Гетеродинный индикатор резонанса для определения резонансной частоты колебательного контура усилителя радиочастоты, элемента антенны радиопередатчика или иной активной колебательной системы обычно используют резонансный волномер. Такой прибор содержит колебательный контур, состоящий из калиброванной катушки индуктивности и образцового конденсатора переменной емкости, снабженного градуированной шкалой. Если колебательную систему связать индуктивно с контуром волномера и перестраивать его по частоте, добиваясь возникновения в нем максимального напряжения радиочастоты, то по шкале волномера можно определить резонансную частоту исследуемой колебательной системы.
В радиолюбительской практике для измерения резонансной частоты пассивной колебательной системы чаще всего применяют гетеродинный индикатор резонанса — ГИР. Он объединяет в себе резонансный волномер и маломощный генератор калиброванной радиочастоты. Колебательный контур волномера ГИРа является одновременно и контуром его гетеродина. С помощью такого измерительного прибора несложно определить резонансную частоту колебательного контура, отрезков соединительных линий, элементов антенн коротковолновых радиостанций. ГИР, кроме этого, можно использовать и как сигнал-генератор.
Гетеродинный индикатор резонанса принципиальная схема приведена на рис.
Его гетеродин выполнен на полевом транзисторе VT1, включенном по схеме с общим истоком. Такой транзистор обеспечивает прибору значительно большую стабильность частоты, чем биполярный. Диод VD1, подсоединенный к выводам затвора и истока транзистора, улучшает форму генерируемого напряжения, приближая ее к синусоидальной. Без диода положительная полуволна тока стока станет искажаться из-за увеличения коэффициента усиления транзистора с повышением напряжения на затворе, что неизбежно приводит к появлению четных гармоник в спектре сигнала гетеродина. Резистор R5 ограничивает ток стока полевого транзистора.
Колебательный контур прибора образуют сменная катушка L1, подключаемая к разъему X1, блок конденсаторов переменной емкости С1 и соединенные с ним последовательно конденсаторы С2, СЗ. Переключают прибор на работу в одном из пяти диапазонов измерения (3…6, 6…10, 8…15,13…25 и 24…35 МГц) включением катушки L1 соответствующей индуктивности.
Через конденсатор С5 напряжение радиочастоты поступает на вход высокочастотного вольтметра-индикатора, состоящего из детектора, диоды VD2 и VD4 которого включены по схеме удвоения напряжения, и усилителя постоянного тока на транзисторе VT2 с микроамперметром РА1 в коллекторной цепи. Диод VD3 стабилизирует образцовое напряжение на диодах VD2, VD4, тем самым повышая чувствительность детектора и стабильность работы усилителя. Переменным резистором R3, объединенным с выключателем питания SA1, устанавливают стрелку микроамперметра РА1 в исходное положение. Дроссель L2 — элемент развязки гетеродина от источника питания по высокой частоте.
Источником питания прибора может быть встроенная в него батарея напряжением 3…9 В (предпочтение следует отдать батарее «Корунд» или аккумуляторной 7 Д-0,1) или внешний сетевой блок питания с таким же выходным напряжением.
В описываемом ГИРе нет дополнительного стабилизатора питающего напряжения, поэтому при работе с ним необходимо пользоваться источником с одним и тем же значением напряжения постоянного тока.
Внешний вид прибора показан в заголовке статьи, а монтаж деталей в корпусе — на рис.
Его корпусом служит латунная хромированная коробка размерами 120x70x45 мм с плотно закрывающейся крышкой. Блок конденсаторов переменной емкости С1, индикатор РА1 и переменный резистор R3 размещены на лицевой стенке корпуса. Конденсаторы С2 и СЗ смонтированы непосредственно на выводах секций блока КПЕ и гнездах разъема X1. Остальные детали, кроме батареи питания, смонтированы на печатной плате (рис.), выполненной из фольгированного стеклотекстолита.
Блок КПЕ, использованный в ГИРе, от малогабаритного радиоприемника «Селга». Конденсаторы С2 и СЗ — КС0-1, С5— КД, С9 и С10—оксидные К52-1Б, остальные — КМ-5. Все постоянные резистора типа МЛТ, переменный R3 с выключателем питания SA1 — СПЗ-4вМ. Диоды КД512А (VD1), КД521Б (VD3) можно заменить на любые другие кремниевые 0,12. Катушка готового дросселя пропитана клеем “Суперцемент”.
Намоточные данные контурной катушки пяти диапазонов измерения приведены в таблице.
Каркасами катушек первых трех диапазонов могут служить отрезки полиэтиленовой изоляции коаксиального кабеля РК-106. Катушки двух последних диапазонов бескаркасные. Катушку диапазона 24…35 МГц желательно намотать медным посеребренным проводом диаметром 1 мм.
Конструктивно каждая контурная катушка размещена в карболитовом корпусе от кварцевого резонатора. Между основанием корпуса и защитным колпаком зажат согнутый из тонкого алюминия уголок, к которому приклеена шкала соответствующего диапазона измерения. Делать одну общую шкалу для всех диапазонов нецелесообразно — при различной плотности перестройки применяемых контуров это затруднит пользование прибором.
На торцевой стенке корпуса укреплена двухгнездная колодка кварцедержателя, в которую и вставляют штыри контурной катушки. Шкала при этом оказывается под ручкой блока КПЕ с указательной стрелкой.
Монтаж высокочастотных цепей и соединений выполнен голым медным посеребренным проводом диаметром 1 мм, низкочастотных — проводом МГШВ.
Налаживание ГИРа
начинают с тщательной проверки правильности всех соединений. Затем в гнезда разъема X1 вставляют контурную катушку любого из диапазонов измерения и включают питание. При этом стрелка микроамперметра РА1 должна отклониться от нулевой отметки. Переменным резистором R3 ее устанавливают на крайнюю правую отметку шкалы. Затем, вращая ручку блока КПЕ из одного крайнего положения в другое, наблюдают небольшое перемещение стрелки прибора. При минимальной емкости КПЕ стрелка должна отклоняться больше вправо, что объясняется повышением добротности контура с повышением частоты генератора.
Шкалы всех диапазонов измерения градуируют, пользуясь, например, калиброванным приемником.
Если в каких-то участках диапазона необходимо повысить точность шкалы, то параллельно катушке подключают слюдяной конденсатор постоянной емкости. Индуктивность контурной катушки и емкость контура с учетом дополнительного конденсатора можно рассчитать по формуле LC=25330/f2 где С — в пикофарадах, L — в микрогенри, f — в мегагерцах.
Определяя резонансную частоту исследуемого контура, к нему возможно ближе подносят катушку ГИРа и, медленно вращая ручку блока КПЕ, следят за показаниями индикатора. Как только его стрелка качнется влево, замечают соответствующее положение указателя на ручке КПЕ. При дальнейшем вращении ручки настройки стрелка прибора возвращается в исходное положение. Та отметка на шкале, где наблюдается максимальный «провал* стрелки, как раз и будет соответствовать резонансной частоте исследуемого контура.
Г. Гвоздицкий по материалам журнала Радио.
Автор | Сообщение |
---|---|
Заголовок сообщения: Инструкция от ГИР-2 гетеродинный индикатор резонанса
|
|
|
В продаже паспорт — руководство (19 страниц) по эксплоатации на прибор ГИР-2 ( такой как на фото) со схемой, намоточными данными сменных катушек, градуировочными таблицами. Самого прибора уже нет. |
Вернуться к началу |
|
DrStefan |
Заголовок сообщения: Re: Инструкция от ГИР-2 гетеродинный индикатор резонанса
|
|
ПРОДАНО. Закрываю. |
Вернуться к началу |
|
Простой гетеродинный индикатор резонанса.
С замкнутой накоротко катушкой L2 ГИР позволяет определять резонансную частоту от 6 МГц
до 30 МГц. С подключенной катушкой L2 диапазон измерения частоты — от 2,5 МГц до 10 МГц.
Резонансную частоту определяют, вращая ротор С1 и, наблюдая на экране осциллографа
изменение сигнала.
Генератор сигналов высокой частоты.
Генератор сигналов высокой частоты предназначен для проверки и налаживания различных высокочастотныхустройств. Диапазон
генерируемых частот 2 ..80 МГц разбит на пять поддиапазонов:
I — 2-5 МГц
II — 5-15 МГц
III — 15 — 30 МГц
IV — 30 — 45 МГц
V — 45 — 80 МГц
Максимальная амплитуда выходного сигнала на агрузке 100 Ом составляет около 0,6 В. В генераторе предусмотрена плавная регулировка
амплитуды выходного сигнала, а также возможность
амплитудной и частотной модуляции выходного сигнала от внешнего источника. Питание генератора осуществляется от внешнего источника
постоянного напряжения 9… 10 В.
Принципиальная схема генератора приведена на рисунке. Он состоит из задающего генератора ВЧ, выполненного на транзисторе V3, и
выходного усилителя на транзисторе V4. Генератор выполнен по схеме индуктивной трехточки. Нужный поддиапазон выбирают переключателем S1, а перестраивают генератор конденсатором переменной емкости
С7. Со стока транзистора V3 напряжение ВЧ поступает на первый затвор
полевого транзистора V4. В режиме ЧМ низкочастотное напряжение поступает на второй затвор этого транзистора.
Частотная модуляция осуществляется с помощью варикапа VI, на который подается напряжение НЧ в режиме FM. На выходе генератора
напряжение ВЧ регулируется плавно резистором R7.
Генератор собран в корпусе, изготовленном из одностороннего фольгироваиного стеклотекстолита толщиной 1,5 мм., размерами 130X90X48
мм. На передней панели генератора установлены
переключатели S1 и S2 типа П2К, резистор R7 типа ПТПЗ-12, конденсатор переменной емкости С7 типа КПЕ-2В от радиоприемника
«Альпинист-405», в котором используются обе секции.
Катушка L1 намотана на ферритовом магнитопроводе М1000НМ (К10Х6Х Х4,б) и содержит (7+20) витков провода ПЭЛШО 0,35. Катушки L2 и
L3 намотаны на каркасах диаметром 8 и длиной 25 мм с карбонильными подстроенными сердечниками диаметром 6 и длиной 10 мм. Катушка L2 состоит из 5+15 витков провода ПЭЛШО 0,35, L3 — из 3 + 8
витков. Катушки L4 и L5 бескаркасные
диаметром 9 мм намотаны проводом ПЭВ-2, 1,0. Катушка L4 содержит 2+4 витка, a L5— 1 + 3 витка.
Налаживание генератора начинают с проверки монтажа Затем подают напряжение питания и с помощью ВЧ вольтметра проверяют наличие
генерации на всех поддиапазонах. Границы
диапазонов уточняют с помощью частотомера, и при необходимости подбирают конденсаторы С1—С4(С6), подстраивают сердечниками катушек
L2, L3 и изменяют расстояние между витками катушек L4 и L5.
Мультиметр-ВЧ милливольтметр.
Сейчас самым доступным и самым распространенным прибором радиолюбителя стал цифровой мультиметр серии М83х.
Прибор предназначен для общих измерений и потому у него нет специализированных функций. Между тем, если вы занимаетесь радиоприемной или передающей техникой вам нужно измерять
небольшие ВЧ напряжения (гетеродин, выход каскада УПЧ, и т. д.), настраивать контура. Для этого мультиметр нужно дополнить несложной выносной измерительной головкой, содержащей
высокочастотный детектор на германиевых диодах. Входная емкость ВЧ-головки менее 3 пФ., что позволяет её подключать прямо к контуру гетеродина или каскада. Можно использовать диоды Д9, ГД507 или
Д18, диоды Д18 дали наибольшую чувствительность (12 мВ). ВЧ-головка собрана в экранированном корпусе, на котором расположены клеммы для подключения щупа или проводников к измеряемой схеме. Связь
с мультиметром при помощи экранированного телевизионного кабеля РК-75.
Измерение малых емкостей мультиметром
Многие радиолюбители используют в своих лабораториях мультиметры, некоторые из них позволяют измерять и емкости конденсаторов. Но как показывает практика, этими приборами нельзя замерить емкость
до 50 пф, а до 100 пф – большая погрешность. Для того, чтобы можно было измерять небольшие емкости, предназначена эта приставка. Подключив приставку к мультиметру, нужно выставить на индикаторе
значение 100пф, подстраивая С2. Теперь при подключении конденсатора 5 пф прибор покажет 105. Остается только вычесть цифру 100
Искатель скрытой проводки
Определить место прохождения скрытой электрической проводки в стенах помещения поможет сравнительно простой искатель, выполненный на трех транзисторах (рис. 1). На двух биполярных транзисторах
(VT1, VT3) собран мультивибратор, а на полевом (VT2) — электронный ключ.
Принцип действия искателя основан на том, что вокруг электрического провода образуется электрическое поле его и улавливает искатель. Если нажата кнопка выключателя SB1, но электрического поля в
зоне антенного щупа WA1 нет либо искатель находится далеко от сетевых проводов, транзистор VT2 открыт, мультивибратор не работает, светодиод HL1 погашен. Достаточно приблизить антенный щуп,
соединенный с цепью затвора полевого
транзистора, к проводнику с током либо просто к сетевому роводу, транзистор VT2 закроется, шунтирование базовой цепи транзистора VT3 прекратится и мультивибратор вступит в действие. Начнет
вспыхивать светодиод. Перемещая антенный щуп вблизи стены, нетрудно проследить за пролеганием в ней сетевых проводов.
Прибор позволяет отыскать и место обрыва фазного провода. Для этого нужно включить в розетку нагрузку, например настольную лампу, и перемещать антенный щуп прибора вдоль проводки. В месте, где
светодиод перестает мигать, нужно искать неисправность.
Полевой транзистор может быть любой другой из указанной на схеме серии, а биполярные — любые из серии КТ312, КТ315. Все
резисторы — МЛТ-0,125, оксидные конденсаторы — К50-16 или другие малогабаритные, светодиод — любой из серии АЛ307, источник питания батарея «Крона» либо аккумуляторная батарея напряжением 6…9
В, кнопочный выключатель SB1 — КМ-1 либо аналогичный. Часть деталей прибора смонтирована на плате (рис. 2) из одностороннего фольгированного стеклотекстолита. Корпусом искателя может стать
пластмассовый пенал (рис. 3)
для хранения школьных счетных палочек. В его верхнем отсеке крепят плату, в нижнем располагают батарею. К боковой стенке верхнего отсека прикрепляют выключатель и светодиод, а к верхней стенке —
антенный щуп. Он представляет собой кониче-
ский пластмассовый колпачок, внутри которого находится металлический стержень с резьбой. Стержень крепят к корпусу гайками, изнутри корпуса надевают на стержень металлический лепесток, который
соединяют гибким монтажным проводником с резистором R1 на плате. Антенный щуп может быть иной конструкции, например, в виде петли из отрезка толстого (5 мм) высоковольтного провода, используемого
в телевизоре. Длина
отрезка 80…100 мм, его концы пропускают через отверстия в верхнем отсеке корпуса и припаивают к соответствующей точке платы. Желаемую частоту колебаний мультивибратора, а значит, частоту
вспышек светодиода можно установить подбором резисторов RЗ, R5 либо конденсаторов С1, С2. Для этого нужно временно отключить от резисторов RЗ и R4 вывод истока по-
левого транзистора и замкнуть контакты выключателя. Если при поиске места обрыва фазного провода чувствительность прибора окажется чрезмерной, ее нетрудно снизить уменьшением длины антенного щупа
или отключением проводника, соединяющего щуп с печатной платой. Искатель может быть собран и по несколько иной схеме (рис. 4) с использованием биполярных транзисторов разной структуры — на них
выполнен генератор. Полевой же транзистор (VT2) по-прежнему управляет работой генератора при попадании антенного щупа WA1 в электрическое поле сетевого провода.
Транзистор VT1 может быть серии
КТ209 (с индексами А-Е) или КТ361,
VT2 — любой из серии КП103, VT3 — любой из серий КТ315, КТ503, КТ3102. Резистор R1 может быть сопротивлением 150…560 Ом, R2 — 50 кОм…1,2 МОм , R3 и R4 с отклонением от указанных на схеме
номиналов на ±15%, конденсатор С1 — емкостью 5…20 мкФ. Печатная плата для этого варианта искателя меньше по габаритам (рис. 5), но конструктивное оформление практически такое же, что и
предыдущего варианта.
Любой из описанных искателей можно применять для контроля работы системы зажигания автомобилей. Поднося антенный щуп искателя к высоковольтным проводам, по миганию светодиода определяют цепи, на
которые не поступает высокое напряжение, или отыскивают неисправную свечу зажигания.
Журнал«Радио»,1991,№8,с.76
Гетеродинный индикатор резонанса
Не совсем обычная схема ГИРа изображена на рисунке. Отличие-в выносном витке связи. Петля L1 выполнена из медного провода диаметром 1,8 мм, диаметр петли около 18 мм, длина ее выводов 50 мм.
Петля вставляется в гнезда, расположеные на торце корпуса. L2 намотана на стандартном ребристом корпусе и содержит 37 витков провода диаметром 0,6 мм с отводами от 15, 23, 29 и 32-го витка
Диапазон- от 5,5 до 60 мгц
Простой измеритель емкости
Измеритель емкости позволяет измерять емкость конденсаторов от 0,5 до 10000пФ.
На логических элементах ТТЛ D1.1 D1.2 собран мультивибратор, частота которого зависит от сопротивления резистора включенного между входом D1.1 и выходом D1.2. Для каждого предела измерения
устанавливается определенная частота при помощи S1, одна секция которого переключает резисторы R1-R4 , а другая конденсаторы С1-С4.
Импульсы с выхода мультивибратора поступают на усилитель мощности D1.3 D1.4 и далее через реактивное сопротивление измеряемого конденсатора Сх на простой вольтметр переменного тока на
микроамперметре Р1.
Показания прибора зависят от соотношения активного сопротивления рамки прибора и R6, и реактивного сопротивления Сх. При этом Сх зависит от емкости (чем больше, тем меньше сопротивление).
Калибровку прибора производят на каждом пределе при помощи подстроечных резисторов R1-R4 измеряя конденсаторы с известными емкостями. Чувствительность индикатора прибора можно установить подбором
сопротивления резистора R6.
Литература РК2000-05
Простой функциональный генератор
В радиолюбительской лаборатории обязательным атрибутом должен быть функциональный генератор. Предлагаем вашему вниманию функциональный генератор, способный вырабатывать синусоидальный,
прямоугольный, треугольный сигналы при высокой стабильности и точности. При желании, выходной сигнал может быть модулированным.
Диапазон частот разделен на четыре поддиапазона:
1. 1 Гц-100 Гц,
2. 100Гц-20кГц,
3. 20 кГц-1 МГц,
4. 150KHz-2 МГц.
Точно частоту можно выставить, используя потенциометры P2 (грубо) и P3(точно)
регуляторы и переключатели функционального генератора:
P2 — грубая настройка частоты
P3 — точная настройка частоты
P1 — Амплитуда сигнала (0 — 3В при питании 9В)
SW1 — переключатель диапазонов
SW2 — Синусоидальный/треугольный сигнал
SW3 — Синусоидальный(треугольный)/меандр
Для контроля частоты генератора сигнал можно снять непосредственно с вывода 11.
Параметры:
Синусоидальный сигнал:
Амплитуда: 0 — 3В при питании 9В
Искажения: менее 1% (1 кГц)
Неравномерность: +0,05 дБ 1 Гц — 100 кГц
Прямоугольный сигнал:
Амплитуда: 8В (без нагрузки) при питании 9В
Время нарастания: менее 50 нс (при 1 кГц)
Время спада: менее 30ns (на 1 кГц)
Рассимметрия: менее 5%(1 кГц)
Треугольный сигнал:
Амплитуда: 0 — 3В при питании 9В
Нелинейность: менее 1% (до 100 кГц)
Защита сети от перенапряжения
Отношение емкостей C1 и составной С2 и С3 влияет на выходное напряжение. Мощности выпрямителя хватает для паралельного включения 2-3х реле типа РП21 (24в)
Генератор на 174ха11
На рисунке представлен генератор на микросхеме К174ХА11, частота которого управляется напряжением. При изменении емкости С1 от 560 до 4700пФ можно получить широкий диапазон частот, при этом
настройка частоты производится изменением сопротивления R4. Так например автор выяснил что, при С1=560пФ частоту генератора можно изменять при помощи R4 от 600Гц до 200кГц, а при емкости С1
4700пФ от 200Гц до 60кГц.
Выходной сигнал снимается с вывода 3 микросхемы с выходным напряжением 12В, автор рекомендует сигнал с выхода микросхемы подавать через токоограничивающий резистор с сопротивлением 300 Ом.
Измеритель индуктивности
Предлагаемый прибор позволяет измерять индуктивности катушек на трех пределах измерения — 30, 300 и 3000 мкГн с точностью не хуже 2% от значения шкалы. На показания не влияют собственная ёмкость
катушки и ее омическое сопротивление.
На элементах 2И-НЕ микросхемы DDI собран генератор прямоугольных импульсов, частота повторений которых определяется ёмкостью конденсатора C1, С2 или СЗ в зависимости от включенного предела
измерений переключателем SA1. Эти импульсы через один из конденсаторов С4, С5 или С6 и диод VD2 поступают на измеряемую катушку Lx, которая подключена к клеммам XS1 и XS2.
После прекращения очередного импульса во время паузы за счет накопленной энергии магнитного поля ток через катушку продолжает протекать в том же направлении через диод VD3, его
измерение осуществляется отдельным усилителем тока собранного на транзисторах Т1, Т2 и стрелочным прибором РА1. Конденсатор С7 сглаживает пульсации тока. Диод VD1 служит для привязки уровня
импульсов, поступающих на катушку.
При налаживании прибора необходимо использовать три эталонные катушки с индуктивностями 30, 300 и 3000 мкГн, которые поочередно подключаются вместо L1, и соответствующим переменным
резистором R1, R2 или R3 стрелка прибора устанавливается на максимальное деление шкалы. Во время эксплуатации измерителя достаточно выполнять калибровку переменным резистором R4 на пределе
измерения 300 мкГн, используя катушку L1 и включив выключатель SB1. Питание микросхемы производится от любого источника напряжением 4,5 — 5 В.
Расход тока каждого элемента питания составляет по 6 мА. Усилитель тока для миллиамперметра можно не собирать, а параллельно конденсатору С7 подключить микроамперметр со шкалой
50мкА и внутренним сопротивлением 2000 Ом. Индуктивность L1 может быть составной, но тогда следует расположить отдельные катушки взаимно перпендикулярно или как можно дальше друг от друга.
Для удобства монтажа все соединительные провода оснащены штекерами, а на платах установлены соответствующие им гнёзда.
Простой индикатор радиоактивности
Гетеродинный индикатор резонанса
Г.Гвоздицкий
Принципиальная схема предлагаемого ГИРа приведена на рис.1. Его гетеродин выполнен на полевом транзисторе VT1, включенном по схеме
с общим истоком. Резистор R5 ограничевает ток стока полевого транзистора. Дроссель L2 — элемент развязки гетеродина от источника питания по высокой частоте.
Диод VD1, подсоединенный к выводам затвора и истока транзистора, улучшает форму генерируемого напряжения, приближая ее к синусоидальной. Без диода положительная полуволна тока стока станет
искажаться из-за увеличения коэффициента усиления транзистора с повышением напряжения на затворе, что неизбежно приводит к появлению четных гармоник в спектре сигнала гетеродина
Через конденсатор С5 напряжение радиочастоты поступает на вход высоко¬частотного вольтметра-индикатора, состоящего из детектора, диоды VD2 и VD4 которого включены по схеме удвоения напряжения,
что повышает чувствительность детектора и стабильность работы усилителя постоянного токи на транзисторе VT2 с микроамперметром РА1 в коллекторной цели. Диод VD3 стабилизирует образцовое
напряжение на диодах VD2,VD4. Переменным резистором R3 объединенным с выключателем питания SА1, устанавливают стрелку микроамперметра РА1 в исходное положение на крайнюю правую отметку
шкалы
Если а каких-то участках диапазона необходимо повысить точность шкалы, то параллельно катушке подключайте слюдяной конденсатор постоянной емкости.
Вариант катушек, выполненных на каркасах из лабораторных пробирок для забора крови, показаны на фото (рис.2) и подбираются радиолюбителем на желаемый диапазон
Индуктивность контурной катушки и емкость контура с учетом дополнительного конденсатора можно рассчитать по формуле
LC=25330/f²
где С— в пикофарадах, L — в микрогенри, f — в мегагерцах.
Определяя резонансную частоту иследуемого контура, к нему возможно ближе подносят катушку ГИРа и медленно вращая ручку блока КПЕ, следят за показаниями индикатора. Как только его стрелка
качнется влево, отмечают соответствующее положение ручки КПЕ. При дальнейшем вращении ручки настройки стрелка прибора возвращается в исходное положение. Та отметка на шкале, где наблюдается
максимальный *провал* стрелки, как раз и будет соответстовать резонансной частоте исследуемого контура
В описываемом ГИРе нет дополнительного стабилизатора питающего напряжения, поэтому при работе с ним рекомендовано пользоваться источником с одним и тем же значением напряжения постоянного тока —
оптимально сетевым блоком питания со стабилизированным выходным напряжением.
Делать одну общую шкалу для всех диапазонов нецелесообразно из-за сложности такой работы. Тем более, что точность полученной шкалы при различной плотности перестройки применяемых контуров
затруднит пользование прибором.
Катушки L1 пропитаны эпоксидным клеем или НН88. На ВЧ диапазоны их желательно намотать медным посеребренным проводом диаметром 1,0 мм.
Конструктивно каждая контурная катушка размещена на основании распространенного разъема СГ-3. Он вклеен в каркас катушки.
Упрощенный вариант ГИРа
От ГИРа Г.Гвоздицкого отличается тем, о чем уже писалось в статье — наличие среднего вывода сменной катушки L1, применен переменный конденсатор фирмы «Тесла» с твердым диэлектриком, нет диода,
формирующего форму синусоидальную сигнала. Отсутствует выпрямитель-удвоитель напряжения ВЧ и УПТ, что снижает чувствительность прибора.
Из положительных сторон следует отметить наличие «растягивающих» отключаемых конденсаторов С1, С2 и простейший верньер, совмещенный с двумя переключающимися шкалами, которые
можно градуировать карандашом, питание включается кнопкой только в момент проведения измерений, что экономит батарею.
Сигнализатор радиационной опасности
На рисунке показана схема простого сигнализатора
бeта- и гама-излучения. Датчик — счетчик Гейгера СТС-5. Прибор питается от одного элемента «АА» на 1,5В. Ток потребления сигнализатора не более 8 мА. При работе прибора слышен треск и загорается
светодиод. При нормальном радиационном фоне щелчки и вспышки светодиода повторяются с периодом 1-5 секунд. При приближении к радиоактивному объекту щелчки увеличиваются, а при опасном фоне
сольются в сплошной треск.
Для питания счетчика Гейгера В1 требуется напряжение 400В, это напряжение вырабатывает источник на блокинг-генераторе на транзисторе VT1. Импульсы с повышающей обмотки Т1 выпрямляются
выпрямителем на VD3C2. Напряжение на С2 поступает на В1, нагрузкой которого является резистор R3. При прохождении через В1 ионизирующей частицы в нем возникает короткий импульс тока. Этот импульс
усиливается усилителем-формирователем импульсов на VT2VT3. В результате через F1-VD1 протекает более длительный и более сильный импульс тока — светодиод вспыхивает, а в капсюле F1 раздается
щелчок.
Счетчик Гейгера можно заменить любым аналогичным, F1 любой электромагнитный или динамический сопротивлением 50 Ом.
Т1 наматывается на ферритовом кольце с внешним диаметром 20 мм, первичная обмотка содержит 6+6 витков провода ПЭВ 0,2, вторичная 2500 витков провода ПЭВ 0,06. Между обмотками нужно проложить
изоляционный материал из лакоткани. Первой наматывают вторичную обмотку, на нее поверхность, равномерно, вторичную.
Прибор для измерения емкости
Прибор имеет шесть поддиапазонов,верхние пределы для которых равны соответственно 10пф, 100пф, 1000пф, 0,01мкф, 0,1мкф и 1мкф.
Отсчёт ёмкости производится по линейной шкале микроамперметра.
Принцип действия прибора основан на измерении переменного тока, протекающего через
исследуемый конденсатор. На операционном усилителе DA1 собран генератор прямоугольных импульсов. Частота повторения этих импульсов зависит от ёмкости одного из конденсаторов С1-С6 и положения
движка подстроечного резистора R5. В зависимости от поддиапазона, она меняется от 100Гц до 200кГц. Подстроечным резистором R1 устанавливаем симметричную форму колебаний (меандр) на выходе
генератора.
Диоды D3-D6, подстроечные резисторы R7-R11 и микроамперметр PA1 образуют измеритель переменного тока. Для
того,чтобы погрешность измерений не превышала 10% на первом поддиапазоне (ёмкость до10пФ),внутреннее сопротивление микроамперметра должно быть не более 3кОм.На остальных поддиапазонах паралельно
PA1 подключают подстроечные резисторы R7-R11.
Требуемый поддиапазон измерений устанавливают переключателем SA1. Одной группой контактов он переключает
частотозадающие конденсаторы С1-С6 в генераторе,другой — подстроечные резисторы в индикаторе. Для питания прибора необходим стабилизированный двуполярный источник на напряжение от 8 до 15В.
Номиналы частотозадающих конденсаторов С1-С6 могут отличаться на 20%, но сами конденсаторы должны иметь достаточно высокую температурную и временную стабильность.
Налаживание прибора производят в следующей последовательности. Сначала на первом поддиапазоне добиваются
симметричных колебаний резистором R1. Движок резистора R5 при этом должен быть в среднем положении. Затем, подключив к клеммам «Сх» эталонный конденсатор 10пф, подстроечным резистором R5
устанавливают стрелку микроамперметра на деление соответствующее ёмкости эталонного конденсатора (при использовании прибора на 100мка, на конечное деление шкалы).
После этого проверяют форму колебаний на выходе генератора и, при необходимости,ещё раз подстраивают
резисторы R1,R5. На остальных поддиапазонах калибровку прибора также производят по эталонным конденсаторам,используя для этого подстроечные резисторы R7-R11.
Поскольку переменное напряжение на выходе генератора двуполярное(практически,оно изменяется от +Uпит до
-Uпит),то измерять этим прибором ёмкость электролитических конденсаторов нельзя.
Приставка для измерения частоты контура
Приставка к частотомеру для определения частоты настройки контура и его предварительной настройки. Приставка работоспособна в диапазоне 400 кгц-30
мгц. Т1 и Т2 могут быть КП307, BF245
LY2BOK
———————-НА ГЛАВНУЮ———————
Гетеродинный
индикатор резонанса «ГИР-2» выпускался предположительно с 1980 года. Предназначен
для настройки приёмо-передающей аппаратуры в диапазоне частот 0,45-45 МГц.
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—