Fnirsi dso pro инструкция на русском осциллограф

На днях получил осциллограф по акции, отчитываюсь.
DSO FNIRSI PRO — хорошая модель, продуманная, карманного размера.
Канал 1, до 5МГц (синус), есть возможность сохранить снимок.
Достаточно емкая батарейка, продолжительное время работы.
Устройство подойдет в качестве осциллографического пробника, для быстрой проверки устройств, удобно носить с собой постоянно.

Всем привет!

Эта интересная модель DSO FNIRSI PRO приобреталась спонтанно, просто «на посмотреть», а реальное применение планировалось в качестве карманного пробника DSO FNIRSI PRO. В отличие от большинства мелких DSO, данная модель не требует доработок схемы или питания, и имеет нормальный BNC коннектор для щупа.

Ссылка на лот DSO FNIRSI PRO с щупами-крокодилами
Ссылка на лот DSO FNIRSI PRO с щупом P6020 BNC в комплекте

Модель интересная, есть небольшие замечания по работе, но в целом нормально за свои деньги.
Новые модели имеют обновленное ПО по замечаниям.

Характеристики:
1:Analog band width: 5MHz
2:Maximum real time sampling rate: 20MS/s
3:Vertical sensitivity: 50 mV/div ~ 200 V/div
4:Horizontal time base range: 50S/div ~ 250nS/div
5:Maximum input voltage: 40 V (1X probe), 800 V (10X probe)
6:Storage depth: 40KB
7:Input resistance: 1M
8:ADC precision: 8bits
9:Coupling mode: AC/DC
10:Trigger mode: Single, Normal, Automatic
11:Trigger edge: Ascending/descending edge
12:External trigger voltage 0 – 40 V
13:Display: 2.4 inch @ 320 * 240
14:Power supply: 1200 mAh lithium battery
15:Size: 107 x 70 x 24mm
16:Weight: 150g

Комплект включает инструкцию и щупы-крокодилы. Есть зарядный кабель.

Вот прямо размер «как надо». И дисплей нормальный.

Щуп без делителя. С крокодилами. Подходит для сигналов не более 1МГц.

Инструкция из комплекта.

Внешний вид осциллографа.
Корпус из белого пластика, ничего лишнего.


Дисплей хорош, углы обзора приличные, есть «ночной режим».

Клавиатурный блок под дисплеем.
Кнопки расставлены далеко друг от друга, нажимать удобно, есть четкий отклик (щелчок) по нажатию.

BNC коннектор — стандартный для щупов.


Очень удобно, особенно после MMCX и джеков 3.5 мм.

Внизу расположен выключатель и порт MicroUSB для зарядки

Для оценки возможностей DSO собираю небольшой стенд.
Сразу оговорюсь — использую штатные крокодилы, с компенсированными щупами картинка на 1-5МГц была бы лучше.
Измерения в режиме 1х

На генераторе 1МГц, синусоида, 5В.

На генераторе 2МГц, синусоида.

На генераторе 3МГц, синусоида.

На генераторе 4МГц, синусоида.

На генераторе 5МГц, синусоида.


На DSO картинка ровная, включено меню с измерениями — отображается ± 2.45В (примерно)

На генераторе 2МГц, меандр, 5В.
Щупы требуют комперсации. Ах, да, это не щупы, а крокодилы. форма сигнала совпадает и у DSO и у «большого брата».

На генераторе 2МГц, Треугольник, 5В.


На генераторе 3МГц, Треугольник, 5В.
Приличный сигнал, 4-5МГц начинают скругляться пики.

Проверяю полосу.
На генераторе 9МГц, синусоида, 5В.
Амплитуда скачет, показания слегка искажаются.
Можно использовать как пробник, но для измерения уже не подходит

На генераторе 5МГц, синусоида, 20В.


На DSO картинка ровная, включено меню с измерениями — отображается ± 9.45В (примерно)

Теперь внимание, переключаю режим 10х
Схема измерения не меняется, источник — тоже.
Софтовый режим предусматривает наличие аттенюатора сигнала на входе 10дБ и умножает показания в 10 раз.

Правда умножает не очень правильно, прошивка старая.

На генераторе 1МГц, меандр, 20В.
На 10х показывает в N- раз больше.

Еще одно отличие режима 10х — автоматически изменяется шкала по амплитуде (50-200-800В)

Для малых сигналов.
На генераторе 1МГц, меандр, 0.5 В.

Показывает корректно, ± 0.24 В

Режим 10х опять искажает амплитуду.

Тесты 10х показывают программную ошибку пересчёта, в следующих версиях dso это исправили. Как пробник можно использовать (хотя лучше включить режим 1х и умножить самостоятельно).

По поводу измерений высокого напряжения 10х. Обязательно нужен внешний делитель

Попробовал в сети — показывает синус, измерения амплитуды на 10х искажает. Причём сама форма сигнала правильная, частоту считает корректно (50Гц на фото)

На 1х все корректно. За исключением того, что на щупе 10х, нужно самому «домножать».

Обратите внимание:
Все измерения в сети, и напряжения выше 40В должны быть с ВНЕШНИМ делителем (щуп 10х или аттенюатора).
Соответственно, режим 10х программный, просто умножаются 10х показания, с расчётом, что у вас на входе есть щуп 10х или аттенюатор. Соответственно, расширяется диапазон (50-200-800 Вольт шкала). Если влезть в сеть без внешнего делителя, можно повредить входной каскад и получить глюки.

Разборка DSO.
На оптопарах собран управляемый входной делитель, сигнал после которого без всяких предусилителей подан напрямую на АЦП.
Дополнительного ослабления сигнала (10х) нет.

Аккумулятор на 1500мАч

Внешний АЦП TLC5510I (20MSPS)

ARM-контроллер 32F103, клон STM32F

Микросхема SPI-flash 25Q64 ( Winbond 26064JVS10)

Микросхема-контроллер зарядки литиевой батареи TP4056
Возможности связи с контроллером по USB нет.

Дисплей и клавиатурный блок.

Небольшое видео для оценки работы авто-триггеров.

Небольшие негативные впечатления после тестов:
1. Могут быть зависания ПО, изредка, лечится перегрузкой. Конкретно схватил одно зависание, когда нажал авто и полез в меню. Пару кликов отработал, потом подвис, ждать не стал — ребут.
2. Ещё минус — не очень корректно считает амплитуду в режиме х10. Режим программный, с переключением оптопар / делителей, погрешность увеличивается.
3. Родные крокодилы нельзя скомпенсировать. Рекомендую брать комплект с щупом Р6020. Либо докупать такой щуп отдельно.

4. Не подключается как накопитель, только зарядка по USB.

Остальное это сплошные плюсы.
Удобный корпус, глазастый большой дисплей, углы обзора приличные. Ничего не нужно дорабатывать (как с DSО138, с питанием, кварцами и т.п.),
Осциллограф приличный. Синус на 1х показывает до 5МГц, без искажения амплитуды. С другими сигналами похуже, нормально показывает до1МГц, дальше можно как пробник использовать, форма сигнала и амплитуда слегка искажается. Пришел заряженный на 70%, проработал более 4х часов во время теста, потом поставил на зарядку.
Ток зарядки примерно 500мА.

Если полоса выше 1МГЦ не критична, и не требуется работать с большими напряжениями, то DSO FNIRSI PRO c BNC коннектором — хороший выбор. Он использует стандартные щупы и может применяться как быстрый карманный осциллографический пробник — потыкать и посмотреть, жив ли обмен, микросхема и т.п. А потом топать за большим осциллографом либо нести пациента на стол и вскрывать.

Что касается режима 10х, то новые модели осциллографов идут с обновленным ПО, посмотрим, как справляются.
Встроенного делителя нет, нужно использовать внешний аттенюатор или щуп с делителем.

Что касается комплектации, то лучше брать версию DSO FNIRSI PRO с щупом P6020 BNC в комплекте. Да и компенсацию можно сделать. А вот родные крокодилы с BNC и неудобные, и сильно искажают ВЧ-сигнал. Да и компенсацию не провести.

В магазине fniski проверяйте купоны, доступен купон $3.

Ссылка на акцию и обсуждение DSO FNIRSI PRO

Полезный отзыв и комментарий про АЦП

Дополнительная информация — пруфы покупки

Заказ делал по своей же акции.

Был использован купон Али (благодарность за покупку или какая-то подобная акция)

Выписка оплаты с вебмани.

Технические характеристики

  • Модель: DSO FNIRSI Pro (аналог ADS2050H)
  • Питание: 3.7В литиевая батарея 1200мАч
  • Контроллер: 32-разрядный Cortex-M3
  • Дисплей: 2.4 дюйма цветной TFT экран 320х240 точек с подсветкой
  • Каналы осциллографа: 1
  • Входное напряжение, амплитуда:
    • ±40В (размах амплитуды 80В, щуп х1)
    • ±400В (размах амплитуды 800В, щуп х10)
  • Входной импеданс: 400кОм
  • Развязка входного сигнала: AC, DC
  • Частота дискретизации: до 20 млн. выборок в секунду
  • Полоса пропускания: 0 — 5МГц
  • Глубина буфера захвата: 40КБ
  • Время нарастания: менее 50нс
  • Разрешение АЦП: 8бит
  • Шкала развёртки
    • Горизонтальная (времени): 250нс/деление — 50с/деление
    • Вертикальная (напряжения): 50мВ/деление — 200В/деление
    • Шаг перенастройки: 1-2-5
  • Точность измерения: ±2% вертикальная, ±0.01% горизонтальная
  • Синхронизация развёртки: Auto (автоматический), Normal (нормальный), Single (однократный)
  • Режимы запуска развёртки: по нарастающему / по спадающему фронту сигнала с настраиваемым порогом
  • Автоматическое измерение (250нс-50мс): максимум, минимум, среднее, среднеквадратичное (RMS), амплитуда (Vpp), частота, рабочий цикл (в плюсовом и минусовом диапазонах напряжений), длительность сигнала по времени (общая, в плюсовом и минусовом диапазонах напряжений)
  • Размер внутреннего хранилища: 16МБ
  • Встроенные функции
    • Автоподстройка параметров входящего сигнала
    • Сохранение во внутренней памяти до 500 осциллограмм с данными измерений
    • Просмотр и удаление записанных осциллограмм
    • Мультиуровневая буферизация 1-8 (технология послесвечения участков сигнала)
    • Автокалибровка прибора
    • Дневной и ночной режимы подсветки экрана
    • Режим паузы для развёртки
  • Интерфейсные разъёмы
    • BNC: вход осциллографа
    • Micro-USB 5В: х1, для подзарядки батареи
  • Корпус: пластиковый, белый
  • Температура эксплуатации: -10°С ~ +60°С
  • Размеры: 107 х 70 х 24мм
  • Вес: 150г

Комплектация

  • DSO FNIRSI PRO Осциллограф — 1шт
  • Щуп BNC/крокодилы х1 — 1шт
  • Шнур USB-A/Micro-USB — 1шт
  • Инструкция пользователя — 1шт
  • Сумка-чехол на молнии — 1шт

Ручной портативный цифровой осциллограф DSO FNIRSI PRO — небольшой по размерам и весу измерительный прибор, обладает расширенными характеристиками и набором возможностей относительно младших моделей осциллографов в серии DSO. Прибор FNIRSI DSO PRO спроектирован на современной высокоскоростной микроэлектронике, предназначен для многоцелевого применения в области технического обслуживания, а также в сфере научно-технических исследований и разработки. Более всего востребован в задачах самостоятельного моделирования электронных схем, ремонта электроприборов, или отладки различного оборудования.

Осциллограф обладает дискретизацией в реальном времени до 20 миллионов выборок в секунду и пропускной способностью входного аналого-цифрового канала до 5МГц. В любых сценариях измерения периодичного аналогового или полупериодичного цифрового сигнала позволяет комбинировать полный список функций синхронизации развёртки (автоматический, нормальный, однократный) с режимами запуска развёртки по переднему (восходящему) или заднему (спадающему) фронту. Сканер горизонтальной развёртки с увеличенным шагом до 50 секунд предоставляет возможность отслеживать медленные или редкие изменения уровня сигнала. FNIRSI DSO PRO оснащён однокнопочной функцией AUTO автоматического поиска и настройки оптимальных параметров развёртки для отображения максимально стабильной и точной формы входящего сигнала. Все доступные результаты измерений с графиками кривых исследуемого сигнала отображаются на цветном ЖК-экране 2.4 дюйма с разрешением 320х240 точек. Кнопочная клавиатура под экраном рационально распределяет весь инструментарий управления устройством. Программным обеспечение прибора поддерживается легковыполнимая смена фонового цвета экрана на белый в режиме «День» и на чёрный в режиме «Ночь». Осциллограф DSO FNIRSI PRO укомплектован многократно перезаписываемой флеш-памятью размером 16Мб, используемой для быстрого создания и одновременного хранения около 500 снимков с кривой сигнала. Имеет встроенный удобный файловый менеджер с навигацией по иконкам ранее сделанных снимков, демонстрацией осциллограмм в обычном и детализированном режимах просмотра, их редактированием (переворотом) или удалением, и другими действиями. Литиевый аккумулятор 3.7В/1200мАч обеспечивает до 3 часов непрерывной работы осциллографа, подзаряжается интегрированным зарядным контроллером через 5-вольтовый порт Micro-USB.

 

Документация

  1. Инструкция пользователя осциллографом DSO FNIRSI PRO (англ., PDF)

Для работы проектов iXBT.com нужны файлы cookie и сервисы аналитики.
Продолжая посещать сайты проектов вы соглашаетесь с нашей
Политикой в отношении файлов cookie

Содержание

  • Технические характеристики одноканального цифрового осциллографа DSO150
  • Упаковка, состав комплекта, сборка и внешний вид осциллографа DSO150
  • Печатные платы и схема осциллографа DSO150
  • Тестирование осциллографа DSO150
  • Стробоскопический эффект
  •  Заключение

На китайских площадках можно встретить довольно много разновидностей цифровых осциллографов начального уровня по цене до $50. Можно найти эти же модели и в российских торговых точках; правда, по цене на 50-200% выше. :)

Конечно, это не могут быть серьёзные модели для профессионалов; но давайте разберёмся, совсем там всё плохо, или не совсем?!

А в качестве примера рассмотрим популярный карманный осциллограф DSO150. Кстати, он известен также под именами DSO Fnirsi 150, DSO Shell и DSO 150, — это всё синонимы.

Изображение — с официальной страницы продавца (как выяснится позже, это не совсем то же самое, что с сайта производителя). Все картинки в обзоре — кликабельны.

Обзор начнём, как всегда, с технических характеристик.

Технические характеристики одноканального цифрового осциллографа DSO150
Частотный диапазон 0 — 200 кГц
Максимальное входное напряжение 50 В
Входное сопротивление 1 МОм
Вертикальная чувствительность / точность 5 мВ — 20 В на деление / точность 5%
Масштаб по горизонтали 10 мкс — 500 с (!) / деление
Объём буфера 1024 семпла
Разрядность АЦП семплирования 12
Частота семплирования до 1 МГц (1 Msps)
Диагональ экрана 2.4 дюйма
Разрешение экрана 320 x 240
Питание 9 В / 120 мА (адаптера в комплекте нет)
Габариты / масса 115 x 75 x 22 мм / 100 г

 Осциллограф продаётся на Алиэкпресс в нескольких вариантах.

Один вариант — в полностью собранном и «готовом к употреблению» виде; второй вариант — в виде деталей корпуса, плат и россыпи деталей для пайки; и третий вариант — детали корпуса и платы с напаянными деталями. Я выбрал последний вариант, в котором нужно просто правильно всё собрать воедино без пайки (лень, знаете ли).

Приобрёл я всё это здесь.

Цена такого комплекта на дату обзора с доставкой в Россию — около $24.

Упаковка, состав комплекта, сборка и внешний вид осциллографа DSO150

 Осциллограф прибыл в пенопластовой коробке, добросовестно обмотанной плёнкой и скотчем. Так она выглядит после освобождения от внешних покровов:

Пенопласт — это хорошая защита от неприятностей в пути; внутри ничего не пострадало.

В самой коробке оказался такой набор деталей для сборки:

Сборка прошла не совсем гладко.

Очень не хотела налезать на свою ось ручка энкодера. Пришлось применить грубую физическую силу (это помогло её одеть, хотя и не совсем до конца; было страшновато что-нибудь сломать).

Возможно, более лучшим вариантом было бы применение паяльного или косметического фена для разогрева оси и ручки (но осторожно, чтобы не подплавить пластиковые детали).

Кроме того, не удалось настолько точно подогнать верхнюю крышку и дно, чтобы между ними совсем не было зазора. Правда, оставшийся зазор в полмиллиметра можно даже назвать декоративным.

Давайте посмотрим на результат сборки.

Вид сверху:

 Вид снизу:

Два вида по диагонали:

Вид со стороны нижнего торца:

Здесь расположен разъём для подключения источника питания и ползунок включения/выключения осциллографа.

Вид со стороны верхнего торца:

Здесь (на вехнем торце) — ползунок переключения входа (закрытый / открытый / земля), плоский контакт напряжения калибровки 1 кГц, и, собственно, разъём BNC для подачи сигнала.

В целом вид осциллографа получился довольно-таки благопристойным, и особо не напоминает «игрушку» или учебно-тренировочный экземпляр (как его исторический предшественник DSO138 в прозрачном корпусе или вообще в бескорпусном виде).

Также корпус хорошо закрыт от проникновения мелких внешних предметов и загрязнений (в отличие, например, от DSO188).

А вот что не есть хорошо — это необходимость во внешнем питании (встроенного аккумулятора нет). Правда, внутри осциллографа есть ещё свободное место, чтобы там разместить аккумулятор и необходимую «обвязку», но это — не для таких ленивых, как я. Обсуждение способов установки внутреннего питания есть на форуме официального производителя (JYE Tech).

Печатные платы и схема осциллографа DSO150

Вот наконец-то мы подошли и к электронной «начинке» нашего осциллографа.

Эта начинка состоит из двух плат: аналоговой и цифровой.

Аналоговая плата — небольшая. но весьма насыщенная компонентами:

Здесь радует, что маркировка всех элементов оставлена читаемой, и даже продублирована надписями на плате. Бывает, что отдельные особо бессовестные китайские производители — наоборот, тщательно затирают маркировку, чтобы затруднить ремонт изделий. Но здесь — не тот случай, к счастью!

Более того, ещё и принципиальные схемы можно скачать с официальной страницы осциллографа на сайте производителя (внизу страницы, в разделе «Documents»). Это вообще уже можно приравнять к чуду!!!

Основной элемент на плате — счетверённый операционник TL084C со входами на полевых транзисторах. Он отвечает за приём и усиление сигнала.

Обеспечивают переключение масштабов усиления два аналоговых коммутатора: HC4053 и HC4051.

Все перечисленные выше микросхемы требуют двухполярного питания, а запитывается устройство однополярным. Соответственно, создаёт отрицательную полярность для внутреннего питания преобразователь ICL7660, а стабилизируют питание 78L05 (+5 В) и 79L05 (-5 В).

За подстройку входной ёмкости отвечают зелёные триммеры в верхней части платы (необходимо для корректного отображения фронтов сигналов). Инструкция по настройке есть в прилагаемом бумажном документе (настраивать надо, естественно, до установки плат в корпус; или в корпусе, но без заглушки верхнего торца).

 Теперь изучим цифровую плату, сначала — вид со стороны экрана:

 Здесь — ручка энкодера, кнопки и экран. Шлейф экрана под ним припаян прямо к плате. Это затруднит смену экрана, если Вы его «грохнете». Правда, после сборки осциллографа сделать это будет довольно трудно, т.к. экран расположен в углублении. Но аккуратность в обращении не отменяется.

Экран не имеет регулировки яркости, но его яркость настроена на некий средний уровень, достаточный для комфортной работы в типовых условиях применения.

Углы обзора экрана — разные по вертикали и по горизонтали.

По горизонтали угол обзора — не широкий, даже при небольших поворотах вправо-влево экран заметно бледнеет.

При поворотах вверх-вниз, наоборот, изображение остаётся ярким и контрастным даже при больших поворотах.

Вид цифровой платы со стороны элементов значительно интереснее:

Здесь сначала обратим внимание на важный организационный момент: в белой рамке, расположенной в левом нижнем углу, должен быть номер платы, но его там нет!

В соответствии с инструкцией производителя «Как отличить не оригинальный осциллограф от оригинального» (ссылка) делаем вывод, что данный экземпляр — не оригинальный.

Что из этого следует? Следует, что его прошивку вряд ли получится обновить. В лучшем случае, новая прошивка просто не установится (производитель не даст код для её установки), а в худшем осциллограф может «окирпичиться». Можно ли жить с той прошивкой, какая есть — разберёмся.

Вернёмся к плате.

Здесь видим «сердце» осциллографа — аналого-цифровой процессор STM32F103C8T6.

Рядом с ним расположен кварц на 8 МГц; но процессор имеет собственный умножитель частоты и работает на частоте 72 МГц. Это — не много, но зато на низкой частоте и потребление энергии меньше.

Процессор сделан по принципу «всё-в-одном»: ОЗУ и ПЗУ тоже находятся в процессоре. Он же формирует изображение для отправки на дисплей.

Кроме процессора, на плате есть ещё две «микрухи»: флеш-память с последовательным интерфейсом и линейный стабилизатор на 3.3 В, который обеспечивает процессор питанием.

Чтобы окончательно прояснить ситуацию с версией ПО (прошивки), посмотрим на фотку экрана в момент загрузки осциллографа:

Таким образом, осциллограф работает под прошивкой версии 062. Эта версия — не последняя, но довольно отработанная и сильными глюками удивлять не должна.

Тестирование осциллографа DSO150

С механикой и схемой разобрались, переходим к практическому тестированию. Для тестирования использовался генератор FY6800.

Начнём с элементарного и стандартного: синус, 1 кГц, размах 5 В (стандартнее не придумаешь!):

 Обращаем внимание сначала на множество параметров, измеряемых осциллографом в реальном времени, прямо по ходу сигнала.

Кроме результатов измерений, осциллограф показывает собственные режимы работы (сверху над осциллограммой и снизу под ней).

Если данные измерений мешают наблюдать форму осциллограммы, то их можно убрать с экрана.

А теперь — заценим точность измерения.

Размах напряжения (Vpp) осциллограф показал в 5.15 В. Это — хороший результат, поскольку укладывается в заявленную погрешность 5%. Правда, при снижении амплитуды сигнала и точность снижается, но это соответствует теории вопроса.

А теперь посмотрим на частоту. Осциллограф показал 973.303 Гц. Для измерения частоты такая точность просто никуда не годится.

Проверка замера частоты при другом масштабе по времени показала гораздо более приличный результат:

 Здесь осциллограф замерил частоту абсолютно точно: 1 кГц.

Вероятнее всего, расчет частоты аппарат ведёт примитивно, по числу пересечения сигналом уровня триггера за период, равный наполнению буфера. Чем больше периодов влезает в буфер, тем и замер частоты получается точнее.

Идём далее.

Проверка полосы частот по уровню минус 3 дБ показала результат, примерно соответствующий заявленному в параметрах: около 220 кГц.

Теперь подаём прямоугольник 20 кГц и проверяем фронты:

В целом фронты «прямоугольника» можно оценить, как хорошие. Но есть и интересная особенность: отрицательный фронт — более крутой, чем положительный; который имеет довольно плавное «скругление» вверху.

Аналогичные эффекты будут наблюдаться и на других осциллограммах «классического» ряда:

Теперь перейдём от теории к практике и посмотрим пару реальных осциллограмм.

В качестве объекта испытаний был выбран импульсный блок питания, дающий напряжения + 5 и +12 В с током выхода 3 А по выходу +5 В и 2 А по выходу +12 В.

Напряжение снималось с отвода импульсного трансформатора, идущего к выпрямителю напряжения +5 В.

 Вариант 1, блок питания без нагрузки:

Вариант 2, с нагрузкой 1 А по выходу +5 В:

По осциллограммам можно оценить частоту работы преобразователя импульсного блока питания (составила чуть выше 50 кГц) и величину импульсов прямого и обратного хода.

Смотреть частоту сигнала по показаниям измерений самого осциллографа для сигналов такой сложной формы бесполезно — он может показать всё, что угодно (причём вполне законно).

По итогам этой главы надо сказать, что электрические процессы с частотой около 50 кГц — это предел, когда можно реально отследить форму сигнала с помощью этого осциллографа. Для более высоких частот на период сигнала будет приходиться слишком мало отсчетов, чтобы судить о его реальной форме.

Стробоскопический эффект

Пользователи цифровых осциллографов уже, вероятно, знают об этом интересном эффекте. Но тех для любителей и профессионалов, кто пока пользовался только аналоговыми «трубчатыми» осциллографами, это может оказаться новостью. :)

Кстати, аналоговые осциллографы — это не анахронизм, они до сих пор с успехом производятся и используются. Но, конечно, отсутствие в них математической обработки, а также большой вес и габариты не способствуют их популярности.

Начну подход к проблеме издалека. В Википедии, в статье «Осциллограф», есть интересный пассаж о недостатках цифровых осциллографов (подчёркнут):

Данная проблема (отображение несуществующих сигналов вместо реальных) возникает из-за стробоскопического эффекта.

Возникают стробоскопические эффекты тогда, когда количество отсчетов сигнала на период становится слишком малым.

Согласно классической для радиотехники теореме Котельникова, любой сигнал может быть абсолютно точно восстановлен, если частота его дискретизации хотя бы в два раза превосходит верхнюю частоту в спектре сигнала.

Но это действительно, условно говоря, для сигналов бесконечной длины и после обработки соответствующими алгоритмами, а не в режиме реального времени.

А в режиме реального времени сигнал «теряет форму» настолько серьёзно, что становится совсем не похож сам на себя.

Так, например, показывает наш осциллограф синусоиду с частотой 246 кГц:

Наблюдатель видит на экране несуществующий амплитудно-модулированный сигнал. На самом же деле на осциллограф подана чистейшей воды синусоида.

Иногда даже опытные обзорщики пишут, что на высокой частоте какой-либо осциллограф показывает сигнал с испорченной формой, скачущей амплитудой и т.п. На самом же деле такое отображение сигнала может быть вполне законным с физической и даже с геометрической точки зрения.

Поскольку при переключении на осциллографе масштаба по оси времени меняется и его частота семплирования, то пользователь может увидеть эти эффекты и на довольно низких частотах.

Например, следующая осциллограмма сделана при частоте прямоугольного сигнала 124 кГц; но из-за того, что частота семплирования при масштабе 0.2 мс/деление снизилась до 50 кГц, сигнал на экране выродился в прямоугольник с частотой 1 кГц:

Наблюдателю будет казаться. что он видит прямоугольный сигнал с частотой 1 кГц; и только неестественно-затянутые для такой частоты фронты будут подсказкой, что «что-то здесь не так».

Существование этого эффекта надо учитывать при работе с цифровыми осциллографами (т.е. правильно подбирать параметры горизонтальной развёртки).

Этот эффект может использоваться и с пользой: существуют специальные стробоскопические осциллографы для исследования периодических процессов на СВЧ, но это уже далеко не «общегражданские» приборы.

 Заключение

Протестированный осциллограф — один из самых дешевых, такие обычно называют «игрушками» или «показометрами».

Тем не менее, он может использоваться и в серьёзных целях, если не ставить для него невыполнимых задач.

Например, для проверки и настройки усилителей класса D он не подойдёт: там частота импульсов ШИМ начинается от 400 кГц.

Зато для работы с «обычными» усилителями (класса A или AB) почти никаких препятствий нет; разве что он может не показать самовозбуждение усилителя, если оно случилось на высокой частоте.

Также можно использовать для работы с импульсными блоками питания с частотой ШИМ до 50 кГц ( а это, правда, не всегда бывает так; иногда даже в типовых контроллерах повербанков частота может быть до 100 кГц).

Одним словом — он подходит для работы с низкочастотными устройствами.

Из обнаруженных проблем прошивки надо отметить некорректную автоматическую установку уровня триггера при длительном удержании кнопки TRIGGER (уровень устанавливается не точно посередине размаха сигнала, а примерно на 10% от величины размаха выше).

Вторая проблема — «перевёрнутая» работа энкодера: происходит увеличение регулируемого параметра при вращении против часовой стрелки и уменьшение — по часовой. Привыкнуть к этому сложно, но можно. :)

И ещё надо отметить аппаратную проблему — нестандартное напряжение питания (9 В). У каждого из нас валяется дома гора стандартных адаптеров на 5 В; а на 9 В вряд ли у кого завалялось.

Как быть? Можно купить адаптер на 9 Вольт, можно подключить батарейку или аккумулятор на 9 Вольт («Крона»), можно приобрести DC-DC преобразователь с 5 В до 9 В, можно (кому не лень) встроить аккумулятор внутрь осциллографа (как описывают на форумах). Выход есть!

Описанный в обзоре осциллограф приобретён на Алиэкпресс здесь.

 Спасибо за внимание! 

IT News: Digital Camera, OS, Laptop, Smartphone, Smart TV, Sound…

The Author’s Project by Valeri N.Kravchuk

Среда, 12.07.2023, 09:23Приветствую Вас Гость | RSSГлавная | Регистрация | Вход

Сайт проверен Dr.Web

Категории раздела
Автомобильные гаджеты, ремонт…
[213]

Безопасность IT
[481]

Блоки питания, Power Banks, зарядки…
[473]

Видеорегистраторы
[219]

Гаджеты для спорта и здоровья…
[188]

Гаджеты, аксессуары…
[623]

Измерительная техника, инструменты
[425]

Накопители данных
[221]

Нетбуки, Ноутбуки, Ультрабуки
[675]

Мультиварки, блендеры и не только…
[157]

Планшеты
[757]

Радар-детекторы
[26]

Роботы-пылесосы
[35]

Своими руками
[344]

Сети, сетевые технологии, оборудование…
[266]

Смартфоны
[4946]

Фотокамеры, объективы, искусство фотографии..
[537]

Умный дом
[42]

Электронные книги
[92]

CB, LPD, PMR- связь…
[165]

DECT, IP-телефоны
[18]

Drones, boats, cars…
[108]

electric cars
[35]

GPS-навигаторы, трекеры…
[51]

Linux и не только
[4372]

mini computers и не только…
[405]

News IT, Это интересно, ликбез…
[1104]

Smart TV, UltraHD, приставки, проекторы…
[413]

Smart Watch
[256]

Sound: наушники, плееры, усилители…
[612]

Windows 10…
[298]

Windows 11
[26]

Статистика

Анализ веб сайтов

Яндекс.Метрика

Рейтинг@Mail.ru

Яндекс цитирования

Russian America Top. Рейтинг ресурсов Русской Америки.

eXTReMe Tracker

eXTReMe Tracker

Правильный CSS!


Онлайн всего: 1

Гостей: 1

Пользователей: 0

Locations of visitors to this page

Главная » 2020 » Март » 31 » Небольшие доработки осциллографа DSO FNIRSI PRO


22:36

Небольшие доработки осциллографа DSO FNIRSI PRO

Для тех, кому «посчастливилось» купить этот осциллограф, предлагаю несколько несложных улучшений устройства.

Нужны они Вам, или нет, это конечно решать только Вам! Я просто поделюсь тем, что на текущий момент изменил на своем.

Самую первую «улучшалку», в принципе, я уже описывал в своем обзоре этого осциллографа, но думаю будет логично собрать их все вместе в одном месте, для удобства поиска, поэтому с нее и начну:

1. Для быстрого и легкого крепления осциллографа к металлическим поверхностям

внутрь корпуса, к задней крышке, были закреплены пара магнитов от жесткого диска-это можно сделать любым удобным Вам способом.

В предыдущем обзоре я их просто прихватил изолентой/скотчем и поверх вставил кусочки вспененного материала, которые дополнительно прижали магниты к крышке.

Но можно и приклеить их, например, клеевым пистолетом.
Сейчас я использовал термоклей «полиморф» — мне показалось такое крепление прочнее, и можно, при необходимости, если прогреть место крепления, легко произвести демонтаж.
Поверх я все равно, на всякий случай, проложил полоску изоленты и все те же кусочки вспененного материала.

Теперь у нас не только увеличилась масса прибора, что придает ему дополнительную «солидность» ;), но и появилась возможность легко прикреплять осциллограф к различным металлическим поверхностям!

2. Переставляем включатель питания

Среди отмеченных мною недостатков осциллографа, был и включатель питания -не нравился его внешний вид и расположение.
Мне показалось гораздо удобнее расположить его под большой палец левой руки (подразумевается ситуация работы «на весу», когда правой рукой работаем с щупом, а в левой находится сам прибор).
Кроме того, если убрать описанный движковый переключатель, выпирающий снизу, заодно появляется и возможность устойчиво ставить осциллограф на ребро -иногда это может пригодиться

Были куплены несколько разных вариантов переключателей. Поставить решил светлый, как наиболее подходящий по цвету.

Прорезал отверстие, вставил/защелкнул…


Выпаял установленный с завода переключатель, на место его контактов припаял провода, соединил с вновь установленным переключателем -ничего сложного.

Вроде выглядит вполне прилично…

Включать/выключать (перезагружать осциллограф) стало заметно удобнее!
 

3. Делаем индикацию заряда выключенного осциллографа

На выключенном осциллографе нет никакой индикации наличия процесса заряда, а учитывая глубоко размещенный разъем в корпусе, это может превратиться в проблему отсутствия/наличия контакта, поэтому следующая доработка посвящена именно этому:

Был найден даташит на TP4056, используемый в осциллографе, и в нем типовая схема включения индикации заряда и его окончания.

Зеленый светодиод окончания заряда решил не устанавливать, ограничиться красным, сигнализирующем текущий процесс заряда.
Для начала собрал схему «на весу», для проверки — все заработало без нюансов.

Осталось все более-менее прилично расположить внутри. Решил использовать место и отверстие, освободившиеся в результате переноса переключателя питания. Светодиод правда пришлось слегка обточить надфилем, так как не нашлось под рукой миниатюрного или с плоским корпусом — вполне можно было установить даже smd вариант.

Теперь мы можем контролировать процесс заряда, независимо от того включен осциллограф или нет!

 

4. Доработка улучшающая работу с делителями

Безусловно, самой большой проблемой купленного приборчика, является некорректный режим 10х, да и вообще любая работа с делителями- будем исправлять? :).

Как предположили в комментариях предыдущего обзора, все проблемы связанные с неправильными измерениями при использовании делителей, из-за «нестандартного» входного сопротивления осциллографа- 407кОм (вместо привычного 1 МОм).
Ну вернее сказать тут две причины связанные между собой — не только более низкое входное сопротивление, но и применение «неполноценных» делителей, у которых в качестве одного плеча делителя используется внутреннее сопротивление прибора.
Делители подобной конструкции, с удобным размещением переключателя коэффициента ослабления «1х/10х» прямо на корпусе щупа, пожалуй, сейчас являются наиболее популярными.

Но если взять один из классических делителей, с полностью законченной схемой в своем корпусе — например И22.727.074

то видим, что ВЕСЬ делитель собран отдельным блоком, и внутреннее сопротивление осциллографа не оказывает столь значительного влияния, из-за параллельно подключенного нижнего плеча делителя, со значительно более низким сопротивлением.
Поэтому результаты измерений DSO FNIRSI PRO с этим делителем получаются довольно точными.

Правда при использовании 1х на этом осциллографе, мы ограничены пределом 10 вольт (400 вольт вся шкала) — не хватит посмотреть даже бытовую сеть :( А использовать 10х нельзя, иначе наоборот, получается совсем непредсказуемый результат-вероятно режим 10х в этом осциллографе создавался специально для работы с делителями, использующими его внутреннее сопротивление, для подгонки получаемых результатов до более правдоподобных значений.
Но, как часто бывает у китайцев, «что-то пошло не так» — в результате режим работает с большой погрешностью и с одним типом делителей, и уж совсем показывает «погоду» с другими

Далее, по логике, понадобиться небольшое отступление в теорию- кому неинтересно пропускаем…

— немного о делителях

Простейшими, наиболее применяемыми, являются пассивные пробники с компенсированным делителем напряжения.
Делитель напряжения строится на резисторах R1 и R2, причем R2 может быть просто входным сопротивлением осциллографа (что мы и имеем, в случае с нашими делителями)

Параметры делителя на постоянном токе вычисляются по формулам:

Например, если R2= 1 МОм и R1=9 МОм, то имеет RВХ = 10 МОм и KД=1/10. Таким образом, входное сопротивление увеличено в 10 раз, но в 10 раз падает и уровень напряжения, поступающего на вход осциллографа.

В общем случае (на переменном токе) для коэффициента передачи делителя можно записать выражение (τ1= R1C1 и τ2= C2R2):

Таким образом, при равенстве постоянных времени τ1 и τ2, коэффициент передачи делителя перестает зависеть от частоты и равен его значению на постоянном токе. Такой делитель называют компенсированным.
Емкость C2 это общая емкость кабеля, монтажа и входная емкость осциллографа. Практически, для достижения условия компенсации емкость С1 (или C2) нужно подстраивать, например с помощью подстроечного конденсатора переменной емкости – триммера.

В нашем случае т2 не равна т1, и поэтому, в зависимости от частоты и выбранного режима чувствительности, результаты измерений значительно «уходят» от реальных.

Что бы получать более-менее достоверные результаты надо изменить емкость/сопротивление делителя или осциллографа.

Делитель, в части расположения верхнего плеча, в принципе не разборный — необходимые нам элементы находятся в щупе под переключателем.
Разламывать щуп, и переделывать делитель под конкретный осциллограф не очень практично -хотелось получить относительную универсальность.
Поэтому, на мой взгляд, единственным приемлемым решением является доработка делителя до полноценного, но с использованием дополнительных элементов в корпусе осциллографа.

— на этом теоретические «изыскания» закончились и переходим к практике :)

С уменьшенным входным сопротивлением осциллографа до 407кОм, коэффициент деления популярных недорогих РР-80, GTP-060A-4 и им подобных по постоянному току получается примерно 23.
На переменном значении варьируется от 19 и выше- зависит от частоты.

Изменять коэффициент деления нижним плечом я могу только вверх. Увеличивать его до 25, и других сложных для пересчета в голове значений смысла нет, поэтому был выбран единственный «удобный» подходящий коэффициент деления на 100 — будем подгонять под него!

Собственно сама схема доработки весьма примитивна-все заморочки в подборе номиналов элементов.
Подключается параллельно BNC и включается одновременно с переключением щупа в режим 10х.

Подборка номиналов дополнительных элементов
Методами расчета по формулам высчитать необходимое не получалось, поэтому пришлось действовать именно методом

втыка

подбора и последующего тестирования в различных диапазонах частот.
 

С добрых старых времен остались наборы сопротивлений и конденсаторов — старички могут начинать «ностальгировать» :)

Достал эти коробочки и стал подбирать необходимое. Учитывая неполный набор номиналов резисторов и особенно конденсаторов, приходилось использовать параллельно-последовательные соединения — это, конечно, заняло некоторое время. Немного его сэкономить помог переменный резистор ;)

Поскольку у меня нет эталонных высоких напряжений на разных частотах, а делитель нужен в первую очередь именно для работы с относительно высокими напряжениями (как минимум более 40 в, для рассматриваемого осциллографа), то вся процедура подбора элементов делителя происходила в два этапа:

Сначала подбирались элементы для «правильного» деления на разных частотах с напряжением до 30 вольт

— это максимум, что могли выдавать имеющиеся в наличии НЧ генераторы.

В итоге было подобрано примерно такое соотношение номиналов RC:
По низким частотам используется преимущественно резистор — получился номинал сборки с требуемой точностью ± 500 Ом

и емкость, для высоких частот, с требуемой точностью примерно± 20 пФ

Отталкивался от измеренного осциллографом уровня в режиме 1х- переключал щуп на 10х, подключал свой навесной монтаж и сравнивал полученный результат… и так по всему диапазону частот и пределам чувствительности осциллографа .

Полученные результаты по синусу, при 30 В

При изменении чувствительности, иногда, незначительно изменяются показания, но в общем полученные результаты меня устроили.

Еще более понравились результаты при измерении меандра!
Разброс при выборе различной чувствительности больше, но зато форма сигнала стала заметно правильнее…

Сравните форму меандра при использовании в заводском варианте и через доработанную схему делителя (напряжения были разные, в данном случае стоит обращать внимание только на форму сигнала).

Результаты измерений меандра

Слева сигнал без делителя, справа при включении делителя
50 Гц

50 кГц

500 кГц

даже на 1 МГц, хотя и имеется заметная погрешность, однако форма стала более похожей на меандр :)

хорошо это или плохо — это второй вопрос :)


Щуп стал более компенсированным- форма сигнала правильнее.
Понятное дело, что при желании, номиналы можно подобрать еще более точно, например, судя по полученным горбам на осциллограммах емкость все же несколько великовата- подбиралось из имеющегося под рукой.

Второй этап- реальные измерения высоких напряжений.

С этим было все довольно сложно… Ладно на низкой частоте бытовую сеть посмотреть — я знаю что там должно быть, и это легко осуществимо. А как быть с высоким напряжением на частотах повыше?..
В итоге, единственное, что я смог придумать — сделать замер ШИМ. Там и напряжение и частота относительно высокие…

Первый же замер бытовой сети показал, что по низкой частоте надо вносить заметные коррективы — ошибка «набежала» почти в -50 вольт. Увеличил резистор до «стандартных» в схеме И22.727.074 110кОм, и даже чуть больше…
В теории примерно так и должно было получаться :)

После увеличения резистора до 117 кОм показания напряжения сети стали приемлемыми,

но при этом несколько ушла точность на 30 вольтах, да и ладно!

Я предполагаю, что погрешности измерения на разных пределах чувствительности, на низких частотах, происходят из-за особенностей использования осциллографом встроенных делителей.
Откорректировать на всех пределах вряд ли получится — или подбирать что-то усредненное (что я и делал), или настраивать точно один из имеющихся, например 5 вольт/дел, и при точных измерениях использовать только его.

По более высокой частоте все получилось нормально, без дополнительных корректировок

Замер ШИМ по высокой, в сравнении с обычным осциллографом (выбрано 10в/дел + делитель 10х) — полученные значения идентичны — 400 вольт.

Ну и наконец сама реализация доработки

Было прорезано еще одно отверстие, около разъема BNC, для включателя доп. схемы делителя.
Переключатель закрепил на полиморф- вполне прочно, аккуратно и можно, при необходимости, разобрать.

Детали обтянул термоусадкой, и разместил навесным монтажом над платой- место позволяет.

По номиналам — в конечном счете оставил 117кОм резистор и чуть уменьшил емкость конденсатора, до 1600пФ

ИТОГО:

Полученные результаты в бОльшей степени меня устраивают, с делителем пока все еще «воюю», может что-нибудь и более удачное получится- но пока так ;)
Теперь имеется дополнительный, более точный режим 100х, совместимый с распространенными делителями (их не надо переделывать).
Имеется возможность контролировать процесс заряда.
Новый включатель питания более удобный и симпатичный, на мой взгляд.

Все описанные доработки в одном фото :)

Всем удачи и хорошего настроения! ☕

koalexx

https://pluspda.ru/blog/diy/73095.html

  • 1
  • 2
  • 3
  • 4
  • 5

Категория: Измерительная техника, инструменты |
Просмотров: 1892 |
Добавил: laptop

| Рейтинг: 5.0/2

Добавлять комментарии могут только зарегистрированные пользователи.

[

Регистрация

|

Вход

]

Волк слабее льва и тигра, но в цирке волк не выступает!
Волк слабее льва и тигра, но в цирке волк не выступает!

Волк — единственный из зверей, который может пойти в бой на более сильного противника.

Если же он проиграл бой, то до последнего вздоха смотрит в глаза противника. После этого умирает…

Праздники сегодня

Copyright Valeri N.Kravchuk © 2007-2023

Для работы проектов iXBT.com нужны файлы cookie и сервисы аналитики.
Продолжая посещать сайты проектов вы соглашаетесь с нашей
Политикой в отношении файлов cookie

Содержание

  • Технические характеристики одноканального цифрового осциллографа DSO150
  • Упаковка, состав комплекта, сборка и внешний вид осциллографа DSO150
  • Печатные платы и схема осциллографа DSO150
  • Тестирование осциллографа DSO150
  • Стробоскопический эффект
  •  Заключение

На китайских площадках можно встретить довольно много разновидностей цифровых осциллографов начального уровня по цене до $50. Можно найти эти же модели и в российских торговых точках; правда, по цене на 50-200% выше. :)

Конечно, это не могут быть серьёзные модели для профессионалов; но давайте разберёмся, совсем там всё плохо, или не совсем?!

А в качестве примера рассмотрим популярный карманный осциллограф DSO150. Кстати, он известен также под именами DSO Fnirsi 150, DSO Shell и DSO 150, — это всё синонимы.

Изображение — с официальной страницы продавца (как выяснится позже, это не совсем то же самое, что с сайта производителя). Все картинки в обзоре — кликабельны.

Обзор начнём, как всегда, с технических характеристик.

Технические характеристики одноканального цифрового осциллографа DSO150
Частотный диапазон 0 — 200 кГц
Максимальное входное напряжение 50 В
Входное сопротивление 1 МОм
Вертикальная чувствительность / точность 5 мВ — 20 В на деление / точность 5%
Масштаб по горизонтали 10 мкс — 500 с (!) / деление
Объём буфера 1024 семпла
Разрядность АЦП семплирования 12
Частота семплирования до 1 МГц (1 Msps)
Диагональ экрана 2.4 дюйма
Разрешение экрана 320 x 240
Питание 9 В / 120 мА (адаптера в комплекте нет)
Габариты / масса 115 x 75 x 22 мм / 100 г

 Осциллограф продаётся на Алиэкпресс в нескольких вариантах.

Один вариант — в полностью собранном и «готовом к употреблению» виде; второй вариант — в виде деталей корпуса, плат и россыпи деталей для пайки; и третий вариант — детали корпуса и платы с напаянными деталями. Я выбрал последний вариант, в котором нужно просто правильно всё собрать воедино без пайки (лень, знаете ли).

Приобрёл я всё это здесь.

Цена такого комплекта на дату обзора с доставкой в Россию — около $24.

Упаковка, состав комплекта, сборка и внешний вид осциллографа DSO150

 Осциллограф прибыл в пенопластовой коробке, добросовестно обмотанной плёнкой и скотчем. Так она выглядит после освобождения от внешних покровов:

Пенопласт — это хорошая защита от неприятностей в пути; внутри ничего не пострадало.

В самой коробке оказался такой набор деталей для сборки:

Сборка прошла не совсем гладко.

Очень не хотела налезать на свою ось ручка энкодера. Пришлось применить грубую физическую силу (это помогло её одеть, хотя и не совсем до конца; было страшновато что-нибудь сломать).

Возможно, более лучшим вариантом было бы применение паяльного или косметического фена для разогрева оси и ручки (но осторожно, чтобы не подплавить пластиковые детали).

Кроме того, не удалось настолько точно подогнать верхнюю крышку и дно, чтобы между ними совсем не было зазора. Правда, оставшийся зазор в полмиллиметра можно даже назвать декоративным.

Давайте посмотрим на результат сборки.

Вид сверху:

 Вид снизу:

Два вида по диагонали:

Вид со стороны нижнего торца:

Здесь расположен разъём для подключения источника питания и ползунок включения/выключения осциллографа.

Вид со стороны верхнего торца:

Здесь (на вехнем торце) — ползунок переключения входа (закрытый / открытый / земля), плоский контакт напряжения калибровки 1 кГц, и, собственно, разъём BNC для подачи сигнала.

В целом вид осциллографа получился довольно-таки благопристойным, и особо не напоминает «игрушку» или учебно-тренировочный экземпляр (как его исторический предшественник DSO138 в прозрачном корпусе или вообще в бескорпусном виде).

Также корпус хорошо закрыт от проникновения мелких внешних предметов и загрязнений (в отличие, например, от DSO188).

А вот что не есть хорошо — это необходимость во внешнем питании (встроенного аккумулятора нет). Правда, внутри осциллографа есть ещё свободное место, чтобы там разместить аккумулятор и необходимую «обвязку», но это — не для таких ленивых, как я. Обсуждение способов установки внутреннего питания есть на форуме официального производителя (JYE Tech).

Печатные платы и схема осциллографа DSO150

Вот наконец-то мы подошли и к электронной «начинке» нашего осциллографа.

Эта начинка состоит из двух плат: аналоговой и цифровой.

Аналоговая плата — небольшая. но весьма насыщенная компонентами:

Здесь радует, что маркировка всех элементов оставлена читаемой, и даже продублирована надписями на плате. Бывает, что отдельные особо бессовестные китайские производители — наоборот, тщательно затирают маркировку, чтобы затруднить ремонт изделий. Но здесь — не тот случай, к счастью!

Более того, ещё и принципиальные схемы можно скачать с официальной страницы осциллографа на сайте производителя (внизу страницы, в разделе «Documents»). Это вообще уже можно приравнять к чуду!!!

Основной элемент на плате — счетверённый операционник TL084C со входами на полевых транзисторах. Он отвечает за приём и усиление сигнала.

Обеспечивают переключение масштабов усиления два аналоговых коммутатора: HC4053 и HC4051.

Все перечисленные выше микросхемы требуют двухполярного питания, а запитывается устройство однополярным. Соответственно, создаёт отрицательную полярность для внутреннего питания преобразователь ICL7660, а стабилизируют питание 78L05 (+5 В) и 79L05 (-5 В).

За подстройку входной ёмкости отвечают зелёные триммеры в верхней части платы (необходимо для корректного отображения фронтов сигналов). Инструкция по настройке есть в прилагаемом бумажном документе (настраивать надо, естественно, до установки плат в корпус; или в корпусе, но без заглушки верхнего торца).

 Теперь изучим цифровую плату, сначала — вид со стороны экрана:

 Здесь — ручка энкодера, кнопки и экран. Шлейф экрана под ним припаян прямо к плате. Это затруднит смену экрана, если Вы его «грохнете». Правда, после сборки осциллографа сделать это будет довольно трудно, т.к. экран расположен в углублении. Но аккуратность в обращении не отменяется.

Экран не имеет регулировки яркости, но его яркость настроена на некий средний уровень, достаточный для комфортной работы в типовых условиях применения.

Углы обзора экрана — разные по вертикали и по горизонтали.

По горизонтали угол обзора — не широкий, даже при небольших поворотах вправо-влево экран заметно бледнеет.

При поворотах вверх-вниз, наоборот, изображение остаётся ярким и контрастным даже при больших поворотах.

Вид цифровой платы со стороны элементов значительно интереснее:

Здесь сначала обратим внимание на важный организационный момент: в белой рамке, расположенной в левом нижнем углу, должен быть номер платы, но его там нет!

В соответствии с инструкцией производителя «Как отличить не оригинальный осциллограф от оригинального» (ссылка) делаем вывод, что данный экземпляр — не оригинальный.

Что из этого следует? Следует, что его прошивку вряд ли получится обновить. В лучшем случае, новая прошивка просто не установится (производитель не даст код для её установки), а в худшем осциллограф может «окирпичиться». Можно ли жить с той прошивкой, какая есть — разберёмся.

Вернёмся к плате.

Здесь видим «сердце» осциллографа — аналого-цифровой процессор STM32F103C8T6.

Рядом с ним расположен кварц на 8 МГц; но процессор имеет собственный умножитель частоты и работает на частоте 72 МГц. Это — не много, но зато на низкой частоте и потребление энергии меньше.

Процессор сделан по принципу «всё-в-одном»: ОЗУ и ПЗУ тоже находятся в процессоре. Он же формирует изображение для отправки на дисплей.

Кроме процессора, на плате есть ещё две «микрухи»: флеш-память с последовательным интерфейсом и линейный стабилизатор на 3.3 В, который обеспечивает процессор питанием.

Чтобы окончательно прояснить ситуацию с версией ПО (прошивки), посмотрим на фотку экрана в момент загрузки осциллографа:

Таким образом, осциллограф работает под прошивкой версии 062. Эта версия — не последняя, но довольно отработанная и сильными глюками удивлять не должна.

Тестирование осциллографа DSO150

С механикой и схемой разобрались, переходим к практическому тестированию. Для тестирования использовался генератор FY6800.

Начнём с элементарного и стандартного: синус, 1 кГц, размах 5 В (стандартнее не придумаешь!):

 Обращаем внимание сначала на множество параметров, измеряемых осциллографом в реальном времени, прямо по ходу сигнала.

Кроме результатов измерений, осциллограф показывает собственные режимы работы (сверху над осциллограммой и снизу под ней).

Если данные измерений мешают наблюдать форму осциллограммы, то их можно убрать с экрана.

А теперь — заценим точность измерения.

Размах напряжения (Vpp) осциллограф показал в 5.15 В. Это — хороший результат, поскольку укладывается в заявленную погрешность 5%. Правда, при снижении амплитуды сигнала и точность снижается, но это соответствует теории вопроса.

А теперь посмотрим на частоту. Осциллограф показал 973.303 Гц. Для измерения частоты такая точность просто никуда не годится.

Проверка замера частоты при другом масштабе по времени показала гораздо более приличный результат:

 Здесь осциллограф замерил частоту абсолютно точно: 1 кГц.

Вероятнее всего, расчет частоты аппарат ведёт примитивно, по числу пересечения сигналом уровня триггера за период, равный наполнению буфера. Чем больше периодов влезает в буфер, тем и замер частоты получается точнее.

Идём далее.

Проверка полосы частот по уровню минус 3 дБ показала результат, примерно соответствующий заявленному в параметрах: около 220 кГц.

Теперь подаём прямоугольник 20 кГц и проверяем фронты:

В целом фронты «прямоугольника» можно оценить, как хорошие. Но есть и интересная особенность: отрицательный фронт — более крутой, чем положительный; который имеет довольно плавное «скругление» вверху.

Аналогичные эффекты будут наблюдаться и на других осциллограммах «классического» ряда:

Теперь перейдём от теории к практике и посмотрим пару реальных осциллограмм.

В качестве объекта испытаний был выбран импульсный блок питания, дающий напряжения + 5 и +12 В с током выхода 3 А по выходу +5 В и 2 А по выходу +12 В.

Напряжение снималось с отвода импульсного трансформатора, идущего к выпрямителю напряжения +5 В.

 Вариант 1, блок питания без нагрузки:

Вариант 2, с нагрузкой 1 А по выходу +5 В:

По осциллограммам можно оценить частоту работы преобразователя импульсного блока питания (составила чуть выше 50 кГц) и величину импульсов прямого и обратного хода.

Смотреть частоту сигнала по показаниям измерений самого осциллографа для сигналов такой сложной формы бесполезно — он может показать всё, что угодно (причём вполне законно).

По итогам этой главы надо сказать, что электрические процессы с частотой около 50 кГц — это предел, когда можно реально отследить форму сигнала с помощью этого осциллографа. Для более высоких частот на период сигнала будет приходиться слишком мало отсчетов, чтобы судить о его реальной форме.

Стробоскопический эффект

Пользователи цифровых осциллографов уже, вероятно, знают об этом интересном эффекте. Но тех для любителей и профессионалов, кто пока пользовался только аналоговыми «трубчатыми» осциллографами, это может оказаться новостью. :)

Кстати, аналоговые осциллографы — это не анахронизм, они до сих пор с успехом производятся и используются. Но, конечно, отсутствие в них математической обработки, а также большой вес и габариты не способствуют их популярности.

Начну подход к проблеме издалека. В Википедии, в статье «Осциллограф», есть интересный пассаж о недостатках цифровых осциллографов (подчёркнут):

Данная проблема (отображение несуществующих сигналов вместо реальных) возникает из-за стробоскопического эффекта.

Возникают стробоскопические эффекты тогда, когда количество отсчетов сигнала на период становится слишком малым.

Согласно классической для радиотехники теореме Котельникова, любой сигнал может быть абсолютно точно восстановлен, если частота его дискретизации хотя бы в два раза превосходит верхнюю частоту в спектре сигнала.

Но это действительно, условно говоря, для сигналов бесконечной длины и после обработки соответствующими алгоритмами, а не в режиме реального времени.

А в режиме реального времени сигнал «теряет форму» настолько серьёзно, что становится совсем не похож сам на себя.

Так, например, показывает наш осциллограф синусоиду с частотой 246 кГц:

Наблюдатель видит на экране несуществующий амплитудно-модулированный сигнал. На самом же деле на осциллограф подана чистейшей воды синусоида.

Иногда даже опытные обзорщики пишут, что на высокой частоте какой-либо осциллограф показывает сигнал с испорченной формой, скачущей амплитудой и т.п. На самом же деле такое отображение сигнала может быть вполне законным с физической и даже с геометрической точки зрения.

Поскольку при переключении на осциллографе масштаба по оси времени меняется и его частота семплирования, то пользователь может увидеть эти эффекты и на довольно низких частотах.

Например, следующая осциллограмма сделана при частоте прямоугольного сигнала 124 кГц; но из-за того, что частота семплирования при масштабе 0.2 мс/деление снизилась до 50 кГц, сигнал на экране выродился в прямоугольник с частотой 1 кГц:

Наблюдателю будет казаться. что он видит прямоугольный сигнал с частотой 1 кГц; и только неестественно-затянутые для такой частоты фронты будут подсказкой, что «что-то здесь не так».

Существование этого эффекта надо учитывать при работе с цифровыми осциллографами (т.е. правильно подбирать параметры горизонтальной развёртки).

Этот эффект может использоваться и с пользой: существуют специальные стробоскопические осциллографы для исследования периодических процессов на СВЧ, но это уже далеко не «общегражданские» приборы.

 Заключение

Протестированный осциллограф — один из самых дешевых, такие обычно называют «игрушками» или «показометрами».

Тем не менее, он может использоваться и в серьёзных целях, если не ставить для него невыполнимых задач.

Например, для проверки и настройки усилителей класса D он не подойдёт: там частота импульсов ШИМ начинается от 400 кГц.

Зато для работы с «обычными» усилителями (класса A или AB) почти никаких препятствий нет; разве что он может не показать самовозбуждение усилителя, если оно случилось на высокой частоте.

Также можно использовать для работы с импульсными блоками питания с частотой ШИМ до 50 кГц ( а это, правда, не всегда бывает так; иногда даже в типовых контроллерах повербанков частота может быть до 100 кГц).

Одним словом — он подходит для работы с низкочастотными устройствами.

Из обнаруженных проблем прошивки надо отметить некорректную автоматическую установку уровня триггера при длительном удержании кнопки TRIGGER (уровень устанавливается не точно посередине размаха сигнала, а примерно на 10% от величины размаха выше).

Вторая проблема — «перевёрнутая» работа энкодера: происходит увеличение регулируемого параметра при вращении против часовой стрелки и уменьшение — по часовой. Привыкнуть к этому сложно, но можно. :)

И ещё надо отметить аппаратную проблему — нестандартное напряжение питания (9 В). У каждого из нас валяется дома гора стандартных адаптеров на 5 В; а на 9 В вряд ли у кого завалялось.

Как быть? Можно купить адаптер на 9 Вольт, можно подключить батарейку или аккумулятор на 9 Вольт («Крона»), можно приобрести DC-DC преобразователь с 5 В до 9 В, можно (кому не лень) встроить аккумулятор внутрь осциллографа (как описывают на форумах). Выход есть!

Описанный в обзоре осциллограф приобретён на Алиэкпресс здесь.

 Спасибо за внимание! 

Понравилась статья? Поделить с друзьями:
  • Fm54d духовой шкаф инструкция аристон
  • Fm трансмиттер автомобильный инструкция по применению на русском
  • Fm трансмиттер ritmix fmt a911 инструкция
  • Fm трансмиттер pro legend pl9452 инструкция
  • Fm трансмиттер digma ft309 инструкция