequency inverter defined as a system bus master via Boot-Up Delay 904. No. 904 Parameter Description Boot-Up Delay Min. 3500 ms Setting Max. 50000 ms Factory setting 3500 ms Properties of the states: State Pre-Operational Operational Stopped Note: 06/05 Properties Parameterization via SDO channel possible Exchange of process data via PDO channel not possible Parameterization via SDO channel possible Exchange of process data via PDO channel possible Parameterization via SDO channel not possible Exchange of process data via PDO channel not possible Start-Remote-Node is cyclically transmitted with the set delay time by an frequency inverter defined as a system bus master, in order to put slaves added with a delay or temporarily separated from the network back into the Operational state. 17 Switch-on (1) Initialisation from any state (2) Pre-Operational (4) (7) (5) Stopped (3) (6) (8) Operational After Power On and the initialization, the slaves are in the Pre-Operational state. The transition (2) is automatic. The system bus master (frequency inverter or PLC/PC) triggers the transition (3) to Operational state. The transitions are controlled via NMT telegrams. The identifier used for the NMT telegrams is "0" and may only be used by the system bus master for NMT telegrams. The telegram contains two data bytes. Byte 0 CS (Command Specifier) Byte 1 Node-ID Identifier = 0 With the statement of the node ID ≠ 0, the NMT command acts on the node selected via the node ID. If node ID = 0, all the nodes are addressed. Transition (3) , (6) (4) , (7) (5) , (8) Note: 18 Command Start Remote Node Enter Pre-Operational Stop Remote Node Reset Node Reset Communication Command Specifier 1 128 2 129 130 A frequency inverter defined as a system bus master only transmits the command "Start Remote Node” with node ID = 0 (for all nodes). Transmission of the command is done after completion of the initialization phase and the time delay Boot-Up Delay 904 following it. 06/05 4.8.2 SYNC telegram, generation If synchronous PDO’s have been created on the system bus, the master must send the SYNC telegram cyclically. If a frequency inverter has been defined as a system bus master, the latter must generate the SYNC telegram. The interval for the SYNC telegram of a frequency inverter defined as the system bus master is adjustable. The SYNC telegram is a telegram without data. The default identifier = 128 according to the Predefined Connection Set. If a PC or PLC is used as a master, the identifier of the SYNC telegrams can be adapted by parameterization on the frequency inverter. The identifier of the SYNC telegram must be set identically in all nodes on the system bus. The setting of the identifier of the SYNC telegram is done via the parameter SYNCIdentifier 918. Parameter No. Description 918 SYNC-Identifier Min. 0 Setting Max. 2047 Fact. sett. 0 The setting "0” results in identifier assignment according to the Predefined Connection Set. Attention! The identifier range 129...191 may not be used as the emergency telegrams can be found there. The temporal cycle for the SYNC is set on a frequency inverter defined as a system bus master via the parameter SYNC-Time 919. Note: 06/05 A setting of 0 ms for the parameter SYNC-Time 919 means "no SYNC telegram”. 19 4.8.3 Emergency message, reaction If a slave on the system bus suffers a fault, it transmits the emergency telegram. The emergency telegram marks the node ID for the identification of the failed node via its identifier and the existing fault message via its data contents (8 bytes). After a fault has been acknowledged on the slave, the latter again transmits an emergency telegram with the data content zero. The emergency telegram has the identifier 128 + node ID ( = 129 ... 191) The system bus master evaluates the emergency telegrams of the slaves. Its reaction to an emergency telegram can be set with Emergency Reaction 989. Operation mode 0 -Error 1 -No Error Function The system bus master receives the emergency telegram and switches-off The Emergency Telegram is displayed as warning. Operation mode - parameter 989 = 0 – Error Behavior of the system bus master in Emergency Reaction 989 = 0 / Error: As soon as the system bus master receives an emergency telegram, it also breaks down and reports the failed node on the basis of its ID via the kind of error. Only the node is reported, not the cause of the error. The fault message on the system bus master via Current error 260 is 21nn with nn = node ID (hexadecimal) of the slave in which a fault switch-off exists. In addition, the system bus master reports the warning Sysbus (0x2000) via the parameter Warnings 270 Bit 13. If a fault switch-off occurs on a number of slaves, the first slave to transmit its emergency telegram is displayed on the system bus master. Operation mode - parameter 989 = 1 – No Error Behavior of the system bus master in Emergency Reaction 989 = 1 / No Error: As soon as the system bus master receives an emergency telegram, it reports the warning Sysbus (0x2000) via the parameter Warnings 270 Bit 13. Note: 20 In both cases, the Boolean variable SysbusEmergency with source number 730 is set to TRUE in the system bus master. It can be used in the system bus master and (in transmission via a TxPDO) in the slaves for a defined shutdown. SysbusEmergency is also set if the system bus master breaks down. Resetting of SysbusEmergency is done with the fault acknowledgment. 06/05 4.8.4 Client SDO (system bus master) Each node on the system bus can be addressed via the SDO channels. In this way, each node can be addressed and parameterized by one master via its client SDO1. All the parameters of the data types uint/int/long are accessible. String parameters can not be processed. If a frequency inverter has been defined as a system bus master, each node on the system bus in this frequency inverter can be addressed by means of a field bus connection (RS232, RS485, Profibus-DP) via its client SDO1. Attention! The second SDO channel SDO2 of the frequency inverters is planned for the parameterization of the frequency inverters via a visualization tool on the system bus. The service used is SDO Segment Protocol Expedited according to CANopen. The frequency inverter defined as a system bus master automatically generates the correct telegrams. If the SDO channel is operated via a PLC/PC on the system bus, the telegrams must be generated according to the specification. PLC Field bus Inv.1 Inverter 2 Inverter 2 Server-SDO 1 Server-SDO 1 Field bus Client-SDO 1 System bus Inverter 1 Inverter 2 Inverter 2 Server-SDO 2 Server-SDO 2 Server-SDO 2 System bus Client-SDO 2 Visualizationtool 06/05 21 4.9 Slave functionality 4.9.1 Implement boot-up sequence, network management 4.9.1.1 Boot-up message After the initialization, each slave on the system bus transmits its boot-up message (heartbeat message). Note: The boot-up telegram has the identifier 1792 + node ID and a data byte with contents = 0x00. This telegram is of importance if a PLC/PC with CANopen functionality is used as a master. The frequency inverter defined as a system bus master does not evaluate the boot-up message. 4.9.1.2 Status control The identifier used for the NMT telegrams is "0" and may only be used by the system bus master for NMT telegrams. The telegram contains two data bytes. Byte 0 CS (Command Specifier) Byte 1 Node-ID Identifier = 0 With the statement of the node ID ≠ 0, the NMT command acts on the node selected via the node ID. If node ID = 0, all the nodes are addressed. Transition (3),(6) (4),(7) (5),(8) - Command Start Remote Node Enter Pre-Operational Stop Remote Node Reset Node Reset Communication Command Specifier 1 128 2 129 130 Attention! The reset node and reset communication command specified according to DS 301 lead to a change to Pre-Operational via Initialization in the frequency inverters. There is a new boot-up message. After a slave has received the command "Start Remote Node”, it activates the PDO channels and is ready for the exchange of process data. 22 06/05 4.9.2 Process SYNC telegram If synchronous PDO’s have been created in an frequency inverter, their processing is synchronized with the SYNC telegram. The SYNC telegram is generated by the system bus master and is a telegram without data. The identifier is 128 according to the Predefined Connection Set. If a PC or PLC is used as a master, the identifier of the SYNC telegrams can be adapted by parameterization on the frequency inverter. The identifier of the SYNC telegram must be set identically in all nodes on the system bus. Attention! The identifier range 129 ... 191 may not be used as the emergency telegrams can be found there. The setting of the identifier of the SYNC telegram is done via the parameter SYNCIdentifier 918. Parameter No. Description 918 SYNC-Identifier Setting Max. 2047 Min. 0 Factory setting 0 The setting "0” results in identifier assignment according to the Predefined Connection Set. The data of the Rx-PDO’s are forwarded to the application after the arrival of the SYNC telegram. At the same time, the transmission of the Tx-PDO’s with the currently available data from the application is triggered. SYNC RxPDO's TxPDO's SYNC RxPDO's TxPDO's time This method enables pre-occupancy of set points in the system bus nodes and a synchronous / parallel take-over of the data. 06/05 23 4.9.3 Emergency message, fault switch-off As soon as a fault switch-off occurs in a slave frequency inverter, the emergency telegram is transmitted. The emergency telegram marks the node ID for the identification of the failed node via its identifier and the existing fault message via its data contents (8 bytes). The emergency telegram has the identifier 128 + node ID. After a fault acknowledgment, another emergency telegram is transmitted, with the data content (Byte 0 ...7) being set to zero this time. This identifies the node's repeated readiness for operation. If a further fault occurs subsequently, it is transmitted in a new emergency telegram. The acknowledgment sequence is based on the definitions according to CANopen. Data contents of the emergency telegram: Byte 0 1 2 3 4 5 6 7 Value 0x00 0x10 0x80 0 0 0 0xnn 0xmm Emergency telegram Meaning low-byte Error-Code high-byte Error-Code Error-Register internal Error-Code, low-byte internal Error-Code, high-byte Bytes 0, 1 and 2 are firmly defined and compatible with CANopen. Bytes 6/7 contain the product specific VECTRON error code. Error-Code = 0x1000 Error-Register = 0x80 = general error = manufacturer-specific error The explanation and description of the product-specific VECTRON error code can be found in the annex "Error messages". 24 06/05 4.9.4 Server SDO1/SDO2 The communication channel for the exchange of parameter data is the SDO channel. Communication works according to the client/server model. The server is the node holding the data (here the frequency inverter), the client the node requesting or wanting to alter the data (PLC, PC or frequency inverter as system bus master). For the frequency inverter, two server SDO channels have been implemented. The first SDO channel SDO1 is used for the parameterization of the PLC/PC as a master or frequency inverter with field bus connection as a system bus master. The second SDO channel SDO2 is reserved for a visualization tool for parameterization. An exchange of data can only be implemented by the master via a client SDO. The SDO channels are stipulated for the server SDO’s via identifiers according to the Predefined Connection Set to CANopen. As CANopen only provides for and defines one SDO channel in the Predefined Connection Set, the second SDO channel can be deactivated. In addition, the number of system bus nodes and the adjustable node ID are limited to 63. Identifier assignment according to the Predefined Connection Set: Identifier Rx-SDO = 1536 + Node-ID Identifier Tx-SDO = 1408 + Node-ID (Node-ID = 1 ... 127, Identifier = 1537 ... 1663) (Node-ID = 1 ... 127, Identifier = 1409 ... 1535) Identifier assignment for SDO1/SDO2 compatible with the Predefined Connection Set: Identifier Rx-SDO1 = 1536 + Node-ID (Node-ID = 1 ... 63, Identifier = 1537 ... 1599) Identifier Tx-SDO1 = 1408 + Node-ID (Node-ID = 1 ... 63, Identifier = 1409 ... 1471) Identifier Rx-SDO2 = 1600 + Node-ID (Node-ID = 0 ... 63, Identifier = 1600 ... 1663) Identifier Tx-SDO2 = 1472 + Node-ID (Node-ID = 0 ... 63, Identifier = 1472 ... 1535) This corresponds to the factory settings of the frequency inverters for the SDO‘s. The node ID = 0 for SDO2 is the system bus master. Attention! The SDO2 must be deactivated in a CANopen system in order not to generate any compatibility problems. If a frequency inverter has been defined as the system bus master, the above settings for the SDO1 must be maintained in all the frequency inverters. In this way, access to the parameterization of the frequency inverters via a field bus connection on the master frequency inverter is possible. The client SDO1 in the master frequency inverter addresses the server SDO1 of the slaves via the above identifiers. Attention! The identifiers for a visualization tool on the second SDO channel SDO2 cannot be changed. 06/05 25 If a PC or a PLC is used as a master, the identifiers of the Rx/Tx-SDO1 can be adapted by parameterization on the frequency inverter. Attention! In free assignment of identifiers, there may not be any double occupancy! The identifier range 129...191 may not be used as the emergency telegrams can be found there. The setting of the identifiers of the RxSDO1 is done via the parameter RxSDO1Identifier 921. Parameter No. Description 921 RxSDO1-Identifier Min. 0 Setting Max. 2047 Fact. sett. 0 The setting of the identifiers of the TxSDO1 is done via parameter number 922. Parameter No. Description 922 TxSDO1-Identifier Min. 0 Setting Max. 2047 Fact. sett. 0 The setting "0” results in identifier assignment according to the Predefined Connection Set. The second SDO channel can be deactivated via the SDO2 Set Active 923. Operation mode 0 -SDO2 deactivated 1 -SDO2 activated Function Communication channel deactivated Communication channel activated for the visualization tool The identifier assignment for the second SDO channel is always to the specification: Identifier Rx-SDO2 Identifier Tx-SDO2 Note: 26 = 1600 + Node-ID = 1472 + Node-ID In this way, firm identifiers via which communication takes place are available for the visualization tool. 06/05 4.10 Communication channels, SDO1/SDO2 4.10.1 SDO telegrams (SDO1/SDO2) The service used for the exchange of parameter data is SDO Segment Protocol Expedited. The data (type uint, int, long) are exchanged in a telegram. Access to the parameters in the frequency inverters with a statement of parameter number and data set is displayed via the addressing defined for object access pursuant to the specifications of CANopen via Index/Sub-Index. Index = parameter number / Sub index = data set. The data to be transmitted have a length of 2 bytes for uint/int and 4 bytes for long. For standardization and simplification, 4 bytes are always transmitted. The data are on bytes 4...7 of the SDO telegram. uint/int variables are transmitted in bytes 4 and 5 with bytes 6 und 7 = 0. long variables are transmitted in bytes 4...7. Writing parameters: Client Î Server 0 Ctrl. byte 0x22 uint/int long Server Î Client 0 Ctrl. byte 0x60 Server Î Client 0 Ctrl. byte 0x80 SDO Download (expedited) 1 2 Parameter number LSB MSB 3 Data set 0xnn 4 5 6 7 0x00 ... MSB 0x00 MSB Data LSB LSB LSB MSB ... Download Response Î Writing process free of errors 1 2 Parameter number LSB MSB 3 Data set 0xnn 4 5 6 7 6 7 0 0 Data 0 Abort SDO Transfer Î Writing process faulty 1 2 Parameter number LSB MSB 3 Data set 0xnn 4 5 Data Code 0 The error code is stated in byte 4 in a faulty reading process. (see Table, failure codes). Attention! Control byte 0x22 for the identification "SDO Download expedited” does not consider the bits "s” (data size indicated) and "n” (number of bytes not containing data). If set, they are ignored. The user is responsible for the number of bytes matching the type of data. 06/05 27 Reading parameters: Client Î Server 0 Ctrl. byte 0x40 SDO Upload (expedited) 1 2 Parameter number LSB MSB Server Î Client 0 Ctrl. byte 0x42 uint/int long 4 5 6 7 6 7 0x00 ... MSB 0x00 MSB 6 7 0 0 Data 0 Upload Response Î Reading process free of errors 1 2 Parameter number LSB MSB Server Î Client 0 Ctrl. byte 0x80 3 Data set 0xnn 3 Data set 0xnn 4 5 Data LSB LSB LSB MSB ... Abort SDO Transfer Î Reading process faulty 1 2 Parameter number LSB MSB 3 Data set 0xnn 4 5 Code 0 Data The error code is stated in byte 4 in a faulty reading process. (see Table, failure codes). Code 1 2 3 4 5 6 7 8 9 10 11 12 15 20 21 failure codes Description inadmissible parameter figure inadmissible data set parameter not readable parameter not writable reading error EEPROM writing error EEPROM checksum error EEPROM parameter cannot be written during running drive values of the data sets differ parameter of wrong type unknown parameter BCC error in VECTRON bus protocol unknown error system bus node not available only in access via field bus connection string parameter not admissible only in access via VECTRON bus protocol Errors marked in the table are generated by the field bus side, not in the Abort SDO Transfer of the system bus. 28 06/05 4.10.2 Communication via field bus connection (SDO1) If a frequency inverter has been defined as the system bus master and equipped with a field bus interface, access to the parameterization of all the nodes in existence on the system bus is possible by means of this field bus interface via the first SDO channel (SDO1). An extension has been created in the protocol frame of the field buses for this purpose. Attention! The prerequisite for this mechanism is that the identifier setting for the first SDO channel (SDO1) corresponds to the Predefined Connection Set. The parameter addressed must also exist in the system bus master. 4.10.2.1 Profibus-DP If an object with communication channel (PKW) is used in Profibus-DP, access to all the other nodes on the system bus can be done via it. The structure of the communication channel permits an additional addressing of a system bus node. This is done by the use of an unused byte in the communication channel. Communication channel PKW 0 AK/SPM 1 PKE Parameter number 2 Index Data set 3 Node-ID system bus 4 5 6 7 Data Byte 3 is used to transmit the Node ID of the required node on the system bus. If byte 3 = 0, the master inverter of the system bus is addressed. The display is binary (0...63). 4.10.2.2 RS232/RS485 with VECTRON bus protocol In the VECTRON bus protocol, there is a byte in the telegram header that is always transmitted with 0 as a standard feature. ENQUIRY 0 Address 1 2 3 4 0 p n n Node-ID Data set Parameter number system bus 5 n 6 ENQ SELECT 0 Address 1 STX 2 3 4 0 p n n Node-ID Data set Parameter number system bus n ... Byte 1 in the enquiry and byte 2 in the select telegram are not defined and are used to transmit the Node ID of the required node on the system bus. If this byte = 0, the master inverter of the system bus is addressed. The display is ASCII corresponding to the conventions for the display of the address in the VECTRON bus protocol. Note: 06/05 If there is an NAK fault message, the error is to be read out from the system bus master with node ID = 0 via parameter 11! 29 Display of node ID system bus in the VECTRON bus protocol: System bus Node-ID System bus (ASCII-) HEX value System bus address character address 1 A 41 31 2 B 42 32 3 C 43 33 4 D 44 34 5 E 45 35 6 F 46 36 7 G 47 37 8 H 48 38 9 I 49 39 10 J 4A 40 11 K 4B 41 12 L 4C 42 13 M 4D 43 14 N 4E 44 15 O 4F 45 16 P 50 46 17 Q 51 47 18 R 52 48 19 S 53 49 20 T 54 50 21 U 55 51 22 V 56 52 23 W 57 53 24 X 58 54 25 Y 59 55 26 Z 5A 56 27 [ 5B 57 28 5C 58 29 ] 5D 59 30 ^ 5E 60 61 62 63 30 (ASCII-) character _ ` a b c d e f g h i j k l m n o p q r s t u v w x y z { | } ~ HEX value 5F 60 61 62 63 64 65 66 67 68 69 6A 6B 6C 6D 6E 6F 70 71 72 73 74 75 76 77 78 79 7A 7B 7C 7D 7E 7F 06/05 4.11 Process data channels, PDO 4.11.1 Identifier assignment process data channel The process channel for the exchange of process data under CANopen is the PDO channel. Up to three PDO channels with differing properties can be used in one device. The PDO channels are defined via identifiers according to the Predefined Connection Set to CANopen: Identifier 1. Rx-PDO = Identifier 1. Tx-PDO = 512 + Node-ID 384 + Node-ID Identifier 2. Rx-PDO = Identifier 2. Tx-PDO = 768 + Node-ID 640 + Node-ID Identifier 3. Rx-PDO = 1024 + Node-ID Identifier 3. Tx-PDO = 896 + Node-ID This corresponds to the factory settings of the frequency inverters for the Rx/TxPDO‘s. This occupancy is aligned to an external master (PLC/PC) serving all the channels. If the PDO channels are used for a connection of the frequency inverters amongst one another, the identifiers are to be set accordingly by parameterization. Attention! In free assignment of identifiers, there may not be any double occupancy! The identifier range 129...191 may not be used as the emergency telegrams can be found there. Setting of the identifiers of the Rx/TxPDO’s: Parameter No. Description 924 RxPDO1 Identifier 925 TxPDO1 Identifier 926 RxPDO2 Identifier 927 TxPDO2 Identifier 928 RxPDO3 Identifier 929 TxPDO3 Identifier Min. 0 0 0 0 0 0 Setting Max. 2047 2047 2047 2047 2047 2047 Fact. sett. 0 0 0 0 0 0 The setting "0” results in identifier assignment according to the Predefined Connection Set. 06/05 31 4.11.2 Operation modes process data channel The transmit/receive behavior can be time controlled or controlled via a SYNC telegram. The behavior can be parameterized for each PDO channel. Tx-PDO’s can work time controlled or SYNC controlled. A time controlled TxPDO transmits its data at the interval of time set. A SYNC controlled TxPDO transmits its data after the arrival of a SYNC telegram. RxPDO’s in the time controlled setting forward the received data to the application immediately. If an RxPDO has been defined as SYNC controlled, it forwards its received data to the application after the arrival of a SYNC telegram. Settings TxPDO1/2/3 Parameter No. Description 931 TxPDO1 Time 933 TxPDO2 Time 935 TxPDO3 Time Min. 1 ms 1 ms 1 ms Setting Max. 50000 ms 50000 ms 50000 ms Fact. sett. 8 ms 8 ms 8 ms The setting of the operation mode is done via the following parameters: TxPDO1 Function 930, TxPDO2 Function 932 und TxPDO3 Function 934 Operation mode 0 -Not Active 1 -Controlled by time 2 -Controlled by SYNC Function No data are sent In the cycle of the adjusted time interval the data are sent To arrival of a SYNC telegram the data are sent Settings RxPDO1/2/3 The setting of the operation mode is done via the following parameters: RxPDO1 Function 936, RxPDO2 Function 937 und RxPDO3 Function 938 Operation mode 0 -Controlled by time 1 -Controlled by SYNC Note: 32 Function The received data are passed on immediately After arrival of a SYNC telegram the received data are passed on In the "controlled by time” operation mode, there is a polling of the received data with the trigger cycle of Ta = 1 ms. 06/05 4.11.3 Timeout monitoring process data channel Each frequency inverter monitors its received data for whether they are updated within a defined time window. The monitoring is done onto the SYNC telegram and the RxPDO channels. Monitoring SYNC / RxPDO‘s No. 939 941 942 945 Parameter Description SYNC Timeout RxPDO1 Timeout RxPDO2 Timeout RxPDO3 Timeout Min. 0 ms 0 ms 0 ms 0 ms Setting Max. 60000 ms 60000 ms 60000 ms 60000 ms Fact. sett. 0 ms 0 ms 0 ms 0 ms Setting 0 means no timeout monitoring. Attention! There is only monitoring for the SYNC telegram if at least one RxPDO or one TxPDO channel is defined as SYNC controlled. If a timeout period is exceeded, the frequency inverter breaks down and reports one of the faults: F2200 System bus Timeout SYNC F2201 System bus Timeout RxPDO1 System bus Timeout RxPDO2 System bus Timeout RxPDO3 F2202 F2203 06/05 33 4.11.4 Communication relationships of the process data channel Regardless of the process data to be transmitted, the communication relationships of the process data channels must be defined. The connection of PDO channels is done via the assignment of the identifiers. The identifiers of Rx-/Tx-PDO must match in each case. There are two principal possibilities: - one Rx-PDO to one Tx-PDO (one to one) connect several Rx-PDO’s to one TxPDO (one to many) This process is documented in a tabular form via a communication relationship list. Example: Frequency inverter 1 PDO Identifier TxPDO1 385 RxPDO1 TxPDO2 641 RxPDO2 TxPDO3 RxPDO3 Frequency inverter 2 Frequency inverter 3 PDO Identifier PDO Identifier TxPDO1 TxPDO1 RxPDO1 385 RxPDO1 385 TxPDO2 TxPDO2 642 RxPDO2 641 RxPDO2 TxPDO3 TxPDO3 RxPDO3 642 RxPDO3 Attention! All the TxPDO’s used must have differing identifiers! The Identifier must be clear in the system bus network. Frequency inverter 1 PDO1 PDO2 PDO3 Rx Tx Rx Tx Rx Tx 385 641 34 Frequency inverter 2 PDO1 PDO2 PDO3 Rx Tx Rx Tx Rx Tx 385 641 642 Frequency inverter 3 PDO1 Rx Tx 385 PDO2 PDO3 Rx Tx Rx Tx 642 06/05 4.11.5 Virtual links According to CANopen, a PDO telegram contains 0...8 data bytes. A mapping for any kind of objects can be done in these data bytes. For the system bus, the PDO telegrams are firmly defined with 8 data bytes. The mapping is not done via mapping parameters as with CANopen, but via the method of sources and links. Each function provides its output data via a source. These sources are defined via source numbers. The input data of functions are defined via parameters. The link of a data input to a data output is done via the assignment of parameters to source numbers. Example 1: Function A Source-No. 27 Function C Parameter 125 Function B Parameter 187 Source-No. 5 In example 1, the two inputs of function C are connected with the outputs of functions A and B. Thus, the parameterization for this connection is: Function C Parameter 125 = Source-No. 27 Parameter 187 = Source-No. 5 Example of a virtual link in VPlus: Parameter (Softwarefunction) Source-No. (Operation mode) e.g. Start-clockwise 068 e.g. 71-S2IND Digital input The assignment of the operation modes to the software functions available can be adapted to the application in question. 06/05 35 For the system bus, the input data of the TxPDO’s are also displayed as input parameters and the output data of the RxPDO’s as sources. Example 2: Function A Inverter 1 Source-No. 27 TxPDO Inverter 1 Parameter 977 system bus Function B Inverter 1 Source-No. 5 RxPDO Inverter 2 Parameter 972 Function C Inverter 2 Source-No. 727 Parameter 125 Source-No. 724 Parameter 187 system bus Example 2 displays the same situation as Example 1. But now, the functions A and B are in frequency inverter 1 and function C in frequency inverter 2. The connection is done via a TxPDO in frequency inverter 1 and a RxPDO in frequency inverter 2. Thus, the parameterization for this connection is: Frequency inverter 1 Parameter 977 = Source-No. 27 Parameter 972 = Source-No. 5 Frequency inverter 2 Parameter 125 = Source-No. 727 Parameter 187 = Source-No. 724 As the links with the system used exceed the device limits, they are termed "virtual links". 36 06/05 The virtual links with the possible sources are related to the Rx/TxPDO channels. For this purpose, the eight bytes of the Rx-/TxPDO’s are defined structured as inputs and sources. This exists for each of the three PDO channels. Each transmit PDO and receive PDO can be occupied as follows: 4 Boolean variables or 4 uint/int variables 4 uint/int variables or 2 long variables or a mixture paying attention to the eight bytes available Assignment data type / number of bytes: Assignment Data type Length Boolean 2 Bytes uint/int 2 Bytes long 4 Bytes 06/05 37 4.11.5.1 Input parameters of the TxPDO’s for data to be transmitted The listed parameters can be used to stipulate the data that are to be transported there for each position in the TxPDO telegrams. The setting is done in such a way that a source number is entered for the required data in the parameters. TxPDO1 Byte 0 1 2 3 4 5 6 7 TxPDO2 Byte 0 1 2 3 4 5 6 7 TxPDO3 Byte 0 1 2 3 4 5 6 7 Note: 38 P. No. Boolean input 946 Boolean1 947 Boolean2 948 Boolean3 949 Boolean4 P. No. Boolean input 956 Boolean1 957 Boolean2 958 Boolean3 959 Boolean4 P. No. Boolean input 966 Boolean1 967 Boolean2 968 Boolean3 969 Boolean4 TxPDO1 Byte 0 1 2 3 4 5 6 7 TxPDO2 Byte 0 1 2 3 4 5 6 7 TxPDO3 Byte 0 1 2 3 4 5 6 7 P. No. uint/int input 950 Word1 951 Word2 952 Word3 953 Word4 P. No. uint/int input 960 Word1 961 Word2 962 Word3 963 Word4 P. No. uint/int input 972 Word1 973 Word2 974 Word3 975 Word4 TxPDO1 Byte 0 1 2 3 4 5 6 7 TxPDO2 Byte 0 1 2 3 4 5 6 7 TxPDO3 Byte 0 1 2 3 4 5 6 7 P. No. long input 954 Long1 955 Long2 P. No. long input 964 Long1 965 Long2 P. No. long input 976 Long1 977 Long2 Depending on the selected data information the percentages values are displayed via the uint/int inputs! 06/05 With this method, there are up to three possibilities for a meaning of the contents of the individual bytes. Each byte may only be used for one possibility. To ensure this, the processing of the input links is derived from the setting. If an input link has been set to the fixed value of zero, it is not processed. The settings for the fixed value zero are: Source = Source = 7 (FALSE) 9 (0) for boolean variables for uint/int, long variables This is simultaneously the factory setting. Examples Boolean source Source 6 7 70 71 72 161 163 164 Boolean source Data TRUE FALSE Contact input 1 Contact input 2 Contact input 3 Running message Nominal figure reached Set frequency reached (P. 510) Examples uint/int source uint/int source Source Data 9 0 63 Reference percentage 1 64 Reference percentage 2 52 Percentage MFI1 133 Output percentage ramp 137 Output reference percentage channel 138 Output actual percentage channel 740 Control word 741 State word Examples long source long source Source Data 9 0 0 Output frequency ramp 1 Fixed frequency 1 5 Reference line value 62 Output frequency reference value channel 50 Reference frequency MFI1 06/05 39 4.11.5.2 Source numbers of the RxPDO’s for received data Equivalent to the input links of the TxPDO’s, the received data of the RxPDO’s are displayed via sources or source numbers. The sources existing in this way can be used in the frequency inverter via the local input links for the data targets. RxPDO1 Byte 0 1 2 3 4 5 6 7 RxPDO2 Byte 0 1 2 3 4 5 6 7 RxPDO3 Byte 0 1 2 3 4 5 6 7 Source No. Boolean value 700 Boolean1 701 Boolean2 702 Boolean3 703 Boolean4 Source No. Boolean value 710 Boolean1 711 Boolean2 712 Boolean3 713 Boolean4 Source No. Boolean value 720 Boolean1 721 Boolean2 722 Boolean3 723 Boolean4 RxPDO1 Byte 0 1 2 3 4 5 6 7 RxPDO2 Byte 0 1 2 3 4 5 6 7 RxPDO3 Byte 0 1 2 3 4 5 6 7 Source No. uint/int value 704 Word1 705 Word2 706 Word3 707 Word4 Source No. uint/int value 714 Word1 715 Word2 716 Word3 717 Word4 Source No. uint/int value 724 Word1 725 Word2 726 Word3 727 Word4 RxPDO1 Byte 0 1 2 3 4 5 6 7 RxPDO2 Byte 0 1 2 3 4 5 6 7 RxPDO3 Byte 0 1 2 3 4 5 6 7 Source No. longValue 708 Long1 709 Long2 Source No. long value 718 Long1 719 Long2 Source No. long value 728 Long1 729 Long2 With this method, there are up to three possibilities for a meaning of the contents of the individual bytes. Each byte may only be used for one possibility. Note: 40 Depending on the selected data information the percentages values are displayed via the uint/int inputs! 06/05 4.11.5.3 Examples of virtual links Example 1: Frequency inverter 1 Source Input link TxPDO1 No. Byte Control word 950 0 740 1 Output reference frequency channel 62 Frequency inverter 2 RxPDO1 Source Target Byte No. 0 704 Control input, Control word 1 99 2 3 4 709 Ramp input, Reference line 5 value 137 6 7 2 3 4 5 6 7 955 Parameter 950 = Source-No. 740 Parameter 955 = Source-No. 62 Parameter 99 = Source-No. 704 Parameter 137 = Source-No. 709 The control word of frequency inverter 1 is linked with the control word of frequency inverter 2. In this way, both frequency inverters can be operated synchronously via the remote control. The output of the reference value channel of frequency inverter 1 is laid onto the output of the ramp of frequency inverter 2. In this way, both frequency inverters have a joint source of reference values and are given reference values in the internal notation. As an extension, a number of frequency inverters can also exist on the receive side (Rx), these then being supplied with data parallel and simultaneously. The input link not used in the TxPDO1 of frequency inverter 1 is on ZERO and is thus not served. Example 2: Example of a virtual link with transmission via the system bus: TxPDO1 Identifier 925 385 Parameter Identifier Inverter 1 system bus 06/05 TxPDO1 Boolean1 946 71-S2IND Parameter Source-No. RxPDO1 Identifier 924 385 Parameter Identifier Inverter 2 Start-clockwise 068 700-RxPDO1 Boolean Parameter Source-No. 41 4.12 Control parameters For the monitoring of the system bus and the display of the internal states, two control parameters are provided. There is a report of the system bus state and a report of the CAN state via two actual value parameters. The parameter Node-State 978 gives information about the Pre-Operational, Operational, Stopped state. A PDO transfer is only possible in the Operational state. The state is controlled by the system bus master (PLC / PC / frequency inverter) via NMT telegrams. The parameter CAN-State 979 gives information about the state of the physical layer. If there are transmission errors, the state changes from OKAY to WARNING until the cancellation of the communication with BUS-OFF. After BUS-OFF, the CAN controller is automatically re-initialized and the system bus started again. Note: If the BUS-OFF state occurs, the frequency inverter breaks down with "F2210 BUS-OFF". After Bus-OFF, the system bus in the frequency inverter is completely reinitialized. There is a new boot-up message from the node and an emergency telegram with the Bus-OFF message is transmitted. The change of state of the node to Operational is done by the Start-Remote-Node telegram cyclically sent by the system bus master. Actual values of the system bus No. Description Function 978 Node-State 1 - Pre-Operational 2 - Operational 3 - Stopped 979 CAN-State 1 - OKAY 2 - WARNING 3 - BUS-OFF 42 06/05 4.13 Handling of the parameters of the system bus As soon as the system bus expansion module EM-SYS exists in an frequency inverter, the actual value parameters for system state and bus state are activated and can be observed in the actual value menu VAL of the control unit KP500 or with the VPlus PC program in the menu Actual values System bus. Note: The actual value parameters are on control level 3 and are thus available for the user at any time. All the setting parameters for the configuration of the system bus are not directly accessible for the user. For defined customer applications, pre-defined XPI files can be generated by VECTRON for the VPlus PC program, with which the necessary parameters are visible for the user. The application-relevant variables are then available in these XPI files. Note: XPI files can be read in addition to the loaded parameter information of the frequency inverter into the VPlus PC program. In the menu of the software under the point Edit you find the command "Read in XPI file". The method of working via an XPI file has its reasoning in the fact that deep interventions in the system are possible via the system bus and can lead to serious problems in the application with an untrained user. Via the XPI files, a user is given a selection list pre-defined by VECTRON. Attention! The configuration of the necessary parameters for the system bus are accessible by a XPI file with the help of the VPlus PC program. The control unit KP500 does not support this functionality. If the expansion module system bus EM-SYS is installed additionally to a communication module for the field bus connection (CM-232, CM-485 or CM-PDP) in the frequency inverter, the parameterization can be made with the interface adapter KP232. Experienced users have complete access to all the existing sources and possible input links with the XPI file of the active functions. The selection depends on the selected configuration and control procedure. The display of the parameters when using the XPI file is according to the following structure: system bus 06/05 Basic Settings 900Node-ID 903Baud-Rate Master Functions 904Boot-Up Delay 919SYNC-Time SYNC-Identifier 918SYNC-Identifier SDO1-Identifier 921RxSDO1-Identifier 922TxSDO1-Identifier SDO2 Set Active 923SDO2 Set Active PDO-Identifier 924RxPDO1-Identifier 925TxPDO1-Identifier 926RxPDO2-Identifier 927TxPDO2-Identifier 928RxPDO3-Identifier 929TxPDO3-Identifier 43 TxPDO-Function 930TxPDO1 931TxPDO1 932TxPDO2 933TxPDO2 934TxPDO3 935TxPDO3 RxPDO-Function 936RxPDO1 Function 937RxPDO2 Function 938RxPDO3 Function Timeout 939SYNC Timeout 941RxPDO1 Timeout 942RxPDO2 Timeout 945RxPDO3 Timeout TxPDO1 Objects 946TxPDO1 947TxPDO1 948TxPDO1 949TxPDO1 950TxPDO1 951TxPDO1 952TxPDO1 953TxPDO1 954TxPDO1 955TxPDO1 Boolean1 Boolean2 Boolean3 Boolean4 Word1 Word2 Word3 Word4 Long1 Long2 TxPDO2 Objects 956TxPDO2 957TxPDO2 958TxPDO2 959TxPDO2 960TxPDO2 961TxPDO2 962TxPDO2 963TxPDO2 964TxPDO2 965TxPDO2 Boolean1 Boolean2 Boolean3 Boolean4 Word1 Word2 Word3 Word4 Long1 Long2 TxPDO3 Objects 966TxPDO3 967TxPDO3 968TxPDO3 969TxPDO3 972TxPDO3 973TxPDO3 974TxPDO3 975TxPDO3 976TxPDO3 977TxPDO3 Boolean1 Boolean2 Boolean3 Boolean4 Word1 Word2 Word3 Word4 Long1 Long2 Actual values system bus 44 Function Time Function Tome Function Time 978Node-State 979CAN-State 06/05 4.14 Utilities For the planning of the system bus according to the drive tasks in question, there are utilities in the form of tables. The planning of the system bus is done in three steps: 1. 2. 3. Definition of the communication relationships Production of the virtual links Capacity check The priority assignment of the identifiers is relevant for the definition of the communication relationships. Data that are to be transmitted with a higher priority must be given low identifiers. This results in the message with the higher priority being transmitted first with a simultaneous access of two nodes to the bus. Note: The recommended identifier range for the communication relationships via the PDO channels is 385 ... 1407. The identifiers below 385 are used for the NMT telegrams (boot-up sequence, SYNC telegram) and emergency message. The identifiers above 1407 are used for the SDO channel for parameterization. 06/05 45 46 Source- Input link/parameternumber number: Boolean uint/int TxPDO-Nr: ________ long (Tx/RxPDO) Input link/parameternumber Boolean uint/int RxPDO-Nr: ________ ________ long Sourcenumber: Node-ID: Identifier: ___________ Node-ID: ________ Inverter: ___________________________ Inverter: ___________________________ 4.14.1 Definition of the communication relationships The communication relationships are planned and documented with the help of the table. The table is available as a Microsoft Word document "kbl.doc" on the BONFIGLIOLI VECTRON product CD or upon request. 06/05 06/05 Source- Input link/parameternumber number: Boolean uint/int TxPDO-Nr: ________ long (Tx/RxPDO) Input link/parameternumber Boolean uint/int RxPDO-Nr: ________ ________ long Sourcenumber: Node-ID: Identifier: ___________ Node-ID: ________ Inverter: ___________________________ Inverter: ___________________________ 4.14.2 Production of the virtual links The virtual links are planned and documented with the help of the table. The table is available as a Microsoft Word document "vvk.doc" on the BONFIGLIOLI VECTRON product CD or upon request. 47 4.14.3 Capacity planning of the system bus Each PDO telegram possesses a constant useful data content of 8 Bytes. According to worst case, this results in a maximum telegram length of 140 bits. The maximum telegram run time of the PDO’s is thus stipulated via the set baud rate. Capacity planning Baud rate / Telegram run time / μs kBaud 1000 140 500 280 250 560 125 1120 100 1400 50 2800 As a function of the set baud rate and the transmission interval of the TxPDO’s selected, the following bus loads results: Capacity of the system bus Baud rate Bus load as a function of the transmission for one TxPDO in % / kBaud 1ms 2ms 3ms 4ms 5ms 6ms 7ms 8ms 9ms 10ms 1.000 14 7 4.7 3.5 2.8 2.3 2 1.8 1.6 1.4 500 28 14 9.3 7 5.6 4.7 4 3.5 3.1 2.8 250 56 28 18.7 14 11.2 9.3 8 7 6.2 5.6 125 112 56 37.3 28 22.4 18.7 16 14 12.4 11.2 100 140 70 46.7 35 28 23.3 20 17.5 15.6 14 50 280 140 93.3 70 56 46.7 40 35 31.1 28 Attention! A bus load >100% means that a telegram cannot be dispatched completely between two transmission times. Such a setting is not admissible! This observation must be done for each TxPDO. The sum of all the TxPDO’s decides on the entire bus load. The bus load must be designed in such a way that any telegram repetitions for transmission errors are possible without exceeding the bus capacity. Note: 48 To facilitate capacity planning, an Microsoft Excel file with the name "Load_Systembus.xls” is available. 06/05 The capacity planning are planned and documented with the help of the table. The work sheet is available as a Microsoft Excel document "Load_Systembus.xls" on the VECTRON product CD or by request. Load system bus Baud rate [kBaud]: 50, 100, 125, 250, 500, 1000 Frequency inverter 1 2 3 4 5 6 7 8 9 10 TxPDO Number 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 Total load [%] Ta [ms] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 1000 Load [%] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 14 14 14 14 14 0 0 0 0 70 In the table, the set baud rate is entered from the parameter Baud-Rate 903 in kBaud. For each frequency inverter, the set time for the transmission interval (e. g. TxPDO1 Time 931) in ms is entered for the TxPDO being used at the time. In the column Load the bus load caused by the individual TxPDO appears, under Total Load the entire bus load. For the bus load (Total load) the following limits have been defined: Î OKAY ≤ 80 % 80 ... 90 % Î CRITICAL Î NOT POSSIBLE > 90 % 06/05 49 5 Control inputs and outputs 5.1 5.1.1 Analog input EM-S1INA General The analog input of the EM-IO-02 expansion module can optionally be configured as a voltage or a current input. Parameterization of the input signal is done by the definition of a linear characteristic and assignment as a − reference value source (can be selected via the parameter Reference frequency source 475), − reference percentage source (can be selected via the parameter Reference percentage source 476), − actual percentage source (can be selected via the parameter Actual percentage source 478, in configuration x11) or − limit value sources (can be selected via the parameter Limit Source 734…737). 5.1.2 Configuration voltage/current input ON S3 X410A Operation mode – switch S3 OFF Voltage input ON - Note: 50 Current input S1 ON ON The analog input of the EM-IO-02 expansion module has been configured in the factory setting for a voltage signal of +/- 10 V. Switch S3 enables the switch-over of the operation mode for an analog current signal of +/-20 mA. S2 X410B Function OFF (to the right) – analog input EM-S1INA is configured for a voltage signal. ON (to the left) – analog input EM-S1INA is configured for a current signal. With the two switches S1 and S2, the bus connection of the system bus interface is configured (refer to chapter "System Bus Interface"). 06/05 5.1.3 Characteristic The mapping of the analog input signals onto a frequency or percentage reference value is possible for various demands. The parameterization is to be done via two points of the linear characteristic of the reference channel. The characteristic point 1, with the coordinates X1 and Y1, and the characteristic point 2, with the coordinates X2 and Y2, are to be set in the four data sets. The characteristic points X1 and X2 are stated as percentages, as the analog input can be switched as a current or voltage input via switch S3. No. 564 565 566 567 Parameter Description Characteristic point X1 Characteristic point Y1 Characteristic point X2 Characteristic point Y2 Min. -100.00 % -100.00 % -100.00 % -100.00 % Setting Max. 100.00 % 100.00 % 100.00 % 100.00 % Fact. sett. -98.00 % -100.00 % 98.00 % 100.00 % The coordinates of the characteristic points are related as a percentage to the analog signal, with 10 V or 20 mA, and the parameter Maximum Frequency 419 or parameter Maximum reference percentage 519. The change of direction of rotation can be done via the digital inputs and/or by selecting the characteristic points. The definition of the analog input characteristic can be calculated via the two-point form of the straight line equation. The speed Y of the drive mechanism is controlled according to the analog control signal X. Y= Y2 - Y1 ⋅ (X − X1) + Y1 X2 - X1 Attention! Monitoring of the analog input signal via the parameter Error/Warning Behavior 563 demands a check of the characteristic parameters. Sensible use is only possible if the Characteristic point X1 564 is in the positive range. 5.1.4 Operation modes The operation modes of the analog input characteristic enable application-related scaling as a supplement to the characteristic points stated. One of the four linear types of characteristic is selected for adaptation of the signal for the analog input signal via the parameter Operation mode 562. If the characteristic points are not suited for the type of characteristic selected, the characteristic points are corrected internally. Operation mode 1 -bipolar 11 -unipolar 21 -unipolar 2…10 V / 4…20 mA 101 -bipolar abs. value Function The analog input signal is mapped onto the reference figure according to the characteristic points (X1/Y1) and (X2/Y2). With a negative parameter value of the characteristic points X1 or X2, they are mapped to the reference value zero. If the characteristic points X1 or X2 have been set with a negative parameter figure or smaller than 0%, the input characteristic is mapped to the reference value 20%. Negative parameter values of the characteristic points Y1 or Y2 are mapped as a positive reference value in the characteristic. Further information on the operation modes stated in the table can be found in the following chapter "Examples“. 06/05 51 5.1.4.1 Examples The analog input signal is mapped onto a reference value as a function of the characteristic. The following examples show the operation modes for an analog voltage signal. The parameter Minimum Frequency 418 is set to the value 0.00 Hz. The characteristic point 100% for the Y axis corresponds to the parameter Maximum Frequency 419 of 50.00 Hz in the examples. Attention! The various operation modes change the input characteristic as a function of the parameterized characteristic points. In the following examples, the areas of the system of coordinates from which a characteristic point is displaced are marked. Operation mode "1 – bipolar" In operation mode "1 – bipolar“, the characteristic of the analog input can be freely set by stating two characteristic points. Y 42.50Hz Characteristic point 1: X1 = -70.00% · 10 V = -7.00 V (X2=80% / Y2=85%) Y1 = -50.00% · 50.00 Hz = -25.00 Hz X -7V Characteristic point 2: X2 = 80.00% · 10 V = 8.00 V Y2 = 85.00% · 50.00 Hz = 42.50 Hz Tolerance band: ΔX = 2.00% · 10 V = 0.20 V 8V -25Hz The change of direction of rotation is done in the example at an analog input signal of -1.44 V, with a tolerance band of ±0.20 V. (X1=-70% / Y1=-50%) Operation mode "11 – unipolar" In operation mode "11 – unipolar“, the characteristic points are displaced to the origin of the characteristics with a negative value for the X axis. Y 42.50Hz Characteristic point 1: X1 = -70.00% · 10 V = -7.00 V (X2=80% / Y2=85%) Y1 = -50.00% · 50.00 Hz = -25.00 Hz X -7V 8V -25Hz (X1=-70% / Y1=-50%) 52 Characteristic point 2: X2 = 80.00% · 10 V = 8.00 V Y2 = 85.00% · 50.00 Hz = 42.50 Hz Tolerance band: ΔX = 2.00% · 10 V = 0.20 V The characteristic point 1 has been displaced to the origin. The parameter Tolerance band 560 is not taken into account in this example, as no change of sign of the reference frequency value takes place. 06/05 Y 42.50Hz Characteristic point 1: X1 = 30.00 % · 10 V = 3.00 V (X2=80% / Y2=85%) Y1 = -50.00 % · 50.00 Hz = -25.00 Hz Characteristic point 2: X2 = 80,00 % · 10 V = 8.00 V Y2 = 85.00 % · 50.00 Hz = 42.50 Hz X 3.00V 8.00V -25.00Hz Tolerance band: ΔX = 2.00 % · 10 V = 0.20 V The change of direction of rotation is done (X1=30% / Y1=-50%) in the example at an analog input signal of 4.85 V, with a tolerance band of ±0.20 V. Operation mode "21 – unipolar 2…10 V / 4…20 mA" This operation mode limits the input characteristic to the range between 20% and 100% of the analog signal. If the value for a characteristic point of the X axis is outside 0%, it is mapped to the characteristic point (2 V / 0 Hz). The characteristic point on the X axis is calculated according to the following formula: characteri stic point X = parameter value X ⋅ (100.00% - 20.00%) + 20.00% Y 42.50Hz Characteristic point 1: X1 = [-70.00% · (100.00% - 20.00%) (X2=80% / Y2=85%) + 20.00% ] · 10 V = -7.60 V Y1 = -50.00% · 50.00 Hz = -25.00 Hz -7.60V 8.40V Characteristic point 2: X2 = [80.00% · (100.00% - 20.00%) X + 20.00% ] · 10 V = 8.40 V Y2 = 85.00% · 50.00 Hz = 42.50 Hz Tolerance band: ΔX = [2.00% · (100.00% - 20.00%) · 10 V] = 0.16 V -25.00Hz (X1=-70% / Y1=-50%) The characteristic point 1 has been displaced to the point (2.00V / 0.00 Hz). The parameter Tolerance band 560 is not taken into account in this example, as no change of sign of the reference frequency value takes place. Y 42.50Hz Characteristic point 1: X1 = [30,00% · (100.00% - 20.00%) (X2=80% / Y2=85%) + 20.00% ] · 10 V = 4.40 V Y1 = -50.00% · 50.00 Hz = -25.00 Hz X 4.40V 8.40V -25.00Hz Characteristic point 2: X2 = [80.00% · (100.00% - 20.00%) + 20.00% ] · 10 V = 8.40 V Y2 = 85.00% · 50.00 Hz = 42.50 Hz Tolerance band: ΔX = [2.00% · (100.00% - 20.00%) (X1=30% / Y1=-50%) · 10 V] = 0.16 V The change of direction of rotation is done in the example at an analog input signal of 5.88 V, with a tolerance band of ±0.16 V. 06/05 53 Operation mode "101 – bipolar abs. value" The operation mode "101 – bipolar abs. value“ maps the bipolar analog signal onto a unipolar input characteristic. The formation of the absolute value takes the characteristic into account comparable to the "bipolar" operation mode, but the characteristic points are reflected on the X axis with a negative value for the Y axis. Y 42.50Hz Characteristic point 1: X1 = -70.00% · 10 V = -7.00 V (X2=80% / Y2=85%) Y1 = -50.00% · 50.00 Hz = -25.00 Hz 25.00Hz X -7V 8V -25.00Hz (X1=-70% / Y1=-50%) 5.1.5 Characteristic point 2: X2 = 80.00% · 10 V = 8.00 V Y2 = 85.00% · 50.00 Hz = 42.50 Hz Tolerance band: ΔX = 2.00% · 10 V = 0.20 V In this example, the reference value is again increased from an analog input signal of -1.44 V with a tolerance band of ±0.20 V. The theoretical change of sign of the reference value is taken into account and leads to the tolerance band stated. There is no change of the direction of rotation. Scaling The analog input signal is mapped to the freely configurable characteristic. The maximum admissible setting range of the drive mechanism is to be set according to the configuration selected via the frequency limits or the percentage value limits. In the parameterization of a bipolar characteristic, the minimum and maximum limit for both directions of rotation are taken over. The percentage values of the characteristic points are relative to the maximum limits selected. Parameter No. Description 418 Minimum Frequency 419 Maximum Frequency Min. 0.00 Hz 0.00 Hz Setting Max. 999.99 Hz 999.99 Hz Fact. sett. 3.50 Hz 50.00 Hz The controls use the maximum value of the output frequency, which is calculated from the maximum frequency 419 and the compensated slip of the drive mechanism. The frequency limits define the speed range of the drive mechanism and the reference percentage values supplement the scaling of the input characteristic according to the configured functions. Parameter No. Description 518 Minimum reference percentage 519 Maximum reference percentage 54 Min. 0.00 % 0.00 % Setting Max. 300.00 % 300.00 % Fact. sett. 0.00 % 100.00 % 06/05 5.1.6 Tolerance band and hysteresis The analog input characteristic with change of sign of the reference value can be adapted by the parameter Tolerance band 560 of the application. The tolerance band to be defined extends the zero crossing of the speed relative to the analog control signal. The percentage parameter value is relative to the maximum current or voltage signal. Parameter No. Description 560 Tolerance band Min. 0.00 % Setting Max. 25.00 % (X2 / Y2) Fact. sett. 2.00 % (X2 / Y2) pos. max. value pos. max. value +10V (+20mA) -10V (-20mA) +10V -10V (-20mA) Tolerance band (X1 / Y1) neg. max. value Without tolerance band (X1 / Y1) neg. max. value With tolerance band The Minimum Frequency 418 or the Minimum reference percentage 518 set in the factory extends the parameterized tolerance band to the hysteresis. (X2 / Y2) pos. max. value pos. min. value neg. min. value Tolerance band (X1 / Y1) neg. max. value With tolerance band and minimum value For example, the output variable resulting from the positive input signals is kept at the positive minimum value until the input signal is below the value for the tolerance band in a negative direction. After that proceed on the set characteristic. 06/05 55 5.1.7 Error and warning behavior The monitoring of the analog input signal necessary according to the application is to be configured via the parameter Error/Warning behavior 563. Operation mode 0 -Off 1 -Warning < 1 V / 2 mA 2 -Shutdown < 1 V / 2 mA Fault switch-off 3< 1 V / 2 mA Function The input signal is not monitored. If the input signal is less than 1 V or 2 mA, there is a warning message. If the input signal is less than 1 V or 2 mA, there is a warning message, the drive mechanism is decelerated according to stopping behavior 1. If the input signal is less than 1 V or 2 mA, there is a warning and fault message and the drive mechanism stops freely. The monitoring of the analog input signal is active independent of the release of the frequency inverter according to the operation mode selected. In operation mode 2, the drive mechanism is decelerated independent of the stopping behavior set (Parameter Operation mode 630) according to stopping behavior 1 (shutdown and switch-off). If the set holding time has expired, there is a fault message. A repeat start of the drive mechanism is possible by switching the start signal on and off if the fault has been cleared beforehand. Operation mode 3 defines the free stoppage of the drive mechanism, independent of the stopping behavior selected, which is stipulated with the parameter Stop function 630. Attention! Monitoring of the analog input signal via the parameter Error/Warning Behavior 563 demands a check of the characteristic parameters. 56 06/05 5.1.8 Adjustment As a result of component tolerances, it can be necessary to adjust the analog input. Parameter Adjustment 568 is used for this purpose. 0- Operation mode no adjustment 1- Adjustment 0 V / 0 mA 2- Adjustment 10 V / 20 mA Function Normal operation Adjustment of the measurement with an analog signal of 0 V or 0 mA. Adjustment of the measurement with an analog signal of 10 V or 20 mA. Example of the adjustment of the analog input with a voltage signal: Note: The measurements for the adjustment are to be done with a suitable measuring instrument and the correct polarity. If not, faulty measurements can result. If an external voltage source is used for the adjustment, make sure to set the voltage/current values exactly as these values are saved as 0 V/0 mA and 10 V/20 mA. • Apply 0 V to the analog input; e.g. with a wired link from the terminal of the analog input X410B.3 to terminal X210B.7 (earth/GND) of the frequency inverter. • Select operation mode "1 - Adjustment 0 V / 0 mA“. • Apply 10 V to the analog input, e.g. with a wired link from the terminal of the analog input to terminal X210B.5 (reference output 10 V) of the frequency inverter. • Select operation mode "2 - Adjustment 10 V / 20 mA“. This completes the adjustment of the analog input. 5.1.9 Filter time constant The time constant of the filter for the reference analog value can be set via the parameter Filter time constant 561. The time constant states the time for which the input signal is averaged by means of a low pass filter, e.g. in order to eliminate fault effects. The setting range is a range of values between 0 ms and 5000 ms in 15 steps. Operation mode 0 -Time constant 0 ms 2 4 8 16 32 64 128 256 512 1000 2000 3000 4000 5000 06/05 -Time -Time -Time -Time -Time -Time -Time -Time -Time -Time -Time -Time -Time -Time constant constant constant constant constant constant constant constant constant constant constant constant constant constant 2 ms 4 ms 8 ms 16 ms 32 ms 64 ms 128 ms 256 ms 512 ms 1000 ms 2000 ms 3000 ms 4000 ms 5000 ms Function Filter deactivated – analog reference value is forwarded unfiltered Filter activated – averaging of the input signal via the set value of the filter time constants 57 5.2 Analog output EM- S1OUTA 5.2.1 General The analog output of the EM-IO-02 expansion module is a voltage output with a range of +/-10 V. Parameterization of the output signals is done by the definition of the operation mode and a linear characteristic, stating the offset and the amplification. 5.2.2 Operation modes The operation mode of the analog output is selected via the parameter Operation mode 584. Additional to the operation modes listed, those stated in the operating instructions of the frequency inverter in the chapter "Analog output MFO1A“ also apply. Operation mode 0 -Off 41 -Abs. value EM-S1INA 100 -10 V 101 to 141 201 to 254 5.2.3 Function Analog output switched off, 0 V fixed voltage for the adjustment Absolute value of Signal on the analog input EMS1INA, between 0.0 V…10.0 V 10 V fixed voltage for the adjustment Operation modes 1 to 41 with sign, between -10.0 V...10.0 V Operation modes 1…54; Actual absolute value between 2.0 V...10.0 V Adjustment As a result of component tolerances, it can be necessary to adjust the analog output. Parameter Adjustment 587 is used for this purpose. Parameter No. Description 587 Adjustment Min. -15.00 V Setting Max. 15.00 V Fact. sett. 0.00 V Example of the adjustment of the analog output: Note: • Select operation mode "0 – Off“ for the parameter Operation mode 584. • Enter the voltage measured on the output in the parameter Adjustment 587. • Select operation mode "100 - 10 V“ for parameter Operation mode 584. • Enter the voltage measured on the output in the parameter Adjustment 587. • Select operation mode "0 – Off“ on the parameter Operation mode 584. In case the voltage measured at the output deviates from 0 V significantly, carry out the adjustment procedure again. Note: • 58 The measurements for the adjustment are to be done with a suitable measuring instrument and the correct polarity. The order shown in the example is always to be complied with during the adjustment. If not, faulty measurements and settings can result. The greatest precision to be achieved is approx. +/-40 mV. Select the required operation mode of the analog output for parameter Operation mode 584. 06/05 5.2.4 Zero adjustment and amplification After the adjustment has been carried out, the voltage of the output signal at 0% and 100% of the reference signals can be set with the parameters Offset 585 (zero adjustment) and Amplification 586. The zero adjustment with the parameter Offset 585 is done specific to the application as a percentage of the final value of the analog output (10 V). Via the parameter Amplification 586 the amplification can be set as a percentage of the final value of the analog output (10 V). In the factory setting, the zero point has been set at 0% Offset, i.e. minimum value of the reference signal equal to 0 V output signal. The factory setting amplification equal to 100% means that the output signal is 10 V when the reference value is reached. Parameter No. Description 585 Offset 586 Amplification 5.2.4.1 Min. -100.00 % 5.0 % Setting Max. 100.00 % 1000.0 % Fact. sett. 0.00 % 100.0 % Examples The actual value parameter is mapped to the analog output signal as a function of the selected parameters Offset 585 and Amplification 586. The following examples show the application-specific adaptation for an analog voltage signal. Example 1: Parameter No. Description 585 Offset 586 Amplification Setting Example 0.00 % 1000.0 % The setting of the parameter Offset 585 to 0.00% and the parameter Amplification 586 to 1000.0% means that the output signal: − is 0 V at 0% of the reference signal, − is 10 V at 10% of the reference signal. 10 V 0V 0 % 10 % 100 % Example 2: Parameter No. Description 585 Offset 586 Amplification 9.5 V -0.5 V 06/05 Setting Example -5.00 % 100.0 % The setting of the parameter Offset 585 to -5,00% and the parameter Amplification 586 to 100,0% means that the output signal: − is -0.5 V at 0% of the reference signal, − is 9.5 V at 100% of the reference signal. 59 5.3 Digital output EM-S1OUTD 5.3.1 General The digital output of the EM-IO-02 expansion module is designed as a make contact relay. Parameterization of this digital output permits a linking to a variety of functions. The selection of functions depends on the parameterized configuration. 5.3.2 Operation modes The operation mode of the digital output (Terminals X410A.6 and 7) is selected via the parameter Operation Mode EM-S1OUTD 533. The operation modes to be selected correspond to the table shown in the operating instructions of the frequency inverter in the chapter "Digital outputs“. 5.4 Digital inputs EM-SxIND The EM-IO-02 expansion module has three digital inputs. The assignment of the control signals to the available software functions can be adapted to the application in question. As a function of the selected Configuration 30, the factory-set assignment and the selection of the operation mode differ. In addition to the digital control inputs available, further internal logistic signals are also available as sources. The individual software functions are assigned to the various signal sources via parameterization-capable inputs. This enables a flexible and varied use of the digital control signals. 320 321 322 520 521 522 - Operation mode EM-S1IND EM-S2IND EM-S3IND EM-S1IND inverted EM-S2IND inverted EM-S3IND inverted Function Signal on digital input 1 (X410A.3) Signal on digital input 2 (X410A.4) Signal on digital input 3 (X410A.5) Inverted signal on digital input 4 (X410A.3) Inverted signal on digital input 5 (X410A.4) Inverted signal on digital input 6 (X410B.5) Alongside the operation modes listed, those stated in the operating instructions of the frequency inverter in the chapter "Digital inputs" also apply. 5.4.1 Fixed reference values and fixed value switch-over Depending on the Reference Frequency Source 475 selected, fixed frequencies can be used as reference values. The EM-IO-02 expansion module extends the functionality described in the operating instructions of the frequency inverter (parameter Fixed frequency change-over 1 66 and Fixed frequency change-over 2 67) by the parameter Fixed frequency change-over 3 131 and the matching parameters Fixed frequency 5 485, Fixed frequency 6 486, Fixed frequency 7 487, Fixed frequency 8 488. Fixed frequency change-over 1 66 Fixed frequency 1 480 Fixed frequency 2 481 Fixed frequency 3 482 Fixed frequency 4 483 Fixed frequency 5 485 Fixed frequency 6 486 Fixed frequency 7 487 Fixed frequency 8 488 60 0 1 1 0 0 1 1 0 Fixed frequency change-over 2 67 0 0 1 1 1 1 0 0 Fixed frequency change-over 3 131 0 0 0 0 1 1 1 1 06/05 5.5 Digital inputs EM-SxIND for speed sensor EM-ENC The three digital inputs of the EM-IO-02 expansion module can be set via the parameter Operation mode Speed sensor 2 493 and selection of the corresponding operation mode for the evaluation of a unipolar 24V two-channel speed sensor (incremental speed sensor). For parameter analog mode 553, the additional operation mode 4 – abs. value speed sensor 2 can be selected, which can output the abs. value of the speed sensor signal 2 in the range from 0.00 Hz to maximum frequency 419 via the multifunctional output MFO1. Assignment of the inputs: − − − Digital input EM-S2IND: track A Digital input EM-S3IND: track B Digital input EM-S1IND: corresponding to the operation mode as a reference impulse With the help of parameter Operation mode Speed sensor 2 493, the following operation modes are available: Operation mode 0 -Off 4 -Quadruple evaluation 104 - Quadruple evaluation inverted Quadruple evaluation 1004 -with reference impulse Quadruple evaluation 1104 -inverted with reference impulse 5.5.1 Function Speed measurement is not active; the digital inputs are available for further functions. Two-channel speed sensor with recognition of direction of rotation via track signals A and B; four signal edges are evaluated per division mark. As operation mode 4; the actual speed value is inverted. (Alternative to exchanging the track signals). Two-channel speed sensor with recognition of direction of rotation via track signals A and B; four signal edges are evaluated per division mark; the reference impulse is used for sensor monitoring. As operation mode 1004; the actual speed value is inverted. (Alternative to exchanging the track signals). Division marks The number of increments of the connected speed sensor can be adjusted via the parameter Division marks speed sensor 2 494. The number of division marks of the speed sensor is to be selected according to the speed range of the application. The maximum number of division marks Smax is defined by the limit frequency of fmax = 150 kHz of the digital inputs EM-S2IND (track A) and EM-S3IND (track B). S max = 150000 Hz ⋅ 60s/ min nmax nmax = Max. speed of the motor in RPM To ensure a good true running of the drive mechanism, a sensor signal must be evaluated at least every 2 ms (signal frequency f = 500 Hz). The minimum number of division marks Smin of the incremental speed sensor for a required minimum speed nmin can be calculated from this requirement. The evaluation of four signal edges per mark is firmly defined in the function of speed sensor 2. S min = 500 Hz ⋅ 60s/ min A ⋅ nmin Parameter No. Description 494 Division marks speed sensor 2 06/05 nmin = Min. speed of the motor in RPM A = 4 (quadruple evaluation) Min. 1 Setting Max. 8192 Fact. sett. 1024 61 5.5.2 Actual speed source If speed sensor 2 of the expansion module is configured to supply the actual value signal for the speed controller, speed sensor 2 must be selected as the source. Switchover is affected via parameter Actual Speed Source 766. By default, speed sensor 1 is used as the actual speed source. Operation mode 1 -Speed sensor 1 2 -Speed sensor 2 5.5.3 Function The actual speed source is speed sensor 1 of the basic device (factory setting). The actual speed source is speed sensor 2 of the EM-IO-02 expansion module. Actual value comparison The expansion module provides additional operation modes for parameters Operation Mode Comparator 1 540 and Operation Mode Comparator 2 543 which are described in the operating instructions. These operation modes permit a comparison of the speed sensor 2 signal with the maximum speed and a comparison of the analog input EMS1INA with the maximum analog input value. Operation mode actual speed 2, 8abs. value Analog input 16 EM-S1INA, abs. value 108 and 116 62 Function Speed Sensor 2 Speed 220 > maximum speed (calculated from Maximum Frequency 419 and No. of Pole Pairs 373) Analog input EM-S1INA 253 > analog input 100% Operation modes with signs (+/-) 06/05 5.6 Frequency and percentage reference channel The varied functions for the specification of the reference values are connected in the various configurations by the frequency or percentage reference channel. The Reference frequency source 475, and the Reference percentage source 476 determine the additive connection of the available reference sources as a function of the installed hardware. Operation mode EM-S1INA, 2analog abs. value MFI1A + EM-S1INA, 4abs. value EM-S1INA 12 -+ FF (and/or FP), abs. value Function Reference source is the analog input EM-S1INA Reference sources are the multifunctional input MFI1A and the analog input EM-S1INA Reference sources are the analog input EM-S1INA and fixed frequency FF (and/or the fixed percentage FP) Reference sources are the multifunctional input MFI1A + EM-S1INA + FF, 14 MFI1A, analog input EM-S1INA and fixed frequency abs. value FF Reference sources are the analog input EM-S1INA 22 -EM-S1INA +MP, abs. value and the motor potentiometer function MP. Reference sources are the multifunctional input MFI1A + EM-S1INA + MP, 24 MFI1A, analog input EM-S1INA and the motor poabs. value tentiometer function MP The frequency signals in Operation mode Speed speed sensor 2 (F2), 34 abs. value sensor 2 493 are evaluated as a reference value. Reference sources are the multifunctional input MFI1A and the frequency signals in Operation 35 -MFI1A + F2, abs. value Mode Speed Sensor 2 493. 102 to 135 Operation modes with signs (+/-) Alongside the operation modes listed, those stated in the operating instructions of the frequency inverter in the chapter "Frequency reference channel“, and in the chapter "Percentage reference channel“ also apply. 5.7 Actual value display The actual value of speed sensor 2 can be read via the parameters Frequency speed sensor 2 219 and Speed, speed sensor 2 220. The analog input signal on analog input EM-S1INA can be a voltage or a current signal depending on the setting of switch S3. Accordingly, the actual value parameter Analog input EM-S1INA 253 is displayed as a percentage. The analog output signal on analog output EM-S1OUTA can be read via the actual value parameter Analog output EM-S1OUTA 266. 06/05 63 5.8 Status of the digital signals The status of the digital signals can be read in decimal coding via the parameters Digital inputs 250 and Digital outputs 254. The display of the digital input signals enables checking the various control signals and their connections with the software functions in question, in particular in commissioning. After conversion of the decimal figure into the binary system, bits 8, 9 and 10 display the states of the inputs EM-S1IND, EM-S2IND and EM-S3IND. Coding of the status of the digital signals Bit 15 14 1312 1110 9 8 Bit 7 6 5 4 3 2 1 0 control signal 1 (decimal value 1) control signal 2 (decimal value 2) control signal 3 (decimal value 4) control signal 4 (decimal value 8) control signal 5 (decimal value 16) control signal 6 (decimal value 32) control signal 7 (decimal value 64) control signal 8 (decimal value 128) control signal 16 (decimal value 32768) control signal 15 (decimal value 16384) control signal 14 (decimal value 8192) control signal 13 (decimal value 4096) control signal 12 (decimal value 2048) control signal 11 (decimal value 1024) control signal 10 (decimal value 512) control signal 9 (decimal value 256) Example: The actual value parameter Digital inputs 250 displays the decimal value 640. After conversion into the binary system, the following combination results: Binary system: Bit 15 14 13 12 1110 9 8 Bit 7 6 5 4 3 2 1 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 control signal 10 (decimal value 512) control signal 8 (decimal value 128) The following status of the digital input signals of the EM-IO-02 expansion module has been displayed − Digital input EM-S1IND = 1 – control signal 8 − Digital input EM-S2IND = 0 – control signal 9 − Digital input EM-S3IND = 1 – control signal 10 Note: 64 The three digital inputs of the EM-IO-02 expansion module can be used for the evaluation of a speed sensor via the parameter Operation mode Speed sensor 2 493. The control signals are set to the logical value zero as a function of the selected operation mode. 06/05 5.9 Motor temperature Temperature monitoring forms part of the configurable error- and warning behavior. The connected load can be monitored by connecting a measuring resistor (motor PTC) with temperature characteristics according to DIN 44081 or by means of a bimetal temperature sensor (break contact). The operation mode of the motor ptc port can be selected via parameter Operation Mode Motor Temp. 570 The operation modes described in chapter "Motor Temperature" of the frequency inverter operating instructions are complemented by the following operation modes with the EM-IO-02 expansion module: Operation mode EM-MPTC: 11 warning only 12 - Function The critical operating point is displayed by the control unit and parameter Warnings 269. Error-switch-off is displayed by message F0400. Errorswitch-off can be acknowledged via the control unit or the digital input. Error-switch-off according to operation mode 2, delayed by one minute. EM-MPTC: Error-switch-off EM-MPTC: 13 -Error-switch-off, 1 min. delay EM-MPTC: 14 -Error-switch-off, 5 min. delay EM-MPTC: 15 -Error-switch-off, 10 min. delay Error-switch-off according to operation mode 2, delayed by five minutes. Error-switch-off according to operation mode 2, delayed by ten minutes. The function to be adjusted by parameter Operation Mode Motor Temp. 570 results in signaling the overtemperature by the red LED of the frequency inverter, irrespective of the selected operation modes of the control inputs and outputs. The operation modes with error-switch-off result in the fault message "FAULT" with fault number "F0400" being displayed on the control unit KP500. The fault message can be acknowledged via parameter Program 34 or the logic signal linked with parameter Error Acknowledgement 103. Thermal switch Error/Warning-Behaviour Operation Mode Motor Temp. 570 0 S1IND S2IND S3IND S4IND S5IND S6IND MFI1D Therm. Contact 204 PTC connection EM-PTC EM-PTC The function selected according to the above table with parameter Operation Mode Motor Temp. 570 can be linked, as required, to the digital control outputs and the warning mask. (For detailed information, refer to the operating instructions of the frequency inverter). 06/05 65 Note: The evaluation of the motor PTC port is independent of the signal at the digital controller input S1IND (controller release). The motor temperature for a temperature adjustment, as described in chapter "Temperature Adjustment", can be effected via analog input EM-S1INA. The selection is effected via parameter Operation Mode 465. Operation mode 2- 66 Temp. meas. at EM-S1INA Function Temperature synchronization (0 ... 200 °C => 0...10 V / 0...20 mA), Actual temperature value at analog input of EM-IO-02 expansion module. 06/05 6 Parameter list The parameter list is structured according to the menu branches of the control unit. For better clarity, the parameters are marked with pictograms: The parameter is available in the four data sets The parameter value is set by the SETUP routine This parameter cannot be written in the operation of the frequency inverter 6.1 No. 219 220 250 253 254 266 978 979 6.2 Actual value menu (VAL) Actual values of the machine Description Unit Display range Frequency speed sensor 2 Hz 0,0 ... 999,99 Speed, speed sensor 2 rpm 0 ... 60000 Actual values of the frequency inverter Digital inputs 00 ... 32767 Analog input EM-S1INA % -100 ... +100 Digital outputs 00 ... 32767 Analog output EM- S1OUTA V 0.0 ... 10.0 Actual values of the system bus Node-State 1 ... 3 CAN-State 1 ... 3 5.8 5.1 5.8 5.2 4.12 4.12 Parameter menu (PARA) Digital input No. Description Unit 131 Fixed Frequency change-over 3 Speed sensor 2 493 Operation mode speed sensor 2 494 Division marks speed sensor 2 Fixed frequencies 485 Fixed frequency 5 Hz 486 Fixed frequency 6 Hz 487 Fixed frequency 7 Hz 488 Fixed frequency 8 Hz Digital output 533 Operation mode EM-S1OUTD Analog input EM module 560 Tolerance band % 561 Filter time constant 562 Operation mode 563 Error/warning behavior 564 Characteristic point X1 % 565 Characteristic point Y1 % 566 Characteristic point X2 % 567 Characteristic point Y2 % 568 Adjustment - 06/05 Chapter 5.7 5.7 Setting range Selection Selection 1 ... 8192 -999.99 -999.99 -999.99 -999.99 ... ... ... ... Chapter 5.4.1 5.5 5.5.1 999.99 999.99 999.99 999.99 5.4.1 5.4.1 5.4.1 5.4.1 Selection 5.3.2 0.00 ... 25.00 Selection Selection Selection -100.00 ... 100.00 -100.00 ... 100.00 -100.00 ... 100.00 -100.00 ... 100.00 Selection 5.1.6 5.1.9 5.1.4 5.1.7 5.1.3 5.1.3 5.1.3 5.1.3 5.1.8 67 Motor PTC Resistor Connection EM-module No. Description Unit Setting range 570 Operation mode motor temp. Selection Analog output EM-module 584 Operation mode Selection 585 Offset % -100.00 ... 100.00 586 Amplification % 5.0 ... 1000.0 587 Adjustment V -15.00 ... +15.00 Speed controller 766 Actual speed source Selection System bus 900 Node-ID -1 ... 63 903 Baud-Rate Selection 904 Boot-Up Delay ms 3500 ... 50000 918 SYNC-Identifier 0 ... 2047 919 SYNC-Time ms 0 ... 50000 921 RxSDO1-Identifier 0 ... 2047 922 TxSDO1-Identifier 0 ... 2047 923 SDO2 Set Active Selection 924 RxPDO1-Identifier 0 ... 2047 925 TxPDO1-Identifier 0 ... 2047 926 RxPDO2-Identifier 0 ... 2047 927 TxPDO2-Identifier 0 ... 2047 928 RxPDO3-Identifier 0 ... 2047 929 TxPDO3-Identifier 0 ... 2047 930 TxPDO1 Function Selection 931 TxPDO1 Time ms 0 ... 50000 932 TxPDO2 Function Selection 933 TxPDO2 Time ms 0 ... 50000 934 TxPDO3 Function Selection 935 TxPDO3 Time ms 0 ... 50000 936 RxPDO1 Function Selection 937 RxPDO2 Function Selection 938 RxPDO3 Function Selection 939 SYNC Timeout ms 0 ... 60000 941 RxPDO1 Timeout ms 0 ... 60000 942 RxPDO2 Timeout ms 0 ... 60000 945 RxPDO3 Timeout ms 0 ... 60000 946 TxPDO1 Boolean1 Selection 947 TxPDO1 Boolean2 Selection 948 TxPDO1 Boolean3 Selection 949 TxPDO1 Boolean4 Selection 950 TxPDO1 Word1 Selection 951 TxPDO1 Word2 Selection 952 TxPDO1 Word3 Selection 953 TxPDO1 Word4 Selection 954 TxPDO1 Long1 Selection 955 TxPDO1 Long2 Selection 956 TxPDO2 Boolean1 Selection 957 TxPDO2 Boolean2 Selection 958 TxPDO2 Boolean3 Selection 959 TxPDO2 Boolean4 Selection 960 TxPDO2 Word1 Selection 961 TxPDO2 Word2 Selection 962 TxPDO2 Word3 Selection 68 Chapter 5.9 5.2.2 5.2.4 5.2.4 5.2.3 5.5.2 4.5 4.4 4.8.4 4.8.2 4.9.2 4.9.4 4.9.4 4.9.4 4.11.1 4.11.1 4.11.1 4.11.1 4.11.1 4.11.1 4.11.2 4.11.2 4.11.2 4.11.2 4.11.2 4.11.2 4.11.2 4.11.2 4.11.2 4.11.3 4.11.3 4.11.3 4.11.3 4.11.5.1 4.11.5.1 4.11.5.1 4.11.5.1 4.11.5.1 4.11.5.1 4.11.5.1 4.11.5.1 4.11.5.1 4.11.5.1 4.11.5.1 4.11.5.1 4.11.5.1 4.11.5.1 4.11.5.1 4.11.5.1 4.11.5.1 06/05 System bus No. 963 964 965 966 967 968 969 972 973 974 975 976 977 989 06/05 Description TxPDO2 Word4 TxPDO2 Long1 TxPDO2 Long2 TxPDO3 Boolean1 TxPDO3 Boolean2 TxPDO3 Boolean3 TxPDO3 Boolean4 TxPDO3 Word1 TxPDO3 Word2 TxPDO3 Word3 TxPDO3 Word4 TxPDO3 Long1 TxPDO3 Long2 Emergency Reaction Unit - Setting range Selection Selection Selection Selection Selection Selection Selection Selection Selection Selection Selection Selection Selection Selection Chapter 4.11.5.1 4.11.5.1 4.11.5.1 4.11.5.1 4.11.5.1 4.11.5.1 4.11.5.1 4.11.5.1 4.11.5.1 4.11.5.1 4.11.5.1 4.11.5.1 4.11.5.1 4.8.3 69 7 Annex 7.1 Error messages The various control functions and methods and the hardware of the frequency inverter contain functions which continuously monitor the application. As a supplement to the messages documented in these operating instructions, the following failure keys are activated by the EM-IO-02 expansion module. F14 F21 F22 02 30 31 32 33 34 35 Control connections Reference value signal on analog input EM-S1INA faulty, check signal Speed sensor signal 2 is faulty, check connections One track of the speed sensor signal 2 is missing, check connections. Direction of rotation of speed sensor 2 wrong, check connections. Speed sensor 2, divisions marks wrong, check speed sensor Division marks of speed sensor signal 2 too low, check speed sensor. Division marks of speed sensor signal 2 too high, check speed sensor. System bus nn Fault report to system bus master in fault in system bus slave nn = Node ID of slave (hex) 00 01 02 03 10 Communication Communication Communication Communication Communication fault, fault, fault, fault, fault, System bus system bus, timeout SYNC telegram system bus, timeout RxPDO1 system bus, timeout RxPDO2 system bus, timeout RxPDO3 system bus, bus OFF Alongside the fault messages stated, there are further fault messages, however they are only used for internal purposes and are not listed here. If you receive fault messages which are not listed here, please contact us by phone. 70 06/05 Bonfiglioli Worldwide & BEST Partners AUSTRALIA BONFIGLIOLI TRANSMISSION (Aust) Pty Ltd. 48-50 Adderley St. (East) Auburn (Sydney) N.S.W. 2144 Tel. (+61) 2 8748 4400 - Fax (+61) 2 9748 8740 P.o. Box 6705 Silverwater NSW 1811 www.bonfiglioli.com.au - [email protected] HUNGARY AGISYS AGITATORS & TRANSMISSIONS Ltd 2045 Törökbálint, Tö u.2. Hungary Tel. +36 23 50 11 50 - Fax +36 23 50 11 59 www.agisys.hu - [email protected] AUSTRIA MOLL MOTOR GmbH Industriestrasse 8 - 2000 Stockerau Tel. (+43) 2266 63421+DW - Fax (+43) 6342 180 Tlx 61 32 22 348 Molla www.mollmotor.at - [email protected] INDIA BONFIGLIOLI TRANSMISSIONS PVT Ltd. PLOT AC7-AC11 Sidco Industrial Estate Thirumudivakkam - Chennai 600 044 Tel. +91(0)44 24781035 / 24781036 / 24781037 Fax +91(0)44 24780091 / 24781904 www.bonfiglioli.co.in - [email protected] BELGIUM N.V. ESCO TRANSMISSION S.A. Culliganlaan 3 - 1831 Machelem Diegem Tel. 0032 2 7204880 - Fax 0032 2 7212827 Tlx 21930 Escopo B www.escotrans.be - [email protected] NEW ZEALAND SAECO BEARINGS TRANSMISSION 36 Hastie Avenue, Mangere Po Box 22256, Otahuhu - Auckland Tel. +64 9 634 7540 - Fax +64 9 634 7552 [email protected] BRASIL ATI BRASIL Rua Omlio Monteiro Soares, 260 - Vila Fanny - 81030-000 Tel. (+41) 334 2091 - Fax (+41) 332 8669 www.atibrasil.com.br - [email protected] POLAND POLPACK Sp. z o.o. - Ul. Chrobrego 135/137 - 87100 Torun Tel. 0048.56.6559235 - 6559236 - Fax 0048.56.6559238 www.polpack.com.pl - [email protected] CANADA BONFIGLIOLI CANADA INC. 2-7941 Jane Street - Concord, ONTARIO L4K 4L6 Tel. (+1) 905 7384466 - Fax (+1) 905 7389833 www.bonfigliolicanada.com - [email protected] CHINA BONFIGLIOLI DRIVES (SHANGHAI) CO. LTD. No. 8 Building, Area C1 - 318 SuHong Road, Qingpu, Shanghai 201700 Tel. +86 21 69225500 - Fax +86 21 69225511 www.bonfiglioli.cn - [email protected] FRANCE BONFIGLIOLI TRANSMISSIONS S.A. 14 Rue Eugène Pottier BP 19 Zone Industrielle de Moimont II - 95670 Marly la Ville Tel. (+33) 1 34474510 - Fax (+33) 1 34688800 www.bonfiglioli.fr - [email protected] GERMANY BONFIGLIOLI DEUTSCHLAND GmbH Hamburger Straße 18 - 41540 Dormagen Tel. (+49) 2133 50260 - Fax (+49) 2133 502610 www.bonfiglioli.de - [email protected] GREAT BRITAIN BONFIGLIOLI UK Ltd Unit 3 Colemeadow Road - North Moons Moat Redditch. Worcestershire B98 9PB Tel. (+44) 1527 65022 - Fax (+44) 1527 61995 www.bonfiglioli.co.uk - [email protected] BONFIGLIOLI (UK) LIMITED 5 Grosvenor Grange - Woolston - Warrington, Cheshire WA1 4SF Tel. (+44) 1925 852667 - Fax (+44) 1925 852668 www.bonfiglioliuk.co.uk - [email protected] GREECE BONFIGLIOLI HELLAS S.A. O.T. 48A T.O. 230 - C.P. 570 22 Industrial Area - Thessaloniki Tel. (+30) 2310 796456 - Fax (+30) 2310 795903 www.bonfiglioli.gr - [email protected] HOLLAND ELSTO AANDRIJFTECHNIEK Loosterweg, 7 - 2215 TL Voorhout Tel. (+31) 252 219 123 - Fax (+31) 252 231 660 www.elsto.nl - [email protected] RUSSIA FAM 57, Maly prospekt, V.O. - 199048, St. Petersburg Tel. +7 812 3319333 - Fax +7 812 3271454 www.fam-drive.ru - [email protected] SPAIN TECNOTRANS SABRE S.A. Pol. Ind. Zona Franca sector C, calle F, n°6 08040 Barcelona Tel. (+34) 93 4478400 - Fax (+34) 93 3360402 www.tecnotrans.com - [email protected] SOUTH AFRICA BONFIGLIOLI POWER TRANSMISSION Pty Ltd. 55 Galaxy Avenue, Linbro Business Park - Sandton Tel. (+27) 11 608 2030 OR - Fax (+27) 11 608 2631 www.bonfiglioli.co.za - [email protected] SWEDEN BONFIGLIOLI SKANDINAVIEN AB Kontorsgatan - 234 34 Lomma Tel. (+46) 40 412545 - Fax (+46) 40 414508 www.bonfiglioli.se - [email protected] THAILAND K.P.T MACHINERY (1993) CO.LTD. 259/83 Soi Phiboonves, Sukhumvit 71 Rd. Phrakanong-nur, Wattana, Bangkok 10110 Tel. 0066.2.3913030/7111998 Fax 0066.2.7112852/3811308/3814905 www.kpt-group.com - [email protected] USA BONFIGLIOLI USA INC 1000 Worldwide Boulevard - Hebron, KY 41048 Tel.: (+1) 859 334 3333 - Fax: (+1) 859 334 8888 www.bonfiglioliusa.com [email protected] [email protected] VENEZUELA MAQUINARIA Y ACCESSORIOS IND.-C.A. Calle 3B - Edif. Comindu - Planta Baja - Local B La Urbina - Caracas 1070 Tel. 0058.212.2413570 / 2425268 / 2418263 Fax 0058.212.2424552 Tlx 24780 Maica V www.maica-ve.com - [email protected] HEADQUARTERS BONFIGLIOLI RIDUTTORI S.p.A. Via Giovanni XXIII, 7/A 40012 Lippo di Calderara di Reno Bologna (ITALY) Tel. (+39) 051 6473111 Fax (+39) 051 6473126 www.bonfiglioli.com [email protected] SPARE PARTS BONFIGLIOLI B.R.T. Via Castagnini, 2-4 Z.I. Bargellino - 40012 Calderara di Reno - Bologna (ITALY) Tel. (+39) 051 727844 Fax (+39) 051 727066 www.brtbonfiglioliricambi.it [email protected] INDUSTRY PROCESS AND AUTOMATION SOLUTIONS ACTIVE w w w. b o n f i g l i o l i . c o m COD. VEC 218 R0
|
|
Ремонт частотных преобразователей BONFIGLIOLI
Ремонт частотного преобразователя BONFIGLIOLI, впрочем, как и ремонт частотников других производителей имеет ряд особенностей в силу своего конструктива. Частотные преобразователи, точнее их начинка делятся на две части:
- Аппаратная часть,
- Программная часть.
Частотники данного производителя не являются исключением из правил, именно поэтому ремонт частотного преобразователя BONFIGLIOLI имеет точно такой же ряд особенностей, как и у других преобразователей.
Диагностировать ту или иную неисправность помогают коды ошибок частотного преобразователя, которые отображаются на небольшом дисплее, расположенном на лицевой панели привода. Коды ошибок частотного преобразователя BONFIGLIOLI в зависимости от серии описаны в инструкции, пользователя которые можно скачать с нашего сайта.
Ремонт частотных преобразователей BONFIGLIOLI, как и любых других преобразователей, выпущенных под другими брендами, всегда начинается с аппаратной части, после успешного ремонта аппаратной части наступает очередь программной.
Настройка частотного преобразователя BONFIGLIOLI также прописана в инструкции завода производителя, для каждой серии частотных преобразователей настройка будет индивидуальной, так как каждая линейка преобразователей решает свои собственные задачи, этим обусловливается широкая номенклатура данного промышленного оборудования.
Ремонт частотных преобразователей BONFIGLIOLI в сервисном центре
Компания «Кернел» производит ремонт частотных преобразователей BONFIGLIOLI в с 2002 года. За время существования компании наши сотрудники накопили колоссальный опыт в ремонте преобразователей частоты такого известного производителя как BONFIGLIOLI. Ремонт подобного промышленного оборудования ответственное и сложное занятие, требующие максимальной отдачи, профессионализма и максимально полной материальной базе.
Специалисты нашего сервисного центра максимальное внимание уделяют качеству исполнения ремонта, программирования и настройке промышленных преобразователей частоты, не зависимо от производителя данного промышленного оборудования. Именно поэтому мы смело даем гарантию на все выполненные работы шесть месяцев.
Ремонт частотных преобразователей BONFIGLIOLI в производится исключительно с использованием оригинальных запасных частей, на компонентном уровне с применением высокотехнологичного диагностического оборудования, квалифицированным персоналом с инженерным образованием.
В случае выхода из строя преобразователя частоты на вашем производстве либо появились проблемы с приводом, которые вы не можете решить самостоятельно, мы всегда рады вам помочь. Специалисты нашего сервисного центра в минимальные сроки проведут глубокую диагностику с последующим ремонтом частотного преобразователя BONFIGLIOLI.
Инженеры сервисного центра выполняют качественный ремонт частотных преобразователей BONFIGLIOLI в всех серий, когда-либо выпускаемых компанией.
BONFIGLIOLI ACTIVE Cube |
ACU210-01, ACU210-03, ACU210-05, ACU210-07, ACU210-09, ACU210-11, ACU210-13, ACU210-15, ACU210-18, ACU210-21 |
BONFIGLIOLI ACTIVE Agile |
AGL402-02 1, AGL402-03 1, AGL402-05 1, AGL402-07 1, AGL402-09, AGL402-11 1, AGL402-13 1, AGL402-15 2, AGL402-18 2, AGL402-19 2 |
BONFIGLIOLI ACTIVE ANG |
ANG210-11, ANG210-19, ANG410-09, ANG410-18, ANG410-25, ANG410-37, ANG510-55, ANG510-61, ANG610-53, ANG610-59 |
BONFIGLIOLI ACTIVE Series |
ACT401-05, ACT401-07, ACT401- 09, ACT401- 11, ACT401-12, ACT401- 13, ACT401-15, ACT401-22, ACT401-25, ACT401-33 |
BONFIGLIOLI LMD |
LMD037-Y1 1, LMD037-Y2 1, LMD037-D1 1, LMD037-D2 1, LMD075-Y1 1, LMD075-D2 1, LMD150-Y1 1, LMD300-D1 1 |
BONFIGLIOLI VCB |
VCB400-010, VCB400-014, VCB400-018, VCB400-025, VCB400-034, VCB400-045, VCB400-060, VCB400-075, VCB400-115, VCB400-180 |
BONFIGLIOLI SYNTHESIS |
SYN10 S 220 01 AF, SYN10 S 220 07 AF, SYN10 S 220 09 AF, SYN10 T 400 05 AF, SYN10 T 400 07 AF, SYN10 T 400 09 AF |
BONFIGLIOLI SYNPLUS |
SPL200-03F, SPL200-07F, SPL200-11F, SPL200-13F, SPL400-11F, SPL400-13F, SPL400-17F, SPL400-19F, SPL400-21F, SPL400-23F |
BONFIGLIOLI S2U standard |
S2U230S-02 (1), S2U230S-03 (1), S2U230S-07 (1), S2U230S-11 (2), S2U230S-13 (2) |
BONFIGLIOLI S2U IP66 |
S2U230S-07 F IP66 (1), S2U230S-13 F IP66 (2), S2U400T-07 F IP66 (1), S2U400T-18 F IP66 (2), S2U400T-21 F IP66 (3), S2U400T-25 IP66 (3) |
BONFIGLIOLI AEC |
AEC401-19, AEC401-22, AEC401-25, AEC401-29, AEC401-33, AEC401-37, AEC401-43, AEC401-45, AEC401-47, AEC401-49 |
В данной таблице присутствуют далеко не все частотные преобразователи и сервопривода BONFIGLIOLI ремонт которых предлагает наш сервисный центр.
Настройка частотного преобразователя BONFIGLIOLI, программирование
Настройка частотных преобразователей BONFIGLIOLI (программирование) происходит в рамках установленных производителем правил, существует общий алгоритм по программированию (настройке частотных преобразователей), относящийся ко всем производителям данного промышленного оборудования. Ниже представлена пошаговая инструкция по настройке частотных преобразователей BONFIGLIOLI.
- Выбор режима управления приводом BONFIGLIOLI (управление по показанию датчиков, дистанционное управление, дистанционное управление).
- В случае использования отдельного (выносного) монитора, настраивается вывод на него технической информации.
- Далее определяем конфигурацию подключения серводвигателя. На данной стадии задаются такие параметры как- возможность применения обратной связи либо без ее применения, а в память блока заносятся данные по: величине крутящего момента, мощности потребителей, номинальное значения частоты, напряжение, ток и скорости вращения ротора.
- Программируется минимально допустимая величина напряжения и частоты, а также время ускорения ротора от ноля до номинального значения.
- И в завершении, в программу управления частотным преобразователем BONFIGLIOLI вносятся функциональные данные со значениями отдельных клемм и особенностями сигналов. Отмечаются действия оборудования, выполняющиеся автоматически при отсутствии информации поступающей в оперативном режиме с датчика.
В некоторых частотниках существует пункт наличия/отсутствия фильтра в цепи питания двигателя. Этот пункт отвечает за подключение различных видов нагрузок, в том случае, когда возможно выбрать нормальное или инверсное изменение частоты при повышении уровня сигнала обратной связи.
Все настройки частотных преобразователей BONFIGLIOLI приведены в технической документации ниже в удобном формате (PDF) который можно скачать на свой компьютер, распечатать или просто открыть на нашем сайте.
Коды ошибок частотного преобразователя BONFIGLIOLI Synplus
В процессе работы выходит из строя даже самое надежное промышленное оборудование. В данной статье мы приведем ошибки частотного преобразователя BONFIGLIOLI, а точнее BONFIGLIOLI Synplus. Частотники в наше время нашли широкое применения в абсолютно всех сферах промышленности управляя как мини моторами в оргтехнике, так и гигантскими двигателями в горнодобывающей промышленности.
Для простоты общения со столь сложной электроникой все частотные преобразователи оснащены небольшими дисплеями с помощью которых выводятся информационные сообщения с кодами ошибок, расшифровав которые можно сразу же узнать причину ее возникновения. Если учесть распространенность данной промышленной электроники, то появляется острая нужда в расшифровке кодов ошибок частотных преобразователей. В этой статье мы рассмотрим одного из самых известных производителей промышленной электроники имеющему уважение во всем мире, BONFIGLIOLI.
Существует несколько видов ошибок, некоторые из них можно устранить автоматически, а некоторые возможно исправить только, обратившись в специализированный сервисный центр. В таблицах ниже приведены коды ошибок частотного преобразователя BONFIGLIOLI и их расшифровка.
Ошибки частотного преобразователя BONFIGLIOLI Synplus которые невозможно сбросить вручную.
Код ошибки |
Ошибка |
Причина |
Устранение |
CPF |
Программная ошибка |
Влияние внешних помех |
Установите параллельно катушке магнитного контактора, который вызывает помехи, RC импульсный поглотитель |
EPR |
Ошибка EEPROM |
Дефект внутренней памяти EEPROM преобразователя |
Заменить EEPROM |
0V |
В состоянии останова напряжение слишком велико |
Повреждение внутренней измерительной цепи |
Вернуть частотный преобразователь для ремонта |
LV |
В состоянии останова напряжение слишком мало |
|
|
OH |
В состоянии останова частотный преобразователь перегревается |
|
|
CTER |
Токовый датчик сигнализирует ошибку |
Ошибка токового датчика или повреждение внутренней цепи |
Вернуть частотный преобразователь для ремонта |
Ошибки частотного преобразователя BONFIGLIOLI Synplus которые можно сбросить вручную или автоматически.
Код ошибки |
Ошибка |
Причина |
Устранение |
OC-S |
Перегрузка по току при старте |
|
|
OC-D |
Перегрузка по току при замедлении |
1. Установленное время замедления слишком маленькое |
Установите большее время замедления |
OC-A |
Перегрузка по току при разгоне |
|
|
OC-C |
Перегрузка по току при фиксированной скорости |
|
|
OV-C |
Слишком высокое напряжение при работе/ замедлении |
|
|
OVSP |
Превышение скорости при работе |
|
|
Err4 |
Внезапная остановка работы ЦПУ |
Влияние помех извне |
Вернуть частотный преобразователь для ремонта, если данная ошибка часто повторяется. |
Ошибки частотного преобразователя BONFIGLIOLI Synplus которые возможно сбросить вручную.
Код ошибки |
Ошибка |
Причина |
Устранение |
OC |
Перегруз по току в состоянии останова |
|
|
OL1 |
Перегрузка двигателя |
|
|
OL2 |
Перегрузка частотного преобразователя |
Тяжелая нагрузка |
Увеличьте мощность частотного преобразователя |
OL3 |
Перегрузка по моменту |
|
|
LV-C |
Слишком низкое напряжение при работе |
|
|
OH-C |
При работе температура радиатора слишком высокая |
|
|
Преобразователь частоты разработан таким образом, что он пытается избежать аварийных отключений путем ограничения момента, перенапряжения и т.п. Появление сбоев при вводе в эксплуатацию или вскоре после него обычно свидетельствует о неверной настройке или неправильном подключении. Возникновение неисправностей или проблем после длительного режима бесперебойной работы обычно происходит по причине изменений в системе или ее окружении (например, в результате износа).
Полный список всех возможных ошибок частотных преобразователей BONFIGLIOLI можно посмотреть и скачать в файлах ниже.
Частотный преобразователь BONFIGLIOLI, скачать инструкции по эксплуатации
Ниже вы можете скачать руководства по эксплуатации частотных преобразователей BONFIGLIOLI
Частотный преобразователь BONFIGLIOLI LMD инструкция |
|
Частотный преобразователь BONFIGLIOLI VCB инструкция |
|
Частотный преобразователь BONFIGLIOLI Synplus инструкция |
|
Частотный преобразователь BONFIGLIOLI Synthesis инструкция |
|
Частотный преобразователь BONFIGLIOLI Actyv agile инструкция |
|
Частотный преобразователь BONFIGLIOLI Actyv cube инструкция |
Сброс ошибок частотных преобразователей BONFIGLIOLI
Компания «Кернел» производит ремонт промышленной электроники и оборудования с 2002 года. За это время мы накопили колоссальный опыт в том числе опыт в ремонте частотных преобразователей BONFIGLIOLI. Ремонт подобной промышленной электроники ответственное и сложное занятие, требующие максимальной отдачи, профессионализма и максимально полной материальной базе.
Специалисты нашего сервисного центра уделяют максимальное внимание к качеству исполнения ремонта, программирования и настройке промышленного преобразователя частоты, не зависимо от производителя данного промышленного оборудования. Именно поэтому мы смело даем гарантию на все выполненные работы шесть месяцев.
Ремонт частотных преобразователей производится исключительно с использованием оригинальных запасных частей, на компонентном уровне с применением высокотехнологичного оборудования, квалифицированным персоналом с инженерным образованием.
Если на вашем производстве появились проблемы с частотным преобразователем, которые вы не можете решить самостоятельно, мы всегда рады вам помочь. Обращайтесь в сервисный центр «Кернел». Специалисты нашей компании в минимальные сроки проведут глубокую диагностику и последующий ремонт частотного преобразователя. Оставьте заказ на ремонт оборудования используя форму на сайте, либо свяжетесь с нашими менеджерами, сделать это очень просто.
Схемы подключения частотного преобразователя BONFIGLIOLI
Схемы подключений частотных преобразователей BONFIGLIOLI могут отличатся друг от друга даже если эти преобразователи относятся ко одной линейке. Схема подключения преобразователя зависит от многих факторов таких как потребляемая частотным преобразователем нагрузка или питающая сеть к которой подключается частотник 200V – 380V и конечно же зависит от CPU в паре, с которым предполагается работа преобразователя.
Ниже приведены схемы подключения частотных преобразователей BONFIGLIOLI:
Схема подключения частотного преобразователя BONFIGLIOLI Synplus |
Схема подключения частотного преобразователя BONFIGLIOLI Synthesis |
|
|
Оставьте заявку на ремонт промышленного оборудования используя форму на сайте, либо свяжетесь с нашими менеджерами, сделать это очень просто.
Оставить заявку на ремонт частотных преобразователей BONFIGLIOLI
У вас вышел из строя частотник? Вам необходим срочный ремонт частотных преобразователей BONFIGLIOLI в ? Оставьте заявку на ремонт нажав на одноименную кнопку в верхней правой части экрана либо свяжитесь с нашими менеджерами. Связаться с ними можно несколькими способами:
- Заказав обратный звонок (кнопка в правом нижнем углу сайта)
- Посредством чата (кнопка расположена с левой стороны сайта)
- Позвонив по номеру телефона:
- +7(8482) 79-78-54;
- +7(8482) 55-96-39;
- +7(917) 121-53-01
- Написав на электронную почту: 89171215301@mail.ru
Далеко не полный список производителей промышленной электроники и оборудования, ремонтируемой в нашей компании.
-
Оставьте заявку на ремонт промышленного оборудования используя форму на сайте, либо свяжетесь с нашими менеджерами, сделать это очень просто.
Оставить заявку на ремонт частотных преобразователей BONFIGLIOLI
У вас вышел из строя частотник? Вам необходим срочный ремонт частотных преобразователей BONFIGLIOLI в ? Оставьте заявку на ремонт нажав на одноименную кнопку в верхней правой части экрана либо свяжитесь с нашими менеджерами. Связаться с ними можно несколькими способами:
- Заказав обратный звонок (кнопка в правом нижнем углу сайта)
- Посредством чата (кнопка расположена с левой стороны сайта)
- Позвонив по номеру телефона:
- +7(8482) 79-78-54;
- +7(8482) 55-96-39;
- +7(917) 121-53-01
- Написав на электронную почту: 89171215301@mail.ru
Далеко не полный список производителей промышленной электроники и оборудования, ремонтируемой в нашей компании.
-
demonlibra
- Администратор
- Сообщения: 7433
- Зарегистрирован: 11 сен 2008 08:20
- Благодарил (а): 21 раз
- Поблагодарили: 104 раза
Сообщение
demonlibra » 07 фев 2009 22:26
Появились новые мысли.
Программа WRT универсальная для всех ROVER`ов с XP600, не зависимо от установленных частотников. А значит в ней уже содержатся данные для разных частотников. Надо рыть архивчик MachineBackup.zip с диска CDRecovery. Видимо в нем содержатся данные о том какой частотник установлен на станке и параметры к нему
-
Ammigo
- Опытный
- Сообщения: 130
- Зарегистрирован: 03 сен 2010 10:59
Re: Замена частотного преобразователя аналогом?
#18
Сообщение
Ammigo » 11 июл 2011 21:09
В реале пока не проходит замена аналогового на цифру.
На Rov 321 с XNC вместо старого аналогового инвертора UNIDRIVE итальянцы прислали новый той же фирмы , но цифровой.
Прислали изменения в схему подключения, какие данные поменять….., итог 0
Не работает, т.е. станок включается ,грузится, калибруется, но фрезу не крутит
-
Umbrella
- Сообщения: 21
- Зарегистрирован: 08 июл 2011 10:51
Re: Замена частотного преобразователя аналогом?
#19
Сообщение
Umbrella » 14 июл 2011 22:02
могу дать совет как решил проблему недавеча как 3 месяца назад именно на своем Rover 321r но у меня стойка помоему nc500 то есть с ЖК монитором и ПК на юниксе, стал давать сбои unidrive (контрол техник) сделал запрос через представительство biesse на новый привод они ответили так же то есть поставить инвертер новый другой марки с установкой их специалистом, все вместе 9500 евров я конечно в шоке, в общем поломав голову решил проблему так — нашел официального представителя control tech направил им запрос на возможность ремонта моей модели они согласились в итоге через 2 недели у меня стоял на столе отремонтированный ПЧ с замененной главной платой всего за примерно 900 евров. Если нужно дам адрес СЦ
-
Ammigo
- Опытный
- Сообщения: 130
- Зарегистрирован: 03 сен 2010 10:59
Re: Замена частотного преобразователя аналогом?
#21
Сообщение
Ammigo » 17 июл 2011 22:39
Umbrella писал(а):могу дать совет как решил проблему недавеча как 3 месяца назад именно на своем Rover 321r но у меня стойка помоему nc500 то есть с ЖК монитором и ПК на юниксе, стал давать сбои unidrive (контрол техник) сделал запрос через представительство biesse на новый привод они ответили так же то есть поставить инвертер новый другой марки с установкой их специалистом, все вместе 9500 евров я конечно в шоке, в общем поломав голову решил проблему так — нашел официального представителя control tech направил им запрос на возможность ремонта моей модели они согласились в итоге через 2 недели у меня стоял на столе отремонтированный ПЧ с замененной главной платой всего за примерно 900 евров. Если нужно дам адрес СЦ
К сожалению я этот вопрос не решаю, я предлагал вариант ремонта старого юнидрайва , но , бабло уплочено ,новый привод пишел и не работает…
-
Nikita
- Опытный
- Сообщения: 610
- Зарегистрирован: 11 фев 2010 22:23
- Благодарил (а): 7 раз
- Поблагодарили: 42 раза
Re: Замена частотного преобразователя аналогом?
#22
Сообщение
Nikita » 18 июл 2011 12:37
Странно, а я думал, что все инвертора имеют возможность аналогового и цифрового управления…..если уж цифровым сигналом управляется, то я думаю есть и аналоговый вход! Просто настройки нужно выставить правильно, ищите в нете инструкции, на английском точно найдёте, на русском… 70% тоже. Только бывает немного отличаются названия моделей, ну.. смотрите по основным параметрам сходится или нет?
-
ale1109
- Сообщения: 68
- Зарегистрирован: 09 ноя 2012 07:26
Re: Замена частотного преобразователя аналогом?
#23
Сообщение
ale1109 » 26 май 2013 18:41
Надеюсь я не нарушу правила форума если задам вопрос в этой теме. Есть инвертор Control Techniques UNIDRIVE для Rover 3.30. Его ставили вместо Commander SE. Есть подробные инструкции, параметры залиты, На Rover 6.40 стоит Bonfiglioli VECTRON ACT401 , который сдох.(нет связи по CanOpen). Можно ли UNIDRIVE поставить вместо Bonfiglioli и применить тактику как в случае с Rover 3.30?
-
AleksanderG
- Опытный
- Сообщения: 216
- Зарегистрирован: 26 мар 2010 11:31
Re: Замена частотного преобразователя аналогом?
#26
Сообщение
AleksanderG » 11 мар 2015 15:52
ale1109 писал(а):Надеюсь я не нарушу правила форума если задам вопрос в этой теме. Есть инвертор Control Techniques UNIDRIVE для Rover 3.30. Его ставили вместо Commander SE. Есть подробные инструкции, параметры залиты, На Rover 6.40 стоит Bonfiglioli VECTRON ACT401 , который сдох.(нет связи по CanOpen). Можно ли UNIDRIVE поставить вместо Bonfiglioli и применить тактику как в случае с Rover 3.30?
Не получится. Разные производители, разные слово-сотояния команд по шине CanOpen. В стойке прописаны слова в соответствии со словами оригинального частотника.
-
demonlibra
- Администратор
- Сообщения: 7433
- Зарегистрирован: 11 сен 2008 08:20
- Благодарил (а): 21 раз
- Поблагодарили: 104 раза
Re: Замена частотного преобразователя аналогом?
#29
Сообщение
demonlibra » 11 мар 2015 17:33
demonlibra писал(а):Видел на разных станках, с одной и той же системой управления, разные частотные преобразователи.
Control Techniques Commander SE, Bonfiglioli VECTRON ACT401
Если быть конкретнее, то видел эти модели частотников на станках серии Rover A3.30 разных годов.
Значит возможность использования этих частотников уже заложена в ПО.
Я не говорю про замену на любую модель. Но некоторые использовать можно.
Не бойся поломать. Бойся не починить ))
-
AleksanderG
- Опытный
- Сообщения: 216
- Зарегистрирован: 26 мар 2010 11:31
Re: Замена частотного преобразователя аналогом?
#30
Сообщение
AleksanderG » 11 мар 2015 21:43
Пример для OMRON
Команда RUN (регистр 0001 Hex)
Номер бита Назначение Команда
0 Команда RUN (1: RUN)
1 Вперед/Назад (1: Вперед)
2 Внешняя ошибка (Внешняя ошибка EF0)
3 Сброс ошибки (1: Сброс ошибки)
4 Не используется
5 Многофункциональный вход 1 (1: ON)
6 Многофункциональный вход 2 (1: ON)
7 Многофункциональный вход 3 (1: ON)
8 Многофункциональный вход 4 (1: ON)
От 9 до 15 Не используется
У других производителей команда RUN может иметь другой адрес регистра и другое назначение и состояние битов. Поэтому без без правки в программе стойки, замена частотника другого производителя никак.
Диапазон мощности,кВТ:
(ACT401) 0.55…132 кВт, 3-х фазное напряжение 320…528 В
Тип управления:
Различные методы векторного управления: простое/сложное векторное управление с датчиком/без датчика обратной связи
Перегрузочная способность:
150% на 60 сек, 200% на 1с
Электромагнитный фильтр:
Встроенный до 9,2 кВт (EN61800-3)
Основные характеристики:
- Встроенный тормозной транзистор
- Клеммы для подключения по постоянному току
- Стандартный интерфейс для энкодера
- Мониторинг датчика температуры двигателя
- Съемные клеммы питания (до 4 кВт) и управления
- 1 выход реле (переключающий контакт)
- 6 цифровых входов, 1 многофункциональный вход
- 1 цифровой выход, 1 многофункциональный выход
Модули расширения:
Увеличение количества аналоговых, цифровых входов и выходов Системная шина, подключение энкодеров различнных типов
Модули обмена данными:
RS 232, RS 485, Profibus-DP, CANopen
Клавиатура:
Съемная клавиатура КР500 с функцией копирования параметров
Основные характеристики программного обеспечения:
- VPIus совместимая с операционной системой Windows
- Динамическое торможение
- Программируемые пуск и остановка
- Программируемая вольт-герцовая характеристика 4 набора параметров
- Автоматический запуск и автонастройка
- Автоматический сброс после сбоя, пуск после сбоя питания
- ПИ-регулятор
- Управление механическим тормозом
- Программируемые логические функции и таймеры
- Широкие возможности по защите и мониторингу