Гидрохлорид натрия инструкция по применению для дезинфекции

Химическое название

Натриевая соль хлорноватистой кислоты

Химические свойства

Гипохлорит Натрия — что это такое? Это неорганическое соединение, в составе которого находится до 95% активного хлора. Вещество имеет несколько нетривиальных, исторических названий: «лабарракова вода», «жавелевая вода». Химическая формула гипохлорита натрия: NaOCl. Молекулярная масса соединения = 74,4 грамма на моль. В связи с тем, что вещество достаточно неустойчиво в свободном состоянии, оно чаще всего применяется в форме пентагидрата или водного раствора. У раствора сильный, резкий запах хлора. Безводная форма вещества синтезируется в виде бесцветных кристаллов, которые хорошо растворяются в воде. Пентагидрат обладает желто-зеленым оттенком, кристаллы ромбической формы.

По своим химическим свойствам – это сильный окислитель. Гипохлорид легко разлагается до хлорида Na и кислорода, при нагревании подвергается диспропорционированию. В воде диссоциирует на ионы. Вещество подвергает коррозии большинство металлов.

Гипохлорит Натрия производится в огромных количествах. Около половины синтезированного вещества применяют в бытовой химии и медицине, остальное – в промышленности. Существует два метода производства средства: химический, хлорирование водного раствора натрия гидроксида (концентрированный и основной) и электролитический, используют электролизные установки для электролиза водного хлорида натрия.

Химическое соединение активно применяется в промышленности:

  • в качестве отбеливателя ткани, древесины и других продуктов;
  • при промышленной и санитарно-гигиенической обработке зерна, трубопроводов, резервуаров в виноделии и пивоварении и т. д.;
  • в химическом производстве антраниловой кислоты, хлорпикрина, аскорбиновой кислоты, крахмала, а аналитической химии при фотометрии;
  • для обеззараживания и очистки промышленных стоков и воды в системах коммунального водоснабжения;
  • в пищевой промышленности и фармацевтике;
  • в военном деле при дегазации отравляющих веществ.

Вещество используют в бытовой химии, его часто можно обнаружить в составе отбеливателей, средств для дезинфекции и очистки. В медицине используют наружно или местно в качестве противовирусного, бактерицидного и противогрибкового средства; в небольших концентрациях — для обработки операционных ран, в гинекологии и акушерстве, оториноларингологии, в стоматологии (эндодонтия).

Химическое соединение может оказывать вредное воздействие на организм человека, при вдыхании оказывать удушающий и раздражающий эффект. При попадании средства в глаза вещество вызывает химический ожог, может привести к потере зрения. Средство раздражает кожу, в больших концентрациях вызывает отмирание тканей, язвы и ожоги. После приема внутрь 3-6% раствора у человека развивается ацидоз, раздражение пищевода, более высокие концентрации могут вызвать перфорацию пищеварительного тракта. Несмотря на это, при соблюдении рекомендации по использованию препаратов, воды и бытовой химии, гипохлорит считается достаточно безопасным средством. Не обладает канцерогенными, мутагенными и тератогенными средствами. Токсическая доза при внутривенном введения для человека составляет 45 мг на кг веса; пероральная – 1 грамм на кг. Также считается, что вещество не создает экологических проблем, так как в окружающей среде быстро разлагается до воды, кислорода и поваренной соли. Класс опасности для концентрированных растворов (до 20%): 1 – по химической активности; 3 – опасность для здоровья человека. Не территории Российской Федерации гипохлорит Na выпускают по ГОСТу 11086-76.

Фармакологическое действие

Дезинфицирующее, детоксицирующее, антисептическое, противомикробное.

Фармакодинамика и фармакокинетика

Натрия Гипохлорит – одно из сильнейших антибактериальных средств. Гипохлорит-ион проявляет высокую активность по отношению к множеству известных микроорганизмов, причем действует в достаточно низких концентрациях. Наивысшая активность проявляется при нейтральном рН. Образующиеся при разложении вещества частицы окисляют биополимеры в структуре вредоносных агентов, разрушают молекулы практически всех орг. субстратов. Средство проявляет активность по отношению к грамотрицательным бактериям, кишечной палочке, серрации, синегнойной палочке, грамположительным бактериям, патогенным грибам, простейшим, вирусам. Однако лекарство не действует на возбудители криптоспоридиоза и лямблиоза. Средство не обладает тератогенными, канцерогенными и мутагенными свойствами.

Показания к применению

Применяют наружно и вводят внутрь полости в концентрации 0,06%:

  • для профилактики при операциях на грудной клетке, плевральной и брюшной полости;
  • при ранениях, распространенном перитоните, абсцессе, остеомиелите;
  • при проведении перитонеального диализа на брюшной полости;
  • пациентам с эмпинемой плевры (туберкулез, гной в плевральной полости);
  • при обработке влагалища перед операцией и после операции, при кольпите, бартолините, трихомониазе, эндометриозе, хламидиозе, аднексите, лапароскопии, гистероскопии, чревосечении;
  • в качестве профилактического средства и для лечения гнойно-септических осложнений после кесарева сечения;
  • после операций на мочевых путях и почках, после простатэктомии;
  • при гнойном отите, фарингите, насморке;
  • для лечения микозов и дифтерии;
  • при истинной экземе и экземе микробной этиологии;
  • пациентам со стафилодермией, стрептодермией, простым герпесом и угревой сыпью.

Раствор применяют для инъекционного введения при эндо- и экзотоксикозах, отравлениях, сепсисе, ожогах, заболеваниях печени и почек.

В виде жидкости и гелей вещество используют для дезинфекции оборудования в пищевой промышленности, при обработке поверхностей.

Противопоказания

Натрия Гипохлорит противопоказан к применению:

  • при аллергии;
  • гиповолемическом синдроме, гипогликемии (внутривенное введение);
  • внутривенно, во время беременности.

Побочные действия

Редко вещество вызывает:

  • аллергические реакции;
  • ощущение сухости и жжения в месте нанесения;
  • при инъекционном введении – снижение артериального давления, сахара в крови;
  • при быстром внутривенном введении – флебит, экстравазацию.

Гипохлорит Натрия, инструкция по применению (Способ и дозировка)

Вещество используют для обработки помещения и различных поверхностей в соответствии с рекомендациями.

Лекарство применяют внутривенно, наружно и вводят в полости в форме 0,06% раствора. Следует соблюдать инструкцию по применению.

Передозировка

Нельзя превышать рекомендуемую дозировку и пренебрегать правилами использования гипохлорита Na. Средство может раздражать дыхательные пути, кожу, вызывать эрозии и перфорации ЖКТ, раздражать глаза.

Взаимодействие

Вещество не рекомендуется сочетать с прочими антисептическими средствами и мылом. Перед применением других лекарственных средств рекомендуется тщательно промыть обрабатываемый участок.

Особые указания

Раствором гипохлорита нельзя обрабатывать хирургические инструменты и материалы.

Не допускать попадания средства в глаза и дыхательные пути.

При беременности и лактации

Вещество не используют для инъекционного введения у беременных женщин.

Препараты, в которых содержится (Аналоги)

Совпадения по коду АТХ 4-го уровня:

Средство является активным действующим компонентом препаратов Амукин, Унисепт. Его добавляют в состав дезинфицирующих растворов.

Отзывы

Сложно переоценить значение универсального дезинфицирующего средства Гипохлорит Натрия. У вещества достаточно широкая область применения, оно успешно используется в медицине, в особенности в хирургии. В интернете редко встречаются отрицательные отзывы на препараты на основе данного вещества. Резко отрицательных отзывов не обнаружено.

Цена Гипохлорита Натрия, где купить

Купить Гипохлорит Натрия в Москве для бытового использования можно по предварительному заказу.

Цена: 3 500,00 руб.

ИНСТРУКЦИЯ ПО ПРИМЕНЕНИЮ РАСТВОРА ГИПОХЛОРИТА НАТРИЯ ДЛЯ ЦЕЛЕЙ ДЕЗИНФЕКЦИИ

Гипохлорит натрия — эффективный дезинфицирующий агент.

Что такое Натрий гипохлорит?

Натрий гипохлорит (формула NaOCl) является неорганическим соединением, натриевой солью хлорноватистой кислоты. Также его могут называть «лабарраковой/жавелевой водой» или просто «гипохлоритом натрия». 

Свойства

Это соединение имеет вид неустойчивого бесцветного кристаллического вещества, которое легко разлагается даже при комнатной температуре. Во время данного процесса выделяется кислород, а если температуру условий повысить до 70оС, то реакция сопровождается взрывом. Растворенный в воде натрий гипохлорит — это очень сильный окислитель. Ели к нему добавить соляную кислоту, то образуются вода, хлорид натрия и газообразный хлор. А при реакции углекислого газа с охлажденным раствором обсуждаемого сейчас вещества получается разбавленная хлорноватистая кислота. 

Применение

Благодаря своей высокой антибактериальной активности и спектру действия на разного рода микроорганизмы, натрий гипохлорит применяется в различных направлениях человеческой деятельности:

  • При обеззараживании воды в бассейнах и питьевой воды; Для производства отбеливающих средств;
  • При обеззараживании сточных вод;
  • При дезинфекции медицинских помещений и мест общественного питания.

Гипохлорит натрия (NaClO) при растворении в воде образует хлорноватистую кислоту и является сильным окислителем, благодаря чему и обеспечивается полная дезинфекция воды. Также данное дезинфицирующее средство используют при обработке технологического оборудования для производства продуктов питания.

В нашей компании продажа натрия гипохлорита осуществляется в канистрах по 25 кг и соответствует следующим стандартам:

  • жидкость имеет зеленовато-желтый цвет;
  • коэффициент светопропускания составляет не менее 20%;
  • массовая концентрация активного хлора составляет не менее 190 г/л (марка А), 170 г/л (марка Б);
  • массовая концентрация щелочи в перерасчете на NaOH составляет в пределах 10-20 г/л (марка А), 40-60 г/л (марка Б);
  • массовая концентрация железа составляет не более 0,02 г/л (марка А), 0,06 г/л (марка Б).

Сроки хранения натрия гипохлорита составляют один год с падением концентрации на 15% в нераспечатанной таре в прохладном и темном месте. Период полураспада гипохлорита под прямыми лучами солнца составляет всего 40 минут.

Характеристики

Страна производитель Россия
Цвет зеленовато-желтый
Срок хранения 1 год
Коэффициент светопропускания не менее 20%
Массовая концентрация щелочи в перерасчете на NaOH в пределах 10-20 г/л (марка А), 40-60 г/л (марка Б)
Массовая концентрация активного хлора не менее 190 г/л (марка А), 170 г/л (марка Б)
Форма выпуска Жидкость
Массовая концентрация железа не более 0,02 г/л (марка А), 0,06 г/л (марка Б)
Фасовка канистры, 25 кг

ИНСТРУКЦИЯ ПО ПРИМЕНЕНИЮ РАСТВОРА ГИПОХЛОРИТА НАТРИЯ ДЛЯ ЦЕЛЕЙ ДЕЗИНФЕКЦИИ:

1. Общие положения:

Гипохлорит натрия является солью хлорноватистой кислоты. Раствор получают заводским способом — поглощением хлора раствором едкого натра. В некоторых отраслях промышленности растворы гипохлоритов являются отходами производств. В соответствии с техническими условиями растворы гипохлорита натрия выпускают трех марок А, Б и В, отличающихся друг от друга по содержанию активного хлора, остаточной щелочности и внешнему виду. Марки А и Б — прозрачные зеленовато-желтые жидкости (допускается взвесь) с содержанием активного хлора 17%. Марка В — жидкость от желтого до коричневого цвета, выпускается I и II сортов, содержащих 12 и 9,5% активного хлора соответственно.

На заводах-изготовителях растворы гипохлоритов заливают в стальные гуммированные цистерны или контейнеры, а также в полиэтиленовые канистры или бочки емкостью 20—60 л. Раствор гипохлорита натрия разлагается при хранении, в связи с чем его хранят в закрытом, сухом, прохладном, хорошо проветриваемом нежилом помещении.

В виду слабой стойкости раствора гипохлорита и возможных нарушений правил хранения и приготовления рабочих растворов необходимо проводить проверку препаратов и приготовленных рабочих растворов иодометрическим методом на содержание активного хлора. Гипохлорит обладает бактерицидным и спорицидным действием.

2. Применение растворов гипохлорита натрия и кальция:

Раствор гипохлорита натрия используют взамен хлорной извести и ДТСГК. при текущей, заключительной и профилактической дезинфекции для обеззараживания различных предметов и выделений в очагах инфекционных заболеваний, а также для обеззараживания специальных объектов. Обеззараживание проводят орошением, протиранием, мытьем, замачиванием объектов, не портящихся при таком способе обработки. Белье и прочие ткани, а также металлические предметы, если они не защищены от коррозии, и окрашенные вещи обеззараживанию растворами гипохлоритов не подлежат. При инфекциях, вызванных вегетативными формами микроорганизмов, раствор гипохлорита натрия применяют по следующим режимам:

• Обеззараживание помещений (пол, стены), простой деревянной мебели, надворных установок проводят орошением растворами в концентрации 1% по активному хлору из расчета 300—500 мл/м2 при экспозиции 1 час. По окончании дезинфекции помещения обязательно проветривают.

• Для обеззараживания малоценных мягких вещей, а также ветоши, уборочного материала применяют растворы, содержащие 1 % активного хлора, из расчета 4—5 л на 1 кг сухого веса вещей и выдерживают в течение 1 часа.

• Посуду обеззараживают при полном погружении в 0,25— 1% по активному хлору раствор, в зависимости от наличия остатков пищи, на 1 час из расчета 1,5 л раствора на 1 комплект. По окончании дезинфекции посуду тщательно промывают водой.

• Ванны, унитазы, раковины и другое санитарно-техническое оборудование двукратно обильно орошают растворами 1 % концентрации.

• Жидкие выделения, остатки пищи и другие отбросы заливают неразведенными растворами гипохлоритов в соотношении 1 : 1. Для обеззараживания ночной посуды после удаления обеззараженного содержимого используют 0,25% по активному хлору растворы гипохлоритов, после чего посуду промывают водой.

• Обеззараживание верхних слоев почвы, асфальта и других объектов вне помещения производят растворами гипохлоритов в концентрации 1% по активному хлору из расчета 1,5 мл/м2.

3. Меры личной профилактики

При выполнении дезинфекционных работ раствором гипохлорита натрия каждый работающий обязан строго соблюдать меры личной безопасности, для чего следует пользоваться индивидуальными средствами защиты (респиратор РУ-60 с патроном марки А; защитные очки, резиновые перчатки; защитные передники). При попадании раствора гипохлорита натрия на кожу и слизистую глаз необходимо быстро и обильно промыть струей чистой воды.

4. Приготовление рабочих растворов гипохлорита натрия

Содержание активного хлора в растворе натрия гипохлорита, %

Количество в мл раствора гипохлорита, необходимое для приготовления 10 л рабочего раствора

0,25% по активному хлору

1% по активному хлору

17

150

600

12

210

840

10

250

1000

9

280

1110

8

315

1250

5

500

2000

Отходы промышленности, содержащие гипохлориты с нестандартным количеством активного хлора, могут быть также использованы для целей дезинфекции в порядке, предусмотренном данной инструкцией.

Источник: Санитарно-эпидемиологическое управление Минздрава СССР

Д. А. Меркулов, к.х.н., зав. кафедрой фундаментальной и прикладной химии, ФГБОУ ВПО «Удмуртский государственный университет», г. Ижевск

Введение

Гипохлоритами называют соли хлорноватистой кислоты HClO. Наиболее распространенными из них являются гипохлорит натрия, гипохлорит кальция и гипохлорит калия. Гипохлориты широко применяются для обеззараживания питьевой воды, отбеливания, дегазации и дезинфекции. Гипохлориты являются одними из самых важных химических соединений.

Таблица 1. Наиболее распространенные гипохлориты.

Систематическое наименование Традиционное название Хим. формула CAS № М, г/моль
Гипохлорит натрия Хлорноватистокислый натрий, лабарракова вода (гипохлорит натрия в смеси с хлоридом натрия и гидроксидом натрия) NaClO 7681–52–9 74,44
Гипохлорит калия Хлорноватистокислый калий,

жавелевая вода (гипохлорит калия в смеси с гидрокарбонатом калия и хлоридом калия)

KClO 7778–66–7 90,55
Гипохлорит кальция Хлорноватистокислый кальций, хлорная известь (гипохлорит кальция в смеси с хлоридом кальция, оксихлоридом кальция и гидроксидом кальция) Ca(ClO)2 7778–54–3 142,98

История открытия

В 1774 г. шведский химик Карл Вильгельм Шееле получил хлор (Cl2) в результате взаимодействия оксида марганца(IV) MnO2 и соляной кислоты (HCl). Позже, в 1785 г. французский химик Клод Луи Бертолле обнаружил, что водный раствор газообразного хлора («хлорная вода»), содержащий хлорноватистую и хлороводородную кислоты, может отбелить белье, и сообщил о своих выводах Французской академии наук.

Cl2 + H2O = HClO + HCl

Знания об отбеливающих свойствах хлора были незамедлительно использованы Джеймсом Уаттом на текстильной фабрике в Глазго. Несмотря на то, что отбеливание с использованием хлора был значительно эффективнее традиционных способов отбеливания солнечным светом, слабыми растворами кислот и щелочей, применение хлора ограничивалось его токсичностью и разрушающим действием на ткани. Для стабилизации раствора газообразного хлора в воде и безопасности его применения, в 1787 г. на Парижском предприятии Societe Javel хлор стали пропускать через водный раствор карбоната калия (поташа)

Cl2 + K2СO3 = 2KHCO3 + KClO + KCl.

Глава предприятия Леонард Альбан назвал новый продукт «Eau de Javel» («жавелевая вода»), и вскоре белильная жидкость стала популярной во Франции и Англии.

В 1820 г. француз Антуан Лабаррак усовершенствовал способ получения отбеливателя, заменив поташ на более дешевый гидроксид натрия (каустическую соду). Полученный раствор гипохлорита и хлорида натрия получил название «Eau de Labarraque» («лабарракова вода»).

Cl2 + 2NaOH = NaClO + NaCl + H2O.

Широкое применение гипохлоритов для обеззараживания питьевой воды и дезинфекции стало возможным гораздо позже, в начале XX века, благодаря развитию промышленного производства хлора электролизом поваренной соли.

Физические свойства

Гипохлориты встречаются нам преимущественно в виде водных растворов, хотя некоторые из них можно выделить в твердом виде. Так, известен безводный гипохлорит натрия, который представляет собой неустойчивое бесцветное кристаллическое вещество. Из кристаллогидратов наиболее устойчивой формой является NaClO×5H2O. Это соединение представляет собой белые или бледно-зеленые ромбические кристаллы, расплывающиеся на воздухе. При нагревании пентагидрата гипохлорита натрия до температуры 24,4°С, он плавится. Кристаллогидрат NaClO×2,5H2O плавится при температуре 57,5°С. Моногидрат крайне неустойчив и разлагается выше 60°С, при более высоких температурах разложение протекает со взрывом.

Таблица 2. Плотности и температуры замерзания водных растворов гипохлорита натрия.

Концентрация, % 1 2 4 6 8 10 14
Плотность, г/мл (18 °С) 1,0053 1,0121 1025,8 1,0397 1,0538 1,0681 1,0977
Концентрация, % 18 22 26 30 34 38 40
Плотность, г/мл (18 °С) 1,1288 1,1614 1,1953 1,2307 1,2680 1,3085 1,3285
Концентрация, % 2 4 6 8 10 12 15,6
tзам, °С – 2,2 – 4,4 – 7,5 – 10,0 – 13,9 – 19,4 –29,7

В отличие от гипохлорита калия, известного только в растворах, гипохлорит кальция можно выделить в форме бесцветных кристаллов, устойчивых в сухой атмосфере без углекислого газа. Из водных растворов гипохлорит кальция можно выделить в виде кристаллогидратов Ca(ClO)2×2H2O, Ca(ClO)2×3H2O, Ca(ClO)2×4H2O.

Кислотно-основное равновесие между хлорноватистой кислотой и гипохлорит-ионом описывается обратимой реакцией с константой равновесия Ka = 2,63×10–8 при 20°С.

HClO = H+ + ClO.

Используя константу равновесия Ka, можно рассчитать мольное долевое распределение хлорноватистой кислоты и гипохлорит-ионов в зависимости от рН (рис.1).

Данные свидетельствуют, что при подкислении растворов гипохлоритов увеличивается доля неустойчивой хлорноватистой кислоты. При рН < 7,58 в растворе присутствует преимущественно хлорноватистая кислота, а при рН > 7,58 существуют преимущественно гипохлорит-ионы.


Рис. 1.
Мольное долевое распределение хлорноватистой кислоты и гипохлорит-ионов в зависимости от кислотности среды.

Химические свойства

Гипохлориты являются неустойчивыми соединениями, легко разлагающимися с выделением кислорода. Разложение твердых гипохлоритов натрия и кальция можно представить уравнениями

2NaClO = 2NaCl + O2↑ и 2Сa(ClO)2 = СaCl2 + O2↑.

Процессы при комнатной температуре происходят медленно, а при нагревании могут протекать со взрывом. Параллельно реакциям, сопровождающимся образованием хлоридов и свободного кислорода, могут протекать реакции диспропорционирования

3NaClO = NaClO3 + 2NaCl и 3Сa(ClO)2 = Ca(ClO3)2 + 2СaCl2.

Разложение гипохлоритов в водных растворах зависит от кислотности раствора и его температуры. В сильнокислых средах при рН ≤ 3 хлорноватистая кислота при комнатной температуре разлагается до хлора и кислорода

4HClO = 2Cl2↑ + O2↑ + 2H2O.

Если при подкислении используется соляная кислота или в растворе присутствуют хлориды, образование кислорода не происходит

HClO + HCl = Cl2↑ + H2O.

Хлорноватистая кислота очень слабая, поэтому она может быть вытеснена из раствора ее солей действием углекислого газа

ClO + CO2 + H2O = HCO3 + HClO.

В слабокислых и нейтральных средах при 3 < рН < 7,5 протекает следующая окислительно-восстановительная реакция

2HClO = 2HCl + O2↑.

В нейтральных и щелочных растворах имеет место конкурирующая реакция образования хлоридов и хлоратов

3ClO = ClO3 + 2Cl.

При комнатной температуре реакция диспропорционирования протекает медленно, но при температурах выше 70°С эта реакция становится преобладающей.

В щелочных средах при рН > 7,5 в растворах преобладают гипохлорит-ионы, разлагающиеся следующим образом:

2ClO = 2Cl + O2↑.

Стабилизация гипохлоритов в водных растворах. Соли хлорноватистой кислоты значительно устойчивее самой кислоты. С ростом рН уменьшается мольная доля хлорноватистой кислоты в растворе и тем самым повышается стабильность гипохлоритов (рис. 1). В области рН > 11 содержание хлорноватистой кислоты крайне низкое, однако, и при этой кислотности наблюдается медленное разложение соединений хлора(I). Протекающие реакции можно записать в виде:

2ClO = ClO2 + Cl, (1)

ClO2 + ClO= ClO3 + Cl, (2)

2ClO = O2 + 2Cl. (3)

Около 95% от общего количества гипохлорит-ионов разлагается в результате последовательных реакций (1) и (2), причем реакция (1) является самой медленной (лимитирующей) и определяет общую скорость процесса. Реакция (3) не является основной, но отвечает за выделение кислорода, количество которого может быть значительным.

В присутствии некоторых ионов металлов, например, меди, никеля, кобальта наблюдается каталитическое разложение гипохлорит-ионов. Ионы железа обладают слабым каталитическим действием и являются сокатализаторами в сочетании с другими ионами металлов. В простейшем случае, при содержании ионов меди(II) в растворе в концентрации 1мг/кг порядки гомогенной реакции по гипохлориту и по меди(II) равны единице.

Гетерогенный катализ металлами и их нерастворимыми соединениями, является сложным и плохо воспроизводимым. Из нерастворимых катализаторов наибольшее мешающее влияние оказывает никель и его оксиды, которые попадают в растворы гипохлоритов при их контакте с легированными никелевыми сталями, используемыми для изготовления трубопроводов и резервуаров.

На константы скорости реакций (1)-(3) большое влияние оказывает ионная сила растворов. Высокие концентрации электролитов уменьшают константы скорости реакций и обеспечивают разумную стабильность при хранении растворов электролитов. Увеличение концентрации гипохлорит-ионов, напротив, уменьшает их стабильность в водных растворах. На рис. 2 показан феномен «кривой пересечения». Растворы гипохлорита натрия с концентрацией 9% и 5% при хранении разлагаются настолько, что через 50 недель показывают одинаковую концентрацию вещества, а через 100 недель первоначально более концентрированный раствор содержит гипохлорит-ионов меньше, чем разбавленный.


Рис. 2.
Разложение гипохлорита натрия различных концентраций при 30°С.

Повышение температуры способствует ускорению процессов разложения гипохлоритов, поэтому целесообразно хранить растворы гипохлоритов в прохладном месте для обеспечения срока годности (рис. 3).


Рис. 3.
Влияние температуры на разложение 5%-ного раствора NaClO.

Для стабилизации водных растворов гипохлоритов, а так же продуктов на их основе, каждый производитель применяет собственные методы, которые редко публикуются в виде статей. Однако известны некоторые запатентованные методы, которые, не претендуя на полноту, можно представить следующим списком:

  • удаление хлорид-ионов, сопутствующих гипохлорит-ионам, методом кристаллизации;
  • приготовление хлорноватистой кислоты, свободной от хлорид-ионов, методами электродиализа, дистилляции и жидкостной экстракции с последующей нейтрализацией щелочью;
  • добавление многоатомных спиртов (например галактита, маннита, сорбита, инозита и пентаэритрита);
  • добавление амидов;
  • осаждение и фильтрация после добавления соединений щелочноземельных металлов;
  • добавление перйодатов или перйодат-образующих соединений, способных образовывать комплексы с ионами металлов – катализаторов разложения гипохлоритов;
  • добавление силикатов совместно с добавками или без добавок;
  • добавление бромидов;
  • добавление арилсульфаниламидов или их производных;
  • увеличение светостойкости гипохлоритов путем добавления солей имидодисульфатов; солей церия и ЭДТА; феррицианидов; изоциануровой кислоты и цитрата натрия;
  • добавление избытка хлорида железа с последующей фильтрацией;
  • добавление гептоната натрия или боргептоната натрия;
  • добавление 2-оксазолидинонов;
  • добавление фосфата натрия;
  • добавление бихромата калия;
  • добавление солей кальция;
  • добавление полидентатных гетероароматических соединений.

Направление окислительно-восстановительных процессов с участием гипохлорит-ионов и хлорноватистой кислоты обусловлены значениями стандартных электродных потенциалов полуреакций в водной среде:

в кислой среде

2HClO + 2H+ + 2e = Cl2↑ + 2H2O, E° = 1,630 В,

HClO + H+ + 2e = Cl + H2O, E° = 1,500 В.

в нейтральной и щелочной среде

ClO + H2O + 2e = Cl + 2OH, E° = 0,890 В,

2ClO + 2H2O + 2e = Cl2↑ + OH, E° = 0,421 В.

Таким образом, гипохлорит-ионы и хлорноватистая кислота обладают выраженными окислительными свойствами, причем их окисляющая способность в кислой среде значительно выше, чем в нейтральной и щелочной средах.

Дезинфицирующее действие

Гипохлориты являются одними из лучших антибактериальных средств. Они убивают микроорганизмы очень быстро даже при очень низких концентрациях.

Наивысшее бактерицидное действие гипохлоритов проявляется в нейтральной среде, когда концентрации хлорноватистой кислоты и гипохлорит-ионов приблизительно равны (рис. 1). Образующиеся при разложении гипохлоритов активные частицы (атомарный кислород и хлор) обладают высоким биоцидным действием. Они уничтожают микроорганизмы, взаимодействуя с биополимерами в их структуре, способными к окислению. Аналогичным образом, например, действуют клетки человека нейтрофилы, гепатоциты и др., которые синтезируют хлорноватистую кислоту и сопутствующие высокоактивные радикалы для борьбы с микроорганизмами и чужеродными субстанциями.

Бактерицидная активность гипохлоритов настолько велика, что они способны привести к гибели дрожжеподобных грибов, вызывающих кандидоз, Candida albicans, в течение 30 секунд при действии 5,0 – 0,5%-го гипохлоритного раствора. Патогенный Enterococcus faecalis погибает через 30 секунд после обработки 5,25%-ым раствором и через 30 минут после обработки 0,5%-ым раствором. Грамотрицательные анаэробные бактерии, такие как Porphyromonas gingivalis, Porphyromonas endodontalis и Prevotella intermedia, погибают в течение 15 секунд после обработки 5,0 – 0,5%-м раствором гипохлорит-ионов.

Несмотря на высокую биоцидную активность гипохлоритов, некоторые потенциально опасные простейшие организмы, например, возбудители лямблиоза или криптоспоридиоза, к сожалению, устойчивы к его действию.

При помощи гипохлорит-ионов можно успешно обезвреживать различные токсины (табл. 3).

Таблица 3. Результаты инактивации токсинов при 30-минутной экспозиции различных концентраций гипохлорита натрия («+» – токсин инактивирован; «–» – токсин остался активен).

Токсин 2,5% NaClO + 0,25 н. NaOH 2,5% NaClO 1,0% NaClO 0,1% NaClO
Т-2 токсин +
Бреветоксин + +
Микроцистин + + +
Тетродотоксин + + +
Сакситоксин + + + +
Палитоксин + + + +
Рицин + + + +
Ботулотоксин + + + +

Методы анализа

Качественными реакциями на гипохлорит-ион могут служить:

  • окисление йодид-иона до йода в сильнокислой среде;
  • выпадение коричневого осадка метагидроксида таллия(III) (TlO(OH)) при действии щелочного раствора соли таллия (I);
  • цветная реакция с 4,4´-тетраметилдиаминодефенилметаном или N,N´-диокситрифенил метаном в присутствии бромата калия.

Наиболее распространенным методом количественного анализа гипохлорит-иона является титриметрический метод с использованием йодида калия. Для проведения испытания водный раствор или водную суспензию, содержащие гипохлорит-ион, смешивают с избытком раствора йодида калия в сернокислой среде. Выдерживают герметично закрытую смесь в течение 5 минут в темном месте. Выделившийся йод титруют стандартизированным раствором тиосульфата натрия. В качестве индикатора вблизи точки эквивалентности используют крахмальный раствор.

При количественном определении гипохлорит-иона косвенным йодометрическим методом результаты анализа пересчитывают на концентрацию «активного хлора» в ыделившегося при реакции

2H+ + ClO + Cl = Cl2↑ + H2O.

Альтернативным методом количественного определения гипохлорит-иона является потенциометрический анализ с использованием бром-ионселективного электрода. Концентрацию гипохлорит-иона находят методом добавок анализируемого раствора к стандартному раствору или методом уменьшения концентрации анализируемого раствора при его добавлении к стандартному раствору.

Способы получения наиболее важных товарных продуктов

Крупнотоннажными гипохлоритсодержащими продуктами являются гипохлорит натрия и гипохлорит кальция. Их глобальный объем производства превышает 1 млн тонн/год. При этом почти половина этого объема используется в быту, а другая половина в промышленности. Гипохлорит калия, являющийся исторически первым гипохлоритом, нашедшим промышленное применение, производится в ограниченном количестве.

Для промышленного производства гипохлорита натрия используются химический и электрохимический методы. При химическом методе производится хлорирование водных растворов гидроксида натрия. Суть химического превращения не изменилась со времен его открытия и применения Лабарраком

Cl2 + 2NaOH = NaClO + NaCl + H2O.

Существуют две производственные схемы данного метода:

  • основной процесс, в результате которого производится 16%-ный раствор гипохлорита натрия в смеси с хлоридом натрия и гидроксидом натрия (рис. 4).
  • низко-солевой или концентрированный процесс позволяет получить концентрированные растворы (25–40%) гипохлорита натрия с меньшим содержанием примесей. Его отличие от основного способа заключается в добавлении второй стадии хлорирования. Во второй реактор подается не гидроксид натрия, а раствор гипохлорита натрия из первого реактора, в результате происходит концентрирование готового продукта (рис. 5).


Рис. 4.
Химический метод получения гипохлорита натрия основным процессом (рис. с сайта https://ru.wikipedia.org)


Рис. 5.
Химический метод получения гипохлорита натрия концентрированным процессом (рис. с сайта https://ru.wikipedia.org)

При электрохимическом методе получения гипохлорита натрия водный раствор хлорида натрия подвергается электролизу в электролизере с открытыми электродными зонами (бездиафрагменный способ). Гидроксид натрия, образующийся на катоде, и хлор, выделяющийся на аноде, беспрепятственно смешиваются в ходе электрохимического процесса

NaCl + H2O = NaClO + H2↑(суммарная реакция).

Гипохлорит кальция производится в виде хлорной извести, представляющей собой смесь целевого продукта с хлоридом кальция и гидроксидом кальция. В качества сырья для получения хлорной извести используется порошкообразный гидроксид кальция (пушенка), содержащий менее 1% свободной влаги и разбавленный влажным воздухом хлор. Небольшая влажность исходных веществ обеспечивает начало реакции гидролиза хлора, сопровождающейся нейтрализацией образующихся кислот известью. Затем реакция продолжается за счет воды, выделяющейся из гидроксида кальция при хлорировании

2Сa(OH)2 + 2Cl2 = Сa(ClO)2 + СaCl2 + 2H2O (суммарно).

Хлорирование пушенки осуществляется в аппаратах непрерывного действия – механических полочных камерах Бакмана.

Таблица 4. Производители гипохлорита натрия в России.

Название предприятия Сайт предприятия
«Каустик» ЗАО, г. Стерлитамак www.kaus.ru/
«Каустик» ОАО, г. Волгоград www.kaustik.ru/
«Новомосковский хлор» ООО, г. Новомосковск www.hlor.biz/
«Сода-хлорат» ООО, г. Березняки www.soda.perm.ru/

Характеристика товарных гипохлоритов, обращение, хранение и транспортировка

В Российской Федерации гипохлориты производятся в соответствии с ГОСТ 11086–76 «Гипохлорит натрия. Технические условия» и ГОСТ 1692–85 «Известь хлорная. Технические условия». Гипохлорит натрия по назначению и показателям выпускается двух марок «А» и «Б» (табл. 5).

Таблица 5. Физико-химические показатели и назначение гипохлорита натрия по ГОСТ 11086–76

Наименование показателя

Марка А

Марка Б

Внешний вид

Жидкость зеленовато-желтого цвета

Коэффициент светопропускания, % не менее

20

20

Массовая концентрация активного хлора, г/дм3, не менее

190

170

Массовая концентрация щелочи в пересчете на NaOH, г/дм3

10–20

40–60

Массовая концентрация железа, г/дм3, не более

0,02

0,06

Область применения

В химической промышленности для обеззараживания питьевой воды и воды плавательных бассейнов, для дезинфекции и отбелки

В витаминной промышленности как окислитель и для отбеливания ткани

Гипохлорит натрия должен храниться в специальных полиэтиленовых, стальных гуммированных или других, покрытых коррозионно-стойкими материалами ёмкостях, наполненных на 90% объёма и оборудованных воздушником для сброса образующегося при распаде кислорода. Емкости с гипохлоритом натрия хранят в защищённых от света закрытых складских неотапливаемых помещениях. Перевозка продукции осуществляется в соответствии с правилами транспортировки опасных грузов.

Хлорная известь в зависимости от способа получения выпускается двух марок «А» и «Б» и трех сортов для каждой марки (табл. 6).

Таблица 6. Физико-химические показатели и способ получения хлорной извести по ГОСТ 1692–85

Наименование показателя

Марка А Марка Б
1-й сорт 2-й сорт 3-й сорт 1-й сорт 2-й сорт 3-й сорт

Внешний вид

Порошок белого цвета или слабоокрашенный, с наличием комков

Массовая концентрация активного хлора, %, не менее

28 25 20 35 32 27

Коэффициент термостабильности, не менее

0,90 0,90 0,80 0,75 0,70 0,60

Способ получения

Хлорирование пушенки в кипящем слое Хлорирование пушенки в аппаратах Бакмана

Хлорную известь упаковывают в полиэтиленовые мешки и стальные барабаны, окрашенные со всех сторон химически стойкой краской. Хлорную известь хранят в закрытых складских неотапливаемых, затемненных и хорошо проветриваемых помещениях. Не допускается хранение с хлорной известью взрывчатых веществ, огнеопасных грузов и баллонов со сжатыми газами. Гарантийный срок хранения хлорной извести марки А 1-го и 2-го сортов – 3 года со дня изготовления, марки А 3-го сорта и марки Б – 1 год со дня изготовления. Перевозка продукции осуществляется в соответствии с правилами транспортировки опасных грузов.

Требования безопасности

Гипохлориты являются окислителями, вызывающими раздражение кожных покровов и слизистых оболочек. Гипохлориты при попадании на кожу могут вызвать ожоги, а при попадании в глаза – слепоту. При попадании гипохлоритов на кожные покровы необходимо обмывать их обильной струей воды в течение 10–15 мин. При попадании гипохлоритов в глаза следует немедленно промыть их обильным количеством воды и направить пострадавшего к врачу. Приём внутрь разбавленных растворов (3 – 6%) гипохлоритов приводит обычно только к раздражению пищевода и иногда ацидозу, в то время как концентрированные растворы способны вызвать довольно серьёзные повреждения, вплоть до перфорации желудочно-кишечного тракта. При работе с гипохлоритами следует иметь специальные средства защиты: защитные очки, резиновые сапоги, резиновые перчатки, фартук из прорезиненной ткани и противогаз, а также использовать специальную одежду.

Несмотря на свою высокую химическую активность, безопасность гипохлоритов для человека документально подтверждена исследованиями токсикологических центров Северной Америки и Европы. Результаты показывают, что гипохлориты не являются мутагенными, канцерогенными и тератогенными соединениями, а также кожными аллергенами. Международное агентство по изучению рака пришло к выводу, что питьевая вода, прошедшая обработку гипохлоритом натрия, не содержит человеческих канцеро- генов.

При нагревании выше 35°С растворы гипохлоритов разлагаются с образованием хлоратов и выделением кислорода. Слабощелочной раствор достаточно устойчив. Растворы гипохлоритов негорючи и невзрывоопасны. Однако в процессе высыхания гипохлориты могут вызвать загорание органических продуктов и горючих веществ. При взаимодействии гипохлоритов с кислотами выделяется токсичный хлор (раздражающий и удушающий эффект), поэтому не допускается смешение и совместное хранение данных веществ.

При работе с гипохлоритами производственные помещения должны быть оборудованы приточно-вытяжной вентиляцией. Оборудование должно быть герметичным. Негерметичные узлы должны быть снабжены местными вентиляционными отсосами.

Применение в средствах бытовой химии

Применение гипохлоритов в средствах бытовой химии обусловлено их окислительными и дезинфицирующими свойствами. Гипохлориты являются основными действующими веществами в химических отбеливателях, пятновыводителях, средствах для обеззараживания воды в бассейнах, в чистящих и моющих средствах с дезинфицирующим эффектом.

Отбеливатели

Мировое производство гипохлорита натрия оценивается в 5 миллионов тонн. Более половины всего производимого гипохлорита натрия используется в качестве отбеливателя и пятновыводителя для тканей. Гипохлорит натрия может быть использован для многих видов тканей, включая хлопок, полиэстер, нейлон, ацетат, лен, вискозу и другие. Он эффективен для удаления следов почвы и широкого спектра пятен, в том числе, от кофе, крови, травы, горчицы, ягодных и фруктовых соков и т.д.

Содержание гипохлорита натрия в отбеливателях и пятновыводителях для тканей обычно находится в диапазоне от 2,5 до 10%. В большинстве случаев эти средства выпускаются в жидкой форме в пластиковых бутылках или канистрах. Дополнительными компонентами отбеливателей являются поверхностно-активные вещества, модификаторы реологии, оптические отбеливатели, стабилизаторы разложения и др.

Преимуществами отбеливателей на основе гипохлоритов являются:

  • быстрое и качественное отбеливание;
  • использование отбеливателя без нагревания и даже в холодной воде;
  • доступная цена;
  • более удобная форма выпуска: не «пылят», в отличие от порошков и легко дозируются;
  • многофункциональность, так как помимо отбеливания и удаления пятен подходят для дезинфекции различных поверхностей.

Недостатками отбеливателей на основе гипохлоритов являются:

  • активное использование хлорсодержащих отбеливателей приводит к тому, что ткани быстрее изнашиваются и, как следствие, легко рвутся;
  • невозможность отбеливания шёлковых, шерстяных и некоторых синтетических волокон из-за интенсивного разрушения;
  • относительно короткий срок хранения;
  • невозможность использования в автоматической стиральной машине, особенно в сочетании с современными порошками;
  • сильный специфичный запах хлора.

Моющие и чистящие средства с дезинфицирующими свойствами

Гипохлориты используются во многих жидких и порошкообразных средствах:

  • для автоматических посудомоечных машин;
  • для ухода за ванными комнатами, душевыми и туалетами;
  • для очистки кухонных плит;
  • для мытья каменных и бетонных полов;
  • для очистки коптилен и грилей;
  • очистки канализационных сливов;
  • для уборки поверхностей в кухнях и столовых и др.

Эффективность очистки средствами, содержащими гипохлорит-ионы, обусловлена их сильным окисляющим действием. При деструкции крупных молекул загрязнителей образуются низкомолекулярные продукты разложения, характеризующиеся высокой растворимостью, отсутствием окраски и запаха. Одновременно с очищающим действием, гипохлориты проявляют высокую дезинфицирующую способность. В целом эффективность гипохлоритов возрастает с увеличением концентрации и температуры раствора, а так же при понижении кислотности раствора.

Гипохлоритсодержащие средства с дезинфицирующими свойствами обладают следующими достоинствами:

  • эффективны в отношении различных бактерий, грибов и вирусов;
  • дезинфицирующая активность мало зависит от жесткости воды;
  • при использовании не образуют побочных токсичных продуктов;
  • выпускаются в жидкой, порошкообразной и гранулированной формах.

К недостаткам можно отнести:

  • нестабильность и потерю активности с увеличением температуры и при взаимодействии с органическими веществами;
  • снижение биологической активности с увеличением кислотности среды;
  • коррозия нержавеющей стали и других металлов, что допускает лишь кратковременный контакт с поверхностями и оборудованием из металлов;
  • потеря активности при хранении на свету;
  • ограниченный перечень поверхностно-активных веществ, комплексообразователей, красителей, отдушек, способных быть устойчивыми в композиции моющего или чистящего средства, содержащего гипохлориты.

В заключение следует отметить, что рост производства и потребления гипохлоритов составляет более 2,5% ежегодно. Причем более половины всех произведенных гипохлоритов используется для бытовых целей, а менее половины для промышленных. Широкое использование гипохлоритов в средствах бытовой химии стало возможным благодаря их коммерческой доступности и высокой эффективности. Гипохлорит натрия является безусловным лидером среди других солей хлорноватистой кислоты, занимая 91% мирового рынка. Почти 9% остается за гипохлоритом кальция. Использование гипохлорита калия имеет историческое значение, однако, объемы его современного применения незна- чительные.

Источники

  1. Handbook of detergents. Part A: Properties/ Edited by Guy Broze. New York: Marsell Dekker, 1999. 809 p.
  2. Фурман Л. А. Хлорсодержащие окислительно-отбеливающие и дезинфицирующие вещества. М.: Химия, 1976. 88 с.
  3. Ушакова В.Н. Мойка и дезинфекция. Пищевая промышленность, торговля, общественное питание. – СПб.: Профессия, 2009. 288 с.
  4. ГОСТ 1692–85. Известь хлорная. Технические условия.
  5. ГОСТ 11086–76. Гипохлорит натрия. Технические условия.
  6. Лидин Р.А. и др. Константы неорганических веществ: справочник / Под ред. проф. Р.А. Лидина. М.: Дрофа, 2000. 480 с.
  7. Химическая энциклопедия/ Гл. ред. И.Л. Кнунянц. М.: Советская энциклопедия, 1992. Т. 3. 555 с.
  8. Вредные вещества в промышленности. Справочник для химиков, инженеров и врачей/ Под ред. проф. Н.В. Лазарева и проф. И.Д. Гадаскиной. Л.: Химия, 1977. Т. 3. 608 с.
  9. https://ru.wikipedia.org/wiki/Гипохлорит_натрия

Что в Белизне тебе моей или Справочное пособие по гипохлориту натрия («хлорке»)

Время на прочтение
31 мин

Количество просмотров 200K

Не передать, насколько мне приятно это писать. Данная статья

полностью профинансирована подписчиками канала

LAB66. Ни один производитель описанных в тексте средств -  своего участия не проявил, так что никакой скрытой рекламы, чиcтый альтруизм и потребительский интерес  :)

Сегодня читаем о самом простом, самом доступном и самом действенном антисептике — про гипохлорит натрия (он же «Белизна»). Совместимость с различными материалами, техника безопасности, свойства и эффективность не только против коронавируса, но и против страшной плесени и ее микотоксинов. В качестве «вишенки» — контрольная закупка магазинных отбеливателей и оценка их состава. Чтобы узнать как в эпоху пандемии нас дурят производители бытовой химии и прочий «менеджерский брат» — идем под кат. И обязательно закидываем в закладки. Эта информация пригодится еще не раз ;)

Важно

! Информацию, предложенную в данной статье, вы не найдете больше ни на одном русскоязычном ресурсе. Поэтому публикую на хабре, на портале высшего пользовательского доверия. Просьба ко всем ресурсам сомнительного качества — давайте ссылку на первоисточник. Не переписывайте без понимания — не плодите бесполезный информационный шум, от которого в последнее время уже и так некуда деться. Разномастному «ученому люду» тоже рекомендую не стесняться писать в своих «методических указаниях» ссылку на Хабр. Я то вижу откуда вы все копируете, книгами 50-60 годов вечно прикрываться не получится ;) Так что настоятельно рекомендую меня уведомлять об использовании материалов, а в свой список литературы писать можно что-то вроде:

Бесараб, С.В. Что в Белизне тебе моей или Справочное пособие по гипохлориту натрия («хлорке»)[Электронный ресурс] – Режим доступа: — habr.com/ru/post/494512/- Дата доступа: 04.04.2020.

Предисловие от автора

. Смотрю колонку «сейчас читают» на хабре и с сожалением вижу, что принцип «пока гром не грянет — мужик не перекрестится» работает даже здесь. Один сплошной коронавирус. И вспоминается сразу мне моя статья, опубликованная в конце января (Коронавирус 2019-nCoV. FAQ по защите органов дыхания и дезинфекции) у которой 30% минусов были с пометкой «не соответствует тематике Хабра». Соответствовать, видимо, начинает лишь тогда, когда указание сверху поступит…

Ладно, чего о грустном говорить. Если пару тысяч читателей еще тогда, в январе, без паники и спешки, смогли купить себе СИЗ и нужные антисептики — можно считать, что цель моя достигнута. А сейчас просто вольюсь в тренд и расскажу об самом простом, доступном и очень эффективном антисептике. Не думаю, что он когда-то сможет исчезнуть так же, как исчез этанол. Сырья хватает, гипохлорит натрия можно производить до тех пор, пока существует электричество…

Есть такая интересная (интересная не только для химика, но и для других специалистов, владеющих английским языком) книга — 100 самых важных химических соединений: Cправочное руководство (The 100 Most Important Chemical Compounds: A Reference Guide). В этом руководстве в разделе солей натрия находятся рядом пищевая сода, карбонат натрия, поваренная соль, гидроксид натрия (средство «Крот») и гипохлорит натрия. В принципе, понятно чем многие из этих солей заслужили такое право. А вот на гипохлорите натрия я остановлюсь сегодня подробнее. Первым делом, конечно же определение:

Гипохлорит натрия представляет собой химическое соединение с формулой NaOCl или NaClO, включающее катион натрия (Na+) и гипохлоритный анион (OCl или ClO). Это соединение можно рассматривать как соль неустойчивой хлорноватистой кислоты. Гипохлорит натрия чаще всего встречается в виде бледно-зеленовато-желтого разбавленного раствора, который с 18-го века используется в качестве отбеливающего, а позднее и дезинфицирующего средства. Стоит отметить, что гипохлорит натрия можно считать в некотором роде эндогенным для человека веществом, так как клетки-нейтрофилы иммунной системы человека производят небольшое количество этого вещества внутри фагосом, которые «переваривают» бактерии и вирусы.

С момента своего открытия в 1787 году химиком Клодом Луи Бертолле (тем самым, которому мы должны быть благодарны за хлопушки, спичечные головки, салюты и проч. изобретения, где используется т.н. бертолетова соль) гипохлорит натрия достаточно долго выступал сугубо как отбеливающий агент и только примерно с середины 19 века началось его шествие как дезинфектанта. Поэтому пройдусь немного по химическим свойствам, сохраняя «историческую хронологию».

Хлорочка как отбеливатель

Отбеливающий эффект гипохлорита — это целиком и полностью заслуга неустойчивой хлорноватистой кислоты. Ибо эта HClO является очень сильным окислителем (даже сильнее, чем газообразный Cl2) и может реагировать и разрушать многие типы молекул, включая красители. В водной среде гипохлорит натрия NaOCl обратимо гидролизуется с образованием хлорноватистой кислоты и щелочи:

NaOCl + H2O → HOCl + NaOH

В свою очередь хлорноватистая кислота HOCl распадается на атомарный кислород (O*) и соляную кислоту:

HOCl → HCl + O*

Ну а атомарный кислород — очень ядреная штука, один из мощнейших окислителей на нашей планете. Кстати, именно благодаря атомарному кислороду озон проявляет свои бактерицидные свойства. Так что, в некотором роде, озон и гипохлорит натрия — «кислородные братья» :)

Отбеливающая способность гипохлорита натрия (и подобных ему химикатов) обусловлена их способностью разрушать светопоглощающие структуры (т.н. хромофоры) в органических молекулах. Притом это могут быть не только хромофоры на тканях. Гипохлорит неплохо отбеливает пятна плесени на плитке, зубные пятна, вызванные флюорозом и удаляет пятна от танинов чая на кружках (т.н. «чайный камень»).

если в школе химию знал на тройку — спойлер можешь даже не открывать

Хромофоры часто связаны с сопряженными системами, которые представляют собой структуры с чередующимися одинарными и двойными связями. Электроны в сопряженных системах делокализованы и способны существовать на разных молекулярных орбиталях. Электрон в определенном орбитальном состоянии может поглощать энергию и подниматься до более высокого энергетического состояния. Электронные переходы, возникающие в результате поглощения определенных длин волн, создают цвет, который является визуальным дополнением к длине волны поглощенного света. Атомарный кислород гипохлорита натрия либо разрушает сам хромофор, либо разрушает двойные связи в нем и изменяет краситель так, что он больше не может поглощать видимый свет «окрашивающей» длины волны.

Справедливости ради, стоит отметить, что хлорноватистая кислота образует соли не только с натрием, но и, например, с кальцием. Примером может служить та самая хлорная известь, широко используемая из-за своей дешевизны для дезинфекции складских помещений, животноводческих ферм, туалетов и т.д и т.п. На долю гипохлорита натрия приходится около 83% мирового потребления (в роли отбеливателя/дезинфектанта), на хлорную известь — остается 17%. В 2005 году в мире было использовано около 1 миллиона тонн гипохлорита натрия, причем около 53% этого количества использовалось в домашних хозяйствах для дезинфекции и отбеливания белья (+ мытья, т.к. щелочная среда раствора гипохлорита неплохо омыляет жиры и делает их водорастворимыми). Оставшиеся 47% приходились на очистку сточных вод и подготовку питьевой воды (а также очистку бассейнов и градирен ГЭС от биообрастания/водорослей/моллюсков, отбеливание целлюлозы/бумаги/тканей, и использование в роли реактива для химических синтезов). Водоочистной эффект, кстати, это не только дезинфекция. Это и удаление запахов (NaOCl нейтрализует сероводород и аммиак) и даже обезвреживание цианидов в сточных водах (например, после золотодобычи или гальванических ванн).

Хлорочка, как дезинфектант

Любое несчастье как индикатор проявляет самые лучшие и самые худшие черты человека. Так и с пандемией коронавируса. Для меня удивительно, что многие трезвомыслящие, прекрасные специалисты, поддавшись панике начали терять голову и выдавать что-то вроде «гипохлорит не убьет коронавирус» (или еще лучше «коронавирус — это ГМО бактерия»). Меня мало волнует мнение многочисленных youtube-блогеров и диванных аналитиков и т.п. с их дилетантскими «рассуждениями о рыбалке» (в канале LAB-66 уже приходится у особо рьяных кликуш и «одержимых мировым заговором» даже требовать диплом о наличии профильного образования). А вот к информации от WHO, CDC, EPA я стараюсь четко прислушиваться. Ожидаемо, что в мартовском бюллетене выпущенном одной из упомянутых организаций (EPA’s Registered Antimicrobial Products for Use Against Novel Coronavirus SARS-CoV-2, the Cause of COVID-19) в списке эффективных «коронавирусных» дезсредств оказалось достаточно много гипохлорита. Удивляться здесь нечему, ведь NaOCl — это одно из оптимальнейших дезсредств (из-за комбинации широкого спектра активности, доступности и отсуствия долгосрочного вреда для окружающей среды). По поводу дезинфицирующего эффекта смотрим картинку (кликабельна):

На всякий случай напоминаю,

COVID-19 — это болезнь, вызванная оболочечным вирусом SARS-CoV-2

, который содержит внутри своего «конвертика»

одноцепочную РНК

.

В принципе, любые дезинфицирующие средства на основе хлора, так или иначе действуют через образование HOCl (та самая хлорноватистая кислота). Но сильный бактерицидный эффект гипохлорита связан не только со способностью продуцировать атомарный кислород, но и с действием гидроксильных ионов. Щелочная среда нарушает целостность цитоплазматической мембраны и приводит к необратимому ферментативному ингибированию, изменению клеточного метаболизма и деградации фосфолипидов (как при гипероксидировании липидов). Гипохлорит натрия воздействует на ферментативный аппарат бактерий, способствуя необратимой инактивации, вызванной щелочной средой и хлораминированию вызванному хлором. Т.е. можно сказать, что при обработке гипохлоритом зараженного объекта одновременно происходят реакции омыления липидов, нейтрализации аминокислот и хлораминирования. Таким образом не только дезактивируются многие микроорганизмы, но и происходит деградация липидов и жирных кислот, с образованием ПАВ (=мыла) и глицерина, т.е. уже упомянутая реакция омыления. Гипохлорит не только дезинфицирует, но еще и моет :) Логично, что при таком действии выработать резистентность (как к антибиотикам) практически не реально.

При обработке живых тканей важна еще и такая вещь, как биосовместимость. Это способность химического реагента вообще не реагировать с биологическими тканями на протяжении какого-то периода времени (и иметь умеренную реакционную способность в течение недели, постепенно снижающуюся к 0). Высокие концентрации гипохлорита достаточно агрессивны (см. раздел про технику безопасности), но вот в концентрациях 0,5-1% это очень даже биосовместимый препарат. Поэтому гипохлорит натрия высоких концентраций используется для хлорирования воды на некоторых (!) станциях водоподготовки — 12% раствор — некоторых, потому что чаще всего используют хлор в баллонах. 15% раствор используют для обеззараживания сточных вод на очистных сооружениях. Растворы с концентрацией не менее 10% используются для очистки воды в бассейнах и удаления биопленок. Кстати, именно гипохлорит натрия может быть прекрасным средством для уничтожения возбудителей легионеллёза. Эти микроорганизмы, кстати, очень часто в тех самых биопленках и обитают.

Ну а в дезинфицирующих спреях и салфетках, используемых на твердых поверхностях, чаще всего используются концентрации до 1,5%. Кстати, про то, как сделать самодельные салфетки с гипохлоритом я достаточно давно писал на Patreon в своей статье «Реверс-инжиниринг влажной салфетки или Гипохлорита вам в ленту». Кстати, пользуясь случаем выражаю благодарность всем моим «патронам». Вас мало, но вы поддерживаете серьезно!

Традиционно считается, что для обработки больниц и помещений, загрязненных жидкостями организма (кровью и т.п.) необходимо использовать 0,5% раствор. Такой концентрации достаточно, чтобы дезактивировать клостридиум диффициле в фекалиях или уничтожить какие-нибудь папилломавирусы человека. Для обработки/мытья рук чаще всего используется 0,05% раствор гипохлорита, который готовят из гранул (на картинке — выдержка из инструкции по обеззараживанию в условиях эпидемии лихорадки Эбола):

На Западе также активно используется т.н. «раствор Дакина» (

почти уверен, что у нас такого ничего нет, у нас многие лекарства и растворы заменяет панацея -> «авось пронесет»

) он же раствор Карреля-Дакина, он же жидкость Карреля-Дакина. Раствор этот представляет собой разбавленный раствор гипохлорита натрия (от 0,4% до 0,5%) с добавкой стабилизирующих ингредиентов (борная кислота или пищевая сода), и активно используется в качестве антисептика для очистки ран/обработки ожогов и т.п (метода приготовления для интересующихся). Такой раствор показывает эффективность дезинфицирования для некоторых микроорганизмов даже с концентрацией 0,025%.

Замечание 1. о других «хлорных дезинфектантах»

Помимо упомянутых уже мной гипохлорита натрия и гипохлорита кальция, существуют и другие вещества, способные активно продуцировать хлор (ну а хлор с водой = «малостабильная хлорноватистая кислота HOCl» и далее опять см. п. «Хлорочка, как дезинфектант»). Притом там могут быть и вещества органической природы. На просторах интернета я нашел информацию (скорее всего выдранную из какой-то советской книги по гражданского обороне — потому что многие наименования, да и сами препараты давно перестали существовать). Эта таблица дает примерное представление о спектре препаратов и их сравнительной «дезмощности по хлору». Почистил авторски и предлагаю на ваш суд. Можно, по крайней мере, примерно прикинуть/сравнить активность разных дезсредств (если захочется что-то отличное от старого доброго NaOCl):

Возможно, читателю может встретится такой дезинфектант, как хлорцин (это НЕ украинская мазь с одноименным названием). Это Na-ДХЦК (натриевая соль дихлоризоциануровой кислоты — хлорцин Н) — 30,0% (или К-ДХЦК — 20,0% — хлорцин К), триполифосфат натрия — 6%, ПАВ (сульфонол) -3%, сульфат натрия — до 100%. Хлорцин содержит 11 — 15% активного хлора. Может встречатся и т.н. препарат ДП-2. Зашифрованного названия не стоит пугаться, по сути — обычная трихлороизоциануровая кислота с добавками ПАВ.

Сюда ж внесу и замечание от eteh: «… электролизный ГПХН возможен и 5-7%. При получении, соответственно, не проточным электролизом, а мембранным — из соли и воды без добавления дополнительных реагентов. Ну а выше, да, там только отдельно готовить концентрированный щелочной раствор для насыщения хлором».

Замечание 2. «хлорка которая лечит»

Все яд и все лекарство. Не стали исключением и гипохлорит, который может не только уничтожать все живое, но и лечить, например, поражения кожи. Сразу хочется вспомнить ванны с разбавленным гипохлоритом, которые на Западе (

у нас все лечат радоном :)

) десятилетиями использовались для лечения умеренной и тяжелой экземы (ссылка). Притом механизм действия достаточно долго оставался неясен. Но в 2013 году в Стэнфорде появилась интересная информация (пруф) о том, что очень разбавленный (0,005%) гипохлорит натрия успешно лечит воспалительные повреждения кожи у лабораторных мышей, вызванные лучевой терапией, переизбытком солнца или старением (

Ким Ир Сену нужно было не в крови девственниц купаться, а в гипохлорите, чисто по принципу бритвы Оккама, и «джиннов бы изгнал» и омолодился

). Мыши с радиационным дерматитом, купавшиеся каждый день по 30 минут в гипохлорите (=«купавшиеся в отечественных бассейнах») имели лучшую динамику заживления кожи и отрастания волос, чем мыши купавшиеся в обычной воде. У старых мышей кожа после купаний вообще становилась моложе, утолщалась, увеличивалась пролиферация (размножение делением) клеток. Казалось бы вот она, панацея для престарелых правителей, но нет. Эффект исчезал после того, как купания прекращались…

В «медразделе» не грешно упомянуть и про применение гипохлорита натрия в стоматологии (ибо именно стоматологи у меня чаще всего интересовались вопросами концентрации, разведения в и т.п.). Гипохлорит натрия является препаратом выбора в эндодонтии и очистке корневых каналов. Чаще всего стоматологами используются концентрации от 0,5% до 5,25% (стандартный — 2%).

Здесь работает правило — низкие концентрации гипохлорита удаляют преимущественно некротические ткани и некоторые виды бактерий, высокие концентрации — повреждают живые ткани, но наиболее полно уничтожают микробы. Кстати, вместо повышения концентрации можно подогреть раствор (50-60 °C), что даст сравнимую с более концентрированным раствором эффективность в удалении мягких тканей и дезинфицировании корневого канала.

Замечание 3. Об очистке воды в полевых условиях

Тема очистки воды достаточно обширна и вполне достойна отдельной статьи. Я же кратко упомяну об очистке воды в полевых условиях. Ведь бывают ситуации, когда ни то что озонатор или уф-лампу использовать, а даже и закипятить воду тяжело. Поэтому у химических обеззараживателей, на мой взгляд, пока особой альтернативы не видно. Хлорное обеззараживание может считаться старейшим вариантом полевой дезинфекции воды. Американские военные еще во время Второй мировой войны в составе сухпайка имели таблетки «Halazone», с натриевой солью 4-[(дихлорамино)сульфонил]бензойной кислоты.

Потом постепенно это вещество вытеснил дихлоризоцианурат натрия (тот самых ДХЦК), именно он был в составе широко известных в узких кругах таблеток «Пантоцид». Американский вариант — это ДХЦК спрессованый с адипиновой кислотой и содой, быстрорастворимые таблетки. Стоит отметить, что для полевой дезинфекции могут использоваться и таблетки для обеззараживания бассейнов (двухкомпонентные, содержащие смесь хлорит+хлорат+карбонат натрия и гидросульфат натрия), продуцирующие диоксид хлора. В целом, такой вариант подходит и для обеззараживания питьевой воды. Причем этот вариант, например, эффективен против лямблий больше чем обычный хлор. Все описанные варианты — удобны in situ (туристы, военные, МЧС и т.п.). Для вариантов вроде стихийного бедствия или какой-нибудь техногенной катастрофы таблетки могут быть недоступны, а то и слишком дороги. Для этой цели вполне можно использовать и Белизну (желательно без всяких ПАВ-ов и отдушек). Необходимо всего пару капель 5% гипохлорита натрия на литр воды с выдержкой в емкости с закрытой крышкой в течение 30-60 минут. Перед непосредственным употреблением желательно крышку открыть и «дать проветриться». Не стоит сразу лить в себя, как бы там ни хотелось пить.

CDC в рамках своей стратегии «Безопасная система водоснабжения» (SWS) для развивающихся стран рекомендует для обеззараживания воды использовать 0,5–1,5% раствор гипохлорита натрия (две-три капли на литр и экспозиция 30 минут). EPA, кстати, советует использовать 8,25% раствор гипохлорита натрия (две капли на литр и экспозиция 30 минут), важное замечание «удвойте количество отбеливателя, если вода мутная, окрашенная или очень холодная. после обработки вода должна иметь слабый запах хлора. Если нет, повторите дозировку и дайте постоять еще 15 минут перед использованием«. Стоит отметить, что на крайний случай, для дезинфекции воды можно использовать и гипохлорит кальция («хлорную известь»).

Замечание 4. «Хлорка» vs плесень, грибки и микотоксины

А затем они повредили его нервную систему русским боевым микотоксином…
Уильям Гибсон «Нейромант»

Существует в немногочисленном мире «химиков, которые в теме» такой «Грааль» как микотоксины.

Обыватель чаще всего ничего про это не слышал, или слышал краем уха (типа «Джонни Мнемоника отравили таким веществом…»). По сути ж, это тема отдельной и очень интересной статьи. Пока же просто скажу, что микотоксины в простейшем применении = плесень, плесневые грибы различных разновидностей, которые могут встречаться на овощах, фруктах, крупах и т.д. и т.п. Микотоксины — невозможно смыть водой или мылом, невозможно удалить срезав подгнившую кожицу. Микотоксины — могут равномерно распределятся по всему объему картошки/яблока и т.д. и т.п. И, к сожалению, многие микотоксины в человеческом организме вызывают множественные симптомы поражения органов (при попадании на кожу, в лёгкие или в желудок). Из-за того, что концентрации их достаточно малы (сомневаюсь, что кто-то постоянно ест гнилые фрукты или плесневелые орехи) — воздействие это растянуто по времени и кажется чем-то привычным (= «заболел от генетической предрасположенности/пьянства/плохого воздуха», а не потому что отравлен микотоксинами из некачественных круп). Про это можно говорить долго, но герой моей статьи гипохлорит, а значит надо бы свести тему к нему.

А сводится все к тому, что гипохлорит натрия в определенных концентрациях может использоваться не только для уничтожения микробов и плесневых грибов (см. таблицу в начале раздела «Хлорочка, как дезинфектант«), но и для дезактивации того, что после них осталось, в т.ч. плесневых, растительных токсинов и токсинов животного происхождения.. Более подробно — смотрите таблицу (30-минутная экспозиция). Плюсик — токсин дезактивируется, минус — нет.

Так что, глянув на таблицу, можно увидеть, что гипохлорит натрия способен дезактивировать Т-2 микотоксин, который выделяется плесневыми грибами рода Fusarium.

T-2 токсин — трихотеценовый микотоксин, чрезвычайно токсичен для эукариотических организмов. Вследствие употребления заплесневевшего зерна или муки возникают отравления человека или сельскохозяйственных животных. Острые токсические симптомы включают рвоту, диарею, раздражение кожи, зуд, сыпь, волдыри, кровотечение и одышку. Если человек подвергается воздействию Т-2 в течение более длительного периода, наблюдается постепенная дегенерация костного мозга и развивается пищевая токсическая алейкия (АТА).

И уже привычно не отмахнешся, не успокоишь себя фразой «да где тот микотоксин и Fusarium, а где я» и водочкой, привычно, не полечишь… Потому что они — много где. На клубнике например:

Или даже на тыквах…

Так что, вполне себе вариант снижения количества микотоксинов в подозрительных фруктах и овощах — это купание их в щелочном гипохлорите натрия с последующим обычным мытьем. При таком варианте обработки убиваются практически все возможные «поверхностные зайцы».

Стабильность и сроки хранения (=есть ли смысл закупать впрок?)

Если химия и медицина для рядового технаря не особо интересны (достаточно знать работает или нет), то вопросы стабильности при хранении — наоборот, первостепенны. Ведь гипохлорит натрия — вещество малостабильное. При комнатной температуре распадается примерно 0,75 г активного хлора в сутки, т.е. раствор с содержанием 250 г/л гипохлорита натрия теряет примерно половину активного хлора за 5 мес, с содержанием 100 г/л - за 7 мес, 50 г/л - за 2 года, а 25 г/л - за 5–6 лет.

Его устойчивость зависит от ряда факторов:

  • Концентрация гипохлорита
  • Температура
  • Щелочность и значение pH
  • Концентрация примесей, которые катализируют разложение и/или образование хлоратов
  • Воздействие света

В большинстве случаев распад протекает по таким вот основным механизмам:

2NaOCl → 2NaCl + O2 (A)
3NaOCl → 2NaCl + NaClO3 (B)

Пройдусь по каждому пункту отдельно:

Концентрация: чем более концентрированный раствор, тем быстрее он разлагается, соответственно самые слабые растворы — самые стабильные. Литературные данные указывают на то, что при снижении концентрации гипохлорита натрия в два раза, скорость разложения уменьшается в 5 раз. Это связано с уменьшением общей концентрации ионов и со снижением ионной силы раствора. Разбавление снижает как концентрацию NaOCl, так и концентрацию других ионов (равновесных хлоридов, хлоратов, гидроксидов и т.д. — см. картинку «равновесия рН» ниже).

Температура: распад гипохлорита с повышением температуры в 90% случаев проходит по уравнению (B). Можно держать в уме следующее правило — скорость разложения возрастает в 3–4 раза, для каждых 10 °C для растворов с концентрациями гипохлорита натрия от 5 до 16%. А если напрячься и снизить температуру хранения хлорки до 5 °C (при условии полного отсутствия примесей металлов и других факторов ускоряющих разложение), то хранить в темной бутылке можно будет практически вечно.

Щелочность и рН раствора: для стабильного хранения раствор гипохлорита должен иметь pH от 11,5 до 12,5. В случае разбавленных растворов NaOCl при pH ниже 10,8 скорость разложения начинает значительно увеличиваться, достигая максимального значения в диапазоне 5-9. Но здесь есть нюанс. Когда рН раствора уменьшается, содержание HOCl увеличивается и растет окислительно-восстановительный потенциал (см. картинку с изменением форм активного хлора в растворе гипохлорита натрия в зависимости от рН раствора, Сl2 — молекулярный хлор, ClO-гипохлорит-ион, HClO-хлорноватистая кислота).

Т.е. для хранения оптимальнее высокощелочные растворы, а для экстренной дезинфекции — растворы с низким рН. Хотя, говоря начистоту, повышать рН тоже необходимо до разумного предела. Если pH превышает значение 13 — скорость разложения опять скачкообразно увеличивается. Это происходит из-за увеличения ионной силы раствора, вызванного присутствием сильного избытка щелочи (NaOH). В целом можно использовать за правило — для хлор-содержащих дезсредств используем только щелочную среду. Для пероксидных дезсредств — наиболее эффективна кислая среда. ЧАС-ы несовместимы с кислотами и резко теряют в их присутствии свои дезинфицирующие свойства. Альдегиды (вроде формалина и глутаральдегида) — работают и в кислой, и в щелочной среде)

Примеси: алюминий, медь, никель, железо, кобальт, марганец и т.д. являются катализаторами разложения NaOCl. Металлы в основном катализируют разложение по реакции (A) с образованием газообразного кислорода. Твердые суспензии, такие как, например, частицы графита в гипохлорите натрия, получаемом электрохимическим методом, также вызывают разложение NaOCl, в частности, по реакции (B) с образованием хлората натрия. Кстати, как говорят некоторые производители дезсредств, добавки сульфата магния, силиката натрия, борной кислоты -  замедляют распад.

Воздействие света: воздействие света ускоряет процесс разложения NaOCl в растворе. Современные методы упаковки и использование непрозрачных полиэтиленовых бутылок практически исключают влияние света на стабильность растворов. Янтарные или зеленые стеклянные бутылки также имеют такой же результат. Если важны конкретные цифры — получится вот так:

Для предотвращения разложения гипохлорита требуется контейнер, который отсекает свет ниже 475 нм и пропускает менее 2% при 500 нм.

Подводя итог, можно сказать следующее. Самым долгоиграющим будет препарат, который:

  • Имеет низкую концентрацию гипохлорита
  • 11,5< рН в диапазоне >13
  • В котором отсутствуют примеси металлов/графита (=отфильтрованный)
  • Хранится при температуре <30°С (=в холодильнике)
  • Упакован в абсолютно непроницаемые для света контейнеры

Совместимость материалов

Вопрос совместимости материалов перекликается со сказанным ранее (особенно, относительно металлов). На представленной ниже таблице можно даже увидеть с какой скоростью что корродирует.

Здесь же и видно, что вопрос совместимости материалов актуален в основном для случая хранения/перевозки гипохлорита высоких концентраций и рядового «дезинфектора» волновать должен слабо. В общую копилку упомяну еще несколько материалов, которые рекомендуются на роль прокладок/конструкционных материалов при работе с концентрированным гипохлоритом натрия:

  • PVDF (фторированный поливинилиден)
  • Этиленпропиленовый каучук
  • Хлорбутилкаучук
  • CPVC (хлорированный поливинилхлорид)
  • Тантал
  • FRP (стеклопластик с подходящей инертной смолой и системой отверждения)
  • Полидициклопентадиен

Американская табличка устойчивости к гипохлориту

Взято отсюда, буква S = совместимость удовлетворительная (satisfactory), буква U = совместимость неудовлетворительная (unsatisfactory). Табличка кликабельна.

Техника безопасности при работе с гипохлоритом

В целом, типичный (=разбавленный) бытовой отбеливатель вроде белизны не опаснее воды (если с ним уважительно обращаться, бутылочку там подписывать, от детей прятать и т.п.). По статистике, в 2002 году в Великобритании было зафиксировано около 3300 несчастных случаев, связанных с гипохлоритом натрия. И абсолютное большинство из них — употребление дезинфектанта внутрь… Думаю, комментарии излишни.

Что касается гипохлорита натрия «промышленной концентрации», т.е. такого которым очищают сточные воды, то он уже относится к суровому первому классу опасности (класс 1B-поражение кожи + класс 1-поражение глаз).

Если расшифровать — при попадании на кожу и в глаза вызывает химические ожоги. Будет вызывать раздражение и при попадании на слизистые оболочки верхних дыхательных путей (при вдыхании). Отдельного упоминания заслуживает и такой камень преткновения, как «хлорка в воде бассейна». Как правило, концентрация гипохлорита натрия, присутствующая в плавательных бассейнах абсолютно не вредна для людей. Но! Но дело меняется, если в воде присутствует большое количество мочевины (смесь мочи и пота), и тут уж хлорноватистая кислота и мочевина вступают в реакцию с образованием ядреных хлораминов (о механизме образования — ниже). Именно хлорамины раздражают слизистые оболочки и дают т.н. «запах хлора». В нормальных бассейнах этого быть не должно (нормальный = тот, в котором меняют воду и работает вентиляция). Если же этого не происходит, то постоянное воздействие летучих хлораминов может даже привести к развитию атопической астмы (см. статью).

Лечение при отравлении:

Учитывая все выше сказанное, решил я прикрепить и небольшую «памятку для врача», чтобы случись что — все было под рукой. Описание действий на случай отравления гипохлоритом натрия. Оно, кстати, примерно такое же, как и в случае отравления щелочью (cкользкое ощущение отбеливателя на коже связано с омылением кожных масел и разрушением тканей). НО! Но это только для чистого гипохлорита натрия. В случае его комбинация с различными бытовыми химикатами — лечить возможно придется от отравления продуктами реакции (см. следующий пункт).

Замечание про «запах хлора»:

часто можно услышать от читателей вопрос «чем убрать этот неприятный запах хлора с рук/полумаски/предметов». В таком случае поможет тиосульфат натрия, притом для активного удаления запаха хватит и раствора с концентрацией около 5 мг/л (0,005%). Промываем этим раствором руки или __ (вписать нужное), а затем промываем водой с мылом. Если же тиосульфата найти не удалось, то остается только проверенный способ — «выветривание запаха со временем».

Кстати, для нейтрализации разливов концентрированного гипохлорита натрия (будем считать что 5% и выше) можно также использоваться сульфит натрия, он работает по реакции:

NaOCl + Na2SO3 → NaCl + Na2SO4

или гидросульфит натрия, который работает по реакции:

NaOCl + NaHSO3 + NaOH → NaCl + Na2SO4 + H2O

А можно, в случае очень небольшого количества гипохлорита, использовать и перекись водорода, но с осторожностью (!) ибо там выделяется кислород.

Опасное соседство — НЕсовместимая бытовая химия

Гипохлорит натрия, являясь очень активным компонентом, легко вступает в химические реакции (в т.ч. и в фотохимические — т.е. с солнечным светом и ультрафиолетом от популярных ныне бактерицидных ламп). Часто в результате этих реакций выделяется хлор (=серьезный раздражающий агент), например при контакте нашей белизны и средства для очистки от ржавчины. При контакте гипохлорита с соединениями аммиака (в т.ч. с любимыми народом ЧАС-ы, которые сейчас начали добавлять в средства для мытья полов), и даже при контакте с мочой (!) в которой содержится мочевина — могут образовываться токсичные в обычных условиях хлорамины:

NH3 + NaOCl → NaOH + NH2Cl
NH2Cl + NaOCl → NaOH + NHCl2
NHCl2+ NaOCl → NaOH + NCl3

При контакте белизны с некоторыми бытовыми моющими средствами, содержащими ПАВы и различные отдушки могут образовываться летучие (!) хлорорганические соединения, вроде четыреххлористого углерода (CCl4) и хлороформа (CHCl3). Классы их опасности каждый может посмотреть сам. Например в статье исследователи показали, что при работе с некоторыми «хитрыми» средствами бытовой химии концентрации этих растворителей повышаются в 8–52 раза для хлороформа и в 1–1170 раз для четыреххлористого углерода выше допустимых соответственно. Самый низкий «выхлоп» летучей хлорорганики дает самый простой отбеливатель (читай «белизна»), а вот самый высокий — средства в форме «густой жидкости и геля» (типа всяких там Доместосов и иже с ними, которые и развести толком нельзя). Поэтому, на будущее, а) стоит всячески избегать «суперэффективных средств с новой формулой» (= дерьма, которое разработал менеджер, а не инженер) и придерживаться классической формулы «лучшая белизна = гипохлорит да вода». И б) использовать при уборке квартиры респираторы с угольным фильтром (=«для задерживания паров растворителей»).

С перекисью водорода гипохлорит натрия реагирует достаточно бурно, с образованием хлорида натрия (

ваша любимая поваренная соль

) и кислорода:

H2O2 + NaOCl → NaCl (водный) + H2O + O2

Гетерогенные реакции гипохлорита с металлами протекают достаточно медленно и дают в результате оксид металла (ну или гидроксид). На примере цинка:

NaOCl + Zn → ZnO + NaCl

С различными комплексами металлов белизна реагирует не в пример быстрее.

Как уже упоминалось, гипохлорит натрия не любит высокую температуру (выше 30°C), и при нагревании распадается на хлорат натрия и кислород (для 5% раствора температура разложения ~40°C), если удастся нагреть до 70°С разложение может протекать со взрывом.

В целом, гипохлорит высоких концентраций негорюч и взрывобезопасен. Но при контакте с органическими горючими веществами (опилки, ветошь и др.) в процессе высыхания может вызывать возгорание. Вообще, такая реакционная способность — это одновременно и благо, т.к. вещество не может долго находится в неизменном состоянии в окружающей среде и быстро дезактивируется (=можно просто смыть в сточные воды).

В качестве выводов — все написанное выше сведено в единую таблицу несовместимых компонентов (кликабельна).

Некоторые из этих соединений можно найти в бытовых, автомобильных и промышленных химикалиях и смесях химикалий = средства для чистки окон, унитазов и поверхностей, обезжиривающие средства, антифризы, средства для очистки воды, химия для бань и бассейнов. Поэтому чаще смотрите на этикетку. Требуйте, чтобы на этикетке писали состав! Покупайте только то средство, где на этикетке есть максимальная информация о составе. Пора уже голосовать рублем за адекватное отношение к покупателю.

Практикум или Вся Белизна Минска

Полностью разобравшись с теорией, теперь мы подходим к самому интересному. К лабораторным занятиям. Как и обещал читателям, я проехался по Минску и собрал все доступные варианты жидкого отбеливателя (именно жидкого, на гели и т.п. я даже не смотрел). Теперь же я хочу рассказать как я их сравнивал и «проверял на вшивость» (= подходят ли они для целей дезинфекции).

Кстати, отмечу, что все описанные в статье методы вполне себе работоспособны в мирное время, для проверки качества воды в бассейнах или кранах. Если вдруг у кого-то возникнет желание сказать «вода плохая - воняет хлоркой» , то после прочтения статьи, надеюсь, это можно будет сделать без проблем. А нынче, нынче вода с хлоркой это благо во время пандемии…

В общем, первым делом подбираем себе необходимые СИЗ (по желанию). Как я уже упоминал выше, для большинства задач (и прямых рук) достаточно перчаток. Не зная что в бутылках за смеси, я решил перестраховаться и использовать полный комплект защиты (только со своей полумаски 3М 7502 «коронавирусные» противоаэрозольники 6035 я заменил на угольные патроны класса «газы/пары» — типа ABE1, как в моем случае, или лучше ABEK1. Пойдут и отечественные противогазные коробки и респираторы для работы с парами растворителей.

выбор фильтров для работы с бытовой химией (кликабельно)

С предварительными приготовлениями разобрались, и теперь я представляю вашему вниманию всю Белизну Минска! Встречайте беларуских красавиц! Это, кстати, все что удалось найти в гипермаркетах города-героя.

Первым делом я оценил внешний вид, т.е. цвет и консистенцию предлагаемых растворов. Хотя ожидать здесь чего-то экстраординарного не приходится (т.к. по условиям задачи — никаких гелей и прочего «химо-фарша», максимальная простота).

Потом измерил их плотность (кликабельно) + рН, он же водородный показатель.

Чем плотность и рН дома измерять?

Плотность измеряем вот такими советскими ареометрами да стеклянным цилиндриком

А рН, рН — уж чем бог пошлет (вплоть до индикаторных бумажек, но учитывайте что краситель в бумажках будет моментально «выгорать» и обесцвечиваться). В моем же дорожном чемоданчике случайно завалялись рН-метры Hanna:

В результате получилась вот такая сводная таблица с данными (кое-что пришлось переписать с этикеток):

Отдельно напишу состав (т.е. то, что там есть еще КРОМЕ гипохлорита натрия, это важно, особенно учитывая всякие хлорамины и летучую хлорорганику, о которых я писал выше). Стиль написания сохранен, чтобы читатель понимал, кто пишет инструкции.

образец 1. Вода, анионный ПАВ – менее 5%, стабилизатор, комплексообразователь
образец 2. Вода
образец 3. Вода, НПАВ менее 5 (%), ароматизатор (свежесть) –менее 5%
образец 4. Вода, анионный ПАВ – менее 5%, стабилизатор, комплексообразователь
образец 5. Вода, щелочь – менее 5%, вода 30% и более
образец 6. <5% щелочь, вода, отдушка
образец 7. Более 30% вода питьевая, трилон Б, натрия гидроксид – менее 5%

Возможно «в рамках факультатива» я когда-нибудь сделаю анализ гелей с активным хлором. Но такая форма очень неудобна по нескольким причинам. Во-первых в составе могут быть взаимоисключающие компоненты (см. таблицу несовместимости) и при открывании бутылки вы сразу начнете получать дозу хлора/хлорамина и т.п. Во-вторых из-за кучи добавок не совместимых с человеческим организмом — гели нельзя использовать для той же дезинфекции воды. Ну и в третьих, высокая вязкость раствора не позволит его ни развести нормально, ни использовать в комбинации с распылителем (например, для орошения ручек дверей).

Ну и наконец с подготовительным этапом закончили, теперь самое важное и интересное — концентрация гипохлорита натрия. Важна она потому что именно к этому показателю привязываются все рекомендации по дезинфекции. Ну а сами производители не идут навстречу покупателю и пишут черт-те что (cм. далее). Хотя узнать, сколько там гипохлорита не так уж и сложно. Поможет в этом такая методика, как титрование. Мы будем просто добавлять один компонент до тех пор, пока он полностью не прореагирует со вторым (сигнализировать об этом будет изменение цвета раствора). Для определения активного хлора в гипохлорите можно применить отечественную ГОСТ-овскую методику, а можно применить американскую АSTM.

Отличие аналитических реакций

В отечественном методе используется серная кислота и реакция:

NaClO + 2KI + 2H2SO4 → NaCl + I2 + K2SO4 + H2O

В американском методе используется уксусная кислота и реакция:

NaOCl + 2KI + 2CH3COOH → I2 + NaCl + 2KC2H3O2 + H2O

И в том, и в том методе выделившийся иод определяют титрованием тиосульфатом натрия.

В принципе, разницы по которой работать я лично не вижу, здесь играет роль доступность реагентов, я использовал ГОСТ-скую, т.к. серная кислота не так воняет как уксусная.

Метода ГОСТ Р 57568-2017 (упрощенная):

Для работы нам нужны следующие компоненты:

1)

Серная кислота 1н.

Отмеряем 28,6 мл концентрированной серной кислоты (плотность = 1, 84 г/см3) и доводим до литра дистиллированной водой.

2)

10 % раствор иодида калия

Взвешиваем 10 грамм иодида калия и растворяем в 90 мл дистиллированной воды. Раствор применяется свежеприготовленный

3)

Раствор тиосульфата натрия 0.1н

Взвешиваем 25 г тиосульфата натрия (пентагидрата) и доводим дистиллированной водой до 1 л. Хранить в темной бутылке.

4)

Раствор крахмала 1%

Взвешиваем 1 г крахмала (кукурузного, картофельного и т.п., хоть картошку натирайте и заваривайте, но! но не забудьте профильтровать :) ) и размешиваем с 10 мл дистиллированной воды. Затем кипятим в стакане 90 мл дистиллированной воды и когда закипела — вливаем наши 10 мл с крахмалом. Варим, перемешивая 2-3 минуты. Используем свежеприготовленным.

Сама процедура проверки следующая. Отбираем образец гипохлорита объемом 10 мл, и доводим водой до 250 мл. Отбираем из этого объема 10 мл и переносим в стакан, в этот же стакан добавляем 10 мл раствора иодида калия и 20 мл серной кислоты. Хорошо перемешиваем и ставим в темноту на 5 минут. По прошествии 5 минут капаем по каплям (из калиброванной капельницы, а еще лучше бюретки) раствор тиосульфата натрия пока раствор красного цвета (из-за выделившегося иода) не станет прозрачным.

устал от заводской бюретки и достал свой дорожный вариант

Когда жидкость приобретет соломенный (светло-желтый) цвет — доливаем в стакан 2-3 мл крахмала, раствор синеет.

вот так он синеет

Теперь потихоньку добавляем тиосульфат пока синий цвет не исчезнет.

Какие могут быть нюансы, влияющие на результат определения? А вот следующие (советую их держать в уме).

  • Недостаточное количество иодида калия (= при приготовлении раствора вы использовали старый полуразложившийся реактив) добавленного к образцу приведет к тому, что прореагирует не весь гипохлорит и показатели активного хлора будут занижены. Поэтому лучше небольшой избыток иодида.
  • Плохое перемешивание иодида калия с гипохлоритом даст ту же ошибку, что и в предыдущем пункте. Поэтому очень хорошо перетрясите смесь растворов.
  • Готовить впрок раствор иодида калия нет смысла — его нужно использовать свежеприготовленным. При хранении в растворе иодид будет разрушаться, и в итоге давать заниженный показатель активного хлора.
  • Добавление кислоты до внесения раствора иодида приведет к потере определенной доли свободного хлора. Поэтому важно соблюдать упомянутый мной порядок: сначала иодид, потом кислота.
  • Титрование без добавления крахмала. Человеческий глаз слабо чувствителен к изменениям желтого цвета, что может привести к ошибкам и низкой точности полученных результатов.
  • Слишком раннее добавление крахмала приведет к необратимой реакции крахмала с йодом (образование красноватой окраски) и вам попросту не удастся отследить конец реакции. Добавляем крахмал когда цвет раствора соломенный (светло-желтый), а не красноватый.
  • Использование старого тиосульфата натрия. Этот реактив в растворе склонен к разложению (поэтому его нужно хранить в темной бутылке, вдали от солнечных лучей). Как вариант, либо каждый раз готовить свежий раствор, либо проверять существующий и вносить соответствующие поправки (первое — рекомендуется).

Во время нашего титрования подсчитываем количество капель, которое пошло на нейтрализацию гипохлорита и рассчитываем массовую концентрацию активного хлора по формуле:

Х=(Объем тиосульфата*0,003545*250*1000)/100.

для фанатов всего американского :)

Все реактивы, за исключением уксусной кислоты — готовятся по идентичному ГОСТ-овскому методу (п.2-п.4 основной методики). Уксусная кислота (=замена серной кислоты из п.1) для «титрования по американски» готовится растворением 500 мл ледяной уксусной кислоты в 500 мл воды.
Подготовка пробы: отбираем 25 мл исследуемого гипохлорита натрия, переносим в 250 мл колбу/стакан и взвешиваем на весах с точностью до 0,01 грамма. Затем доводим дистиллированной водой до метки в 250 мл. Хорошо перемешиваем. Затем отбираем из этой колбы/стакана 10 мл раствора и переносим в новую колбу/стакан на 250 мл. Добавляем туда 50 мл дистиллированной воды, мешаем, добавляем 25 мл 10% раствора иодида калия и опять мешаем. Раствор приобретает красно-коричневый цвет (см. картинку выше). Добавляем 10 мл нашего раствора уксусной кислоты. Опять мешаем 3-5 минут. Затем титруем, по каплям добавляя раствор 0,1 н. раствор тиосульфата натрия. Считаем объем тиосульфата, который на это идет. После того, как раствор приобретает соломенно-желтую окраску, добавляем 5 мл раствора крахмала и острожно, по капле добавляем в посиневший (см. картинку выше) раствор тиосульфат. Когда синий цвет исчез и раствор стал прозрачным — титрование закончено. Записываем потраченный объем тиосульфата натрия. Концентрация гипохлорита натрия рассчитывается по формуле:

% NaOCl = (Объем потраченного тиосульфата натрия*N*3,723722)/0,04*масса образца гипохлорита

N — нормальность раствора тиосульфата, у нас она 0,1

В результате титрования моих образцов получилось следующее (в скобках концентрация гипохлорита, которая считается по формуле: концентрация гипохлорита (NaOCl) = концентрация хлора*1,05:

образец 1. хлор 19.32 г/л = (NaOCl 20, 29 г/л) = 2,029 % раствор
образец 2. хлор 5.67 г/л = (NaOCl 5, 96 г/л) = 0,596 % раствор
образец 3. хлор 32.26 г/л = (NaOCl 33, 87 г/л) = 3,387 % раствор
образец 4. хлор 21.27 г/л = (NaOCl 22, 33 г/л) = 2,233 % раствор
образец 5. хлор 20.74 г/л = (NaOCl 21, 76 г/л) = 2,176 % раствор
образец 6. хлор 18.97 г/л = (NaOCl 19, 91 г/л) = 1,991 % раствор
образец 7. хлор 14.18 г/л = (NaOCl 14, 89 г/л) = 1,489 % раствор

Т.е. если считать что крайняя «короноубойная» концентрация гипохлорита натрия = 0,5%, то выходит что растворы нужно разбавлять в: 4 раза (средство 1, средство 6), 4,4 раза (средство 5) 4,5 раза (средство 4), в 7 раз нужно разбавлять средство 3. Средство 7 разбавляем в 3 раза, а средство 2 — вообще разбавлять не нужно (вот вам и прозрачная тара). Напоследок — фото с победителем:

Гомельский ОДО БУДМАШ! Хабра-привет вам и respect за вашу продукцию :).

На закуску покажу как полученные экспериментальные данные коррелируют с писаниной на этикетке:

образец 1. «гипохлорит натрия – 30% и более» = 2,029 %
образец 2. «гипохлорит натрия (5% или более, но не менее 15%) = 0,596 %
образец 3. «гипохлорит натрия 30 (%) и более» = 3,387 %
образец 4. «гипохлорит натрия – 30% и более» = 2,233 %
образец 5. «гипохлорит натрия – 5% и более, но менее 15%» = 2,176 %
образец 6. «<30% натрия гипохлориД» = 1,991 %
образец 7. «15% или более, но менее 30% натрия гипохлорит» = 1,489 %

Ответ — никак. Полный рандом. Так что здесь совет даже не «Доверяй, но проверяй!», а просто «Сразу проверяй, проверяй, проверяй!»

Что ж делать тем, кому титрование не по душе (хотя имхо — это самый простой и доступный даже в далекой деревне вариант, знай себе, только капли считай). Таким людям могут помочь специальные тест-полоски Дезиконт-ГН-01 (индикаторные полоски для экспресс-контроля концентраций рабочих растворов дезинфицирующего средства «Гипохлорит натрия»). Которые найти наверное гораздо сложнее, чем этанол в эпоху пандемии коронавируса :)

Можно попробовать прикинуть определить концентрацию и по температуре замерзания (чем она ниже — тем концентрированней гипохлорит).

Можно измерить поверхностное натяжение, вязкость или проводимость раствора (TDS-метром с алиэкспресс, ага). Для 1% раствора NaOCl поверхностное натяжение = 75 дин/см, вязкость = 0,968 сантипуаз, проводимость = 65,5 миллисименс. Но корреляции на большую/меньшую концентрацию оооччееень условны и зависят от множества факторов.

Некоторым подспорьем, в случае отсутствия реагентов для титрования может оказаться сводная таблица корреляции плотности/избытка щелочи с концентрацией гипохлорита (правда только в случае, если концентрация >4%, что в наших краях возможно только если покупать промышленный гипохлорит используемый для нужд водоканалов, ибо белизна — сами видите, какая белизна):

Кстати, допустим вы определились с необходимой для дезинфекции концентрацией, и с концентрацией купленной белизны, но… Но внезапно не знаете как развести ваше средство (фантастический, имхо, сценарий, но мало ли что, мы рождены ж чтоб сказку сделать былью). Для решения такой задачи вам понадобится пойти по ссылке «калькулятор разбавления растворов» и вписать туда нужные цифры. В качестве примера, возьмем нашего победителя, 1 литр белизны с концентрацией гипохлорита натрия 3,387 % от гомельского Будмаш и разведем до 0,5%, чтобы «помыть полы от коронавируса». Калькулятор нам пишет — нужно добавить 5,774 литра воды («растворителя»).

Как видите, ничего сложного. Обеззараживайтесь! :)

Краткие выводы

  • Гипохлорит натрия — это замечательный многофункциональный дезинфицирующий (и даже моющий) агент, это «химический швейцарский нож». Пригодиться он может не только в случае коронавируса, но и при обеззараживании питьевой воды, для удаления плесени и грибков и даже для удаления чайного налета с кружек. Но стоит помнить, что гипохлорит натрия и хлорсодержащие соединения проявляют наибольшую активность только в щелочной среде
  • При работе с гипохлоритом стоит использовать не только перчатки, но и угольные респираторы (особенно для новомодных гелей и т.п., выдающих потенциально канцерогенные пары)
  • На этикетках продающихся в магазинах отбеливателей пишут лишь бы что (надеюсь, коронавирус это исправит). И в случае дефицита дезсредств — надеяться можно только на свою голову и инструкцию из статьи. Пока же, чемпион по содержанию NaOCl в Беларуси — Белизна гомельского завода Будмаш.
  • Раздражаюший запах хлора с предметов (после протирания/орошения гипохлоритом) можно убрать а)проветриванием б)обработкой растворами тиосульфата натрия, сульфита натрия, гидросульфита натрия или перекиси водорода.

Disclaimer: вся информация, изложенная в статье, предоставлена сугубо с информационными целями и не является прямым призывом к действию. Все манипуляции с химическими реактивами и оборудованием вы проводите на свой страх и риск. Автор не несет никакой ответственности за небрежное обращение с агрессивными растворами, безграмотность, отсутствие базовых школьных знаний и т.п. Если не чувствуете в себе уверенности понять написанное — попросите проконтролировать ваши действия родственника/друга/знакомого который имеет хотя бы какое-то техническое образование (=«в школе неплохо учился»). Постарайтесь использовать СИЗ и максимально соблюдать технику безопасности. И да,

обязательно убирайте домашних животных

во время обработки! И если сами не моете свои руки 0,5% гипохлоритом натрия, то не делайте это и для лап своей собаки!

На этом все! Традиционно, предлагаю подписаться на мой научно-технический канал и подключаться к обсуждению!

Грантовая поддержка исследования

Фактически, в роли «научного грантодателя» для этой статьи выступают мои «меценаты» с Patreon. Благодаря им все и пишется. Поэтому и ответ они могут получить раньше всех других, и черновики увидеть, и даже предложить свою тему статьи. Так что, если интересно то, о чем я пишу и/или есть что сказать — поспешите стать моим «патроном» (картинка кликабельна):

Список использованных источников

• Ronco, C. Mishkin, G.J. Disinfection By Sodium Hypochlorite Dialysis Applications/Nephrology, 2007, Vol. 154.
• Jeffrey M. Levine Dakin’s Solution: Past, Present, and Future /Advances in Skin & Wound Care: The Journal for Prevention and Healing, 2013,volume 26, issue 9, pages 410–414
• D. N. Herndon, and M. C. Robson Bactericidal and Wound-Healing Properties of Sodium Hypochlorite Solutions: The 1991 Lindberg Award/Journal of Burn Care & Rehabilitation, 1991, volume 12, issue 5, pages 420–424.
• L. Wang; et al. Hypochlorous Acid as a Potential Wound Care Agent/Journal of Burns and Wounds, 2007, 6: e5
• Sandin, Rasmus K. B. Karlsson, and Ann Cornell Catalyzed and Uncatalyzed Decomposition of Hypochlorite in Dilute Solutions/Industrial Engineering Chemical Research, 2015, volume 54, issue 15, pp. 3767–3774.
• Daniele S. Lantagne Sodium hypochlorite dosage for household and emergency water treatment/ e-Journal AWWA. 2008, 100 (8).
• Rutala, William A., Weber, David J. Guideline for Disinfection and Sterilization in Healthcare Facilities» (PDF). www.cdc.gov. [2008]
• J. P. Heggers, J. A. Sazy, B. D. Stenberg, L. L. Strock, R. L. McCauley, D. N. Herndon, and M. C. Robson Bactericidal and Wound-Healing Properties of Sodium Hypochlorite Solutions: The 1991 Lindberg Award»/Journal of Burn Care & Rehabilitation, 1991, volume 12, issue 5, pp. 420–424.
Root Canal Irrigants and Disinfectants. Endodontics: Colleagues for Excellence. Published for the Dental Professional Community by the American Association of Endodontists. 2011. —
• Hülsmann, M.; Hahn, W. Complications during root canal irrigation – literature review and case reports» (PDF). International Endodontic Journal. 2000, 33 (3): 186–193. —
• Odabasi, Mustafa Halogenated Volatile Organic Compounds from the Use of Chlorine-Bleach- Containing Household Products/Environmental Science & Technology. 42 (5): 1445–1451.
• Jones, F.-L. Chlorine poisoning from mixing household cleaners/J. Am. Med. Assoc. 1972, 222 (10)
• Minimizing Chlorate Ion Formation in Drinking Water when Hypochlorite is the Chlorinating Agent, American Water Works Association (AWWA) Research Foundation, G. Gordon and L. Adam, Miami University, Oxford, OH & B. Bubnis, Novatek, Oxford
• Emergency Response Plans for Chlor-Alkali, Sodium Hypochlorite, and Hydrogen Chloride Facilities, ed. 7; Pamphlet 64; The Chlorine Institute: Arlington, VA, 2014.

Автор выражает благодарность своему главному ассистенту — научному сотруднику Юстыне за помощь в испытаниях беларуских гипохлоритов и моей украинской parteigenosse Саше aka infiltree за ____ (впиши сама, ок?) :).

Благодарю всех администраторов своего канала, которые провели (и проводят даже сейчас) огромную разьяснительную работу, с невероятной выдержкой, раз за разом объясняя людям какие СИЗ можно использовать, чем дезинфицировать, какой нужен спирт, даже какого размера вирион коронавируса. Ребята — S Sh, Воля, O! Пусть мы не заметны в этом информационном шуме — низкий вам поклон от steanlab. Хотя бы со страниц хабра! В это тяжелое время —Vivat комьюнити LAB-66!

Благодарю всех читателей, которые поддерживают наш канал своими донатами! Без вас ничего бы не вышло!!! Надеюсь я не слишком затянул с написанием, и правильную Белизну еще можно будет найти в магазинах.

Сергей Бесараб (Siarhei Besarab)

Важно!

Если информация из статьи пригодилась вам в жизни, то еще не поздно:

Стать спонсором и поддержать канал/автора (=«на реактивы»)!
Перевод Киви (QIWI) 79176005394
ЯндексДеньги: 410018843026512 (перевод на карту)
WebMoney: 650377296748
BTC: 3QRyF2UwcKECVtk1Ep8scndmCBoRATvZkx
Ethereum (ETH): 0x3Aa313FA17444db70536A0ec5493F3aaA49C9CBf
Patreon — steanlab

Group
Группировочное наименование


Оглавление

  • Фармакологическое действие
  • Фармакокинетика
  • Показания препарата
  • Режим дозирования
  • Побочное действие
  • Противопоказания к применению
  • Особые указания
  • Лекарственное взаимодействие

Входит в состав препаратов:
список

Фармакологическое действие

Неорганическое соединение, соль хлорноватистой кислоты. Оказывает выраженное бактерицидное, фунгицидное, вирулицидное действие. Эффективность снижается в присутствии белка, сыворотки и цельной крови.

Фармакокинетика

Натрия гипохлорит разрушается почти мгновенно при контакте с кровью и компонентами крови, поэтому не ожидается, что он будет обнаруживаться в крови.

Показания активного вещества
НАТРИЯ ГИПОХЛОРИТ

В качестве антисептического и дезинфицирующего средства: обработка ран, язв, ожогов; дезинфекция кожи и слизистых оболочек (в т.ч. полости рта и глотки), включая дезинфекцию наружных половых органов.

Режим дозирования

Применяют наружно в виде орошений, наложения влажных повязок, компрессов, тампонов, турунд для антисептической обработки кожи, слизистых оболочек, ран.

Частота смены повязок — 1 раз/сут. При гнойных ранах с обильным отделяемым повязки меняют каждые 2-3 часа.

Продолжительность наложения компрессов не должна превышать 2 часов.

Побочное действие

Возможно: аллергические реакции, чувство жжения в месте аппликации.

Противопоказания к применению

Повышенная чувствительность к натрия гипохлориту, к хлорсодержащим соединениям, детский возраст до 12 лет.

Применение при беременности и кормлении грудью

При необходимости применения при беременности и в период грудного вскармливания следует тщательно оценить ожидаемую пользу терапии для матери и возможный риск для плода и грудного ребенка.

Применение у детей

Противопоказано применению у детей в возрасте до 12 лет.

Особые указания

С осторожностью применять на больших поверхностях кожи, под окклюзионными повязками.

Следует избегать попадания данного средства в глаза.

Данное средство не используется для обработки медико-хирургических инструментов.

Лекарственное взаимодействие

Следует избегать одновременного или последовательного применения других антисептических средств или мыла без предварительного тщательного промывания обрабатываемого участка (возможно снижение эффективности данного средства).

Понравилась статья? Поделить с друзьями:

Новое и полезное:

  • Гидрохлорид натрия для ингаляций инструкция
  • Гидрохлорид натрия для бассейна инструкция по применению
  • Гидрохлорид лоперамида инструкция по применению капсулы взрослым от поноса
  • Гидрохлорид кальция инструкция по применению
  • Гидрохит проникающий инструкция по применению

  • 0 0 голоса
    Рейтинг статьи
    Подписаться
    Уведомить о
    guest

    0 комментариев
    Старые
    Новые Популярные
    Межтекстовые Отзывы
    Посмотреть все комментарии