Пептобизма инструкция цена в аптеках

Фармакологическое действие

Противоязвенное и противодиарейное средство. Оказывает вяжущее и антацидное действие. Обладает противомикробной активностью в отношении Helicobacter pylori. Образует нерастворимое защитное покрытие в месте локализации язвы. Повышает устойчивость слизистой оболочки желудка к воздействию пепсина, соляной кислоты и ферментов. Повышает выработку слизи в желудке и улучшает ее защитные свойства.

Показания активного вещества
ВИСМУТА СУБСАЛИЦИЛАТ

Симптоматическое лечение диареи различного генеза (в т.ч «диареи путешественников»). Язвенная болезнь желудка и двенадцатиперстной кишки в фазе обострения. Хронический гастрит с нормальной или повышенной секреторной функцией в фазе обострения. Изжога, ощущение дискомфорта в эпигастральной области и другие диспептические симптомы.

Режим дозирования

Устанавливают индивидуально, в зависимости от применяемой лекарственной формы и возраста пациента.

Побочное действие

Со стороны пищеварительной системы: тошнота, рвота, запор.

Прочие: при длительном применении или приеме в высоких дозах — явления салицилизма, висмутовая энцефалопатия.

Противопоказания к применению

Кровоточащая язва желудка, тяжелые нарушения функции почек, беременность, лактация, повышенная чувствительность к висмута субсалицилату, а также к ацетилсалициловой кислоте и другим салицилатам.

Применение при беременности и кормлении грудью

Противопоказан к применению при беременности и в период лактации.

Применение при нарушениях функции почек

Противопоказан при тяжелых нарушениях функции почек. С осторожностью применяют при нарушении функции почек средней и легкой степени тяжести (повышен риск развития токсических эффектов висмута и салицилатов).

Применение у детей

Применяют у детей старше 3 лет.

Применение у пожилых пациентов

Возможно применение у пациентов пожилого возраста.

Особые указания

С осторожностью применяют при нарушении функции почек (повышен риск развития токсических эффектов висмута и салицилатов); у пациентов, принимающих антикоагулянты, гипогликемические или противоподагрические средства.

Если на фоне применения висмута субсалицилата диарея продолжается более 48 ч, необходимо уточнить диагноз.

На фоне лечения возможно окрашивание кала в темный цвет, а также незначительное потемнение языка.

Лекарственное взаимодействие

При одновременном применении уменьшается абсорбция антибиотиков группы тетрациклина и снижается их клиническая эффективность. Наблюдается уменьшение концентрации доксициклина в плазме крови после его в/в введения.

При одновременном применении отмечено некоторое уменьшение относительной биодоступности ципрофлоксацина. Полагают, что возможно незначительное уменьшение концентраций в плазме крови противомикробных средств производных хинолона.

Висмут (Bi) — относительно редкий элемент, обладающий не только металлическими свойствами, но и характеристиками, близкими к полупроводникам и изоляторам, поэтому иногда классифицируется как полуметалл или металлоид.

Bi (III) легко гидролизуется в водных растворах и имеет высокое сродство к кислороду, азоту и серосодержащими лигандам, Bi (V) является мощным окислителем в водном растворе и неустойчив в биологических системах [1].

Препараты висмута

Соединения висмута вошли в медицинскую практику со времен средневековья, а первый научный доклад о содержащем висмут препарате для лечения диспепсии был сделан в 1786 г. [1]. На сегодняшний день самое широкое применение соединения висмута нашли в гастроэнтерологии, а наиболее часто используемыми среди них являются висмута субсалицилат и коллоидный субцитрат (висмута трикалия дицитрат, ВТД) [2, 3] (табл. 1).

Сравнительная характеристика соединений висмута, применяемых при различной патологии ЖКТ

Висмута субсалицилат во многих странах используется в качестве безрецептурного препарата для быстрого купирования изжоги, тошноты и диареи.

Коллоидный висмута субцитрат нашел применение в первую очередь для лечения заболеваний, ассоциированных с хеликобактерной инфекцией, а также как пленкообразующий гастропротектор. Именно этот препарат представляет наибольший интерес с точки зрения фармакологических свойств и клинического применения.

Перспективным представляется применение радионуклидов висмута (например, 213Bi) для диагностики и лечения различных опухолей — лимфом, лейкемии [4, 5].

Висмута трикалия дицитрат

Взаимодействие со слизистой

На поверхности слизистой ВТД образует гликопротеин-висмутовые комплексы, по сути представляющие собой диффузионный барьер для HCl, который усиливается за счет дополнительного повышения вязкости пристеночной слизи [6, 7]. Этот процесс является рН-зависимым и ослабевает по мере повышения рН [8]. Если при нейтральном рН ВТД преимущественно находится в коллоидном состоянии, формируя структуры [Bi6O4(cit)4]6- и [Bi12O8(cit)8]12-, то при рН < 5 он быстро образует трехмерные полимерные преципитаты окси­хлорида и цитрата висмута, оптимум образования которых наблюдается при рН ≈ 3,5 [6, 9].

Распределение ВТД по слизистой желудка является неравномерным — значительная часть его обнаруживается в области дна язвы, а остальная распределяется по неповрежденной слизистой [l0]. В области поврежденной слизистой преципитаты имеют значительно большие размеры и формируют своеобразную «полимерную пленку», что, как предполагается, обеспечивает более выраженный защитный эффект [4]. Считается, что благодаря отрицательному заряду микропреципитаты висмута особенно активно осаждаются на пораженных участках слизистой, имеющих из-за большого количества белков положительный заряд. Образующиеся микропреципитаты могут проникать в микроворсинки и путем эндоцитоза попадать в клетки эпителия [11].

Одновременно под влиянием ВТД происходит перераспределение продукции муцинов — уровень кислых муцинов, повышенный в пораженном эпителии, снижается при одновременном возрастании количества нейтральных муцинов [12].

Влияние на активность пепсина

Исследования in vitro показали, что ВТД присуща антипепсиновая активность. В концентрации 25 и 50 г/л препарат (после преинкубации с желудочным соком при рН = 4) ингибировал протеолитическую активность пепсина (при рН = 2) соответственно на 29% и 39% [13]. У пациентов с язвой двенадцатиперстной кишки ВТД (120 мг 4 раза/день) уменьшал как базальную, так и стимулированную продукцию пепсина более чем на 30% [14].

Предполагается, что эти эффекты опосредованы как непосредственной инактивацией пепсина вследствие образования комплексов с висмутом, так и снижением активности главных клеток [15].

Связывание желчных кислот

Феномен связывания желчных кислот ВТД был описан после исследований in vitro, и до настоящего времени его клиническая значимость до конца не определена. Тем не менее, при рН = 2 ВТД связывает различные желчные кислоты, особенно гликохенодеоксихолевую (до 50%), резко теряя эту активность при рН = 4 [16].

Влияние на продукцию простагландинов и бикарбоната

Этот компонент механизма действия рассматривается как важный в реализации гастропротекторного действия ВТД и ускорении заживления язвенного дефекта. Дозозависимое увеличение продукции простагландина Е2 было показано в экспериментальных и клинических исследованиях [17, 18]. Так, у больных с язвенным поражением слизистой желудка после трех недель терапии ВТД концентрация простагландина Е2 в слизистой антрального отдела желудка увеличивалась на 54%, а в слизистой двенадцатиперстной кишки на 47% [18].

Одновременно с секрецией простагландинов возрастает и простагландинзависимая продукция бикарбоната, что увеличивает буферную емкость слизи [19, 20]. Этот эффект значительно снижается под влиянием нестероидных противовоспалительных средств.

Влияние на ультраструктуру слизистой

В исследовании M. G. Moshal и соавт. (1979) у больных с язвой двенадцатиперстной кишки применение ВТД в течение шести недель приводило к эпителизации дефекта с формированием нормального эпителия без изменения структуры микроворсинок (в отличие от циметидина) [21]. Предполагается, что наряду с действием классически описываемых фармакологических эффектов висмута, обеспечивающих защиту и восстановление слизистой, ускорению репарации эпителия в зоне язвенного дефекта способствует предохранение висмутом эпидермального фактора роста от гидролитического разрушения [17].

Наряду с этим обсуждается способность ВТД стимулировать мембранный Са2+-чувствительный рецептор (CaSR), активируемый в норме внеклеточным Са2+ и обеспечивающий повышение внутриклеточного Са2+, MAP-киназной активности и, в итоге, пролиферацию эпителиальных клеток слизистой желудка [22].

В экспериментальных исследованиях на слизистой толстой кишки мышей показана способность ионов Bi (III) за счет антагонизма с ионами Fe (III) подавлять активность неамидированного гастрина и, таким образом, возможность снижения избыточной гастрин-обусловленной пролиферации клеток [23].

Антихеликобактерная активность

Бактерицидное действие ВТД имеет очень важное значение. Под действием ионов висмута H. pylori теряет способность к адгезии, снижается подвижность микроорганизма, происходит вакуолизация и фрагментация клеточной стенки, подавление ферментных системы бактерий, т. е. достигается бактерицидный эффект (в отношении как вегетативных, так и кокковых форм H. pylori) [24–26]. Этот эффект при монотерапии ВТД хотя и незначителен (находится в пределах 14–40%), но не подвержен развитию резистентности и резко потенцируется при одновременном назначении с антибиотиками.

Висмут проникает в H. pylori, преимущественно локализуясь в области клеточной стенки микроорганизма. Он активно взаимодействует с нуклеотидами и аминокислотами, пептидами и белками H. pylori. Хотя молекулярные механизмы антихеликобактерного действия соединений висмута изучены не полностью, ясно, что основными мишенями в микроорганизме все же являются белковые молекулы (в том числе ферменты). Экспрессия примерно восьми белков подвергается up- или down-регуляции при действии ионов висмута [27, 28].

J. R. Lambert и Р. Midolo сформулировали основные молекулярные механизмы антихеликобактерного действия препаратов висмута [29], впоследствии дополненные другими исследователями [27]:

1) блокада адгезии H. pylori к поверхности эпителиальных клеток;
2) подавление различных ферментов, продуцируемых H. pylori (уреаза, каталаза, липаза/фосфолипаза, алкилгидропероксидредуктаза и др.), и трансляционного фактора (Ef-Tu);
3) прямое взаимодействие с белками теплового шока (HspA, HspB), нейтрофил-активирующим белком (NapA), нарушение структуры и функции других белков;
4) нарушение синтеза АТФ и других макроэргов;
5) нарушение синтеза, структуры и функции клеточной стенки и функции мембраны;
6) индукция свободнорадикальных процессов.

Одним из механизмов антибактериального действия ионов висмута является их взаимодействие с комплексом клеточной стенки/гликокаликса, имеющимся у некоторых микроорганизмов (в том числе у H. pylori), с вытеснением двухвалентных катионов Mg2+ и Ca2+, необходимых для построения полисахаридных цепочек. При этом происходит локальное ослабление участков гликокаликса и выпирание клеточной стенки/мембраны через образовавшиеся «окна», что приводит к нарушению функционирования микроорганизма и может активировать аутолитические процессы, приводящие к его гибели [30].

Предполагается, что попадание висмута в H. pylori опосредуется через железотранспортные пути, а проникнув, он взаимодействует с участками связывания Zn (II), Ni (II) и Fe (III) белков и ферментов, нарушая их функцию [31, 32]. Например, связывание ионов висмута с малыми цитоплазматическими белками Hpn и Hpnl приводит к резкому нарушению их детоксицирующей и аккумулирующей функции «хранилища» для ионов Ni [33].

H. pylori характеризуется необычной версией шаперонина GroES (т. е. HpGroES), который обладает уникальным C-концом, богатым гистидином, цистеином и имеющим три металл-связывающих остатка (с Zn (II)), что обеспечивает сворачивание полипептидных цепей с формированием четвертичной структуры белка. Висмут-содержащие препараты прочно прикрепляются на этом сайте, вытесняя связанный цинк и, следовательно, вызывая резкое нарушение функции шаперонина HpGroES [34].

Препараты висмута, проникая в H. pylori, способны индуцировать мощный окислительный стресс в микроорганизме, что приводит к торможению деятельности многих ферментов в целом. Потенцируется прооксидантное действие подавлением активности тиоредоксина и алкилгидропероксидредуктазы (TsaA) микроорганизма [27, 28].

Ингибирование таких важных для микроорганизма ферментов, как протеаза и уреаза, является доказанным фактом в развитии антихеликобактерного эффекта ВТД [4]. В минимальной ингибирующей концентрации ВТД подавляет общую протеазную активность микроорганизма примерно на 87% [28].

Большое внимание привлекает взаимодействие висмута с ферментами цикла трикарбоновых кислот микроорганизма (фумаратредуктазы, фумаразы), обеспечивающего образование ряда биохимических прекурсоров (α-кетоглутарат, сукцинил-КоА, оксалоацетат) и работающего как источник образования АТФ. В результате уменьшается продукция макроэргов и подавляются многие энергозависимые процессы (в том числе репаративные, двигательные), что отражается, например, на скорости колонизации микроорганизмом различных отделов желудка [35, 36]. Потенцируется этот эффект блокадой локализованного в микробной стенке/мембране дитиольного фермента Na+/K+-АТФазы, с которым ионы Bi образуют стабильный комплекс [24].

В качестве еще одной ферментной мишени препаратов висмута рассматривается алкогольдегидрогеназа, участвующая в продукции ацетальдегида, который, секретируясь микроорганизмом, оказывает подавляющее действие на локальные защитные факторы слизистой, ингибируя секрецию белка и нарушая связывание пиридоксальфосфата с зависимыми ферментами [37].

Важное значение имеет также подавление висмутом активности фосфолипаз С и А2 H. pylori [38, 39]. В качестве новых мишеней для антихеликобактерного действия ВТД обсуждаются S-аденозилметионинсинтаза, альдолаза, фруктозобисфосфат и протеин S6 30S-субъединицы рибосомы [39].

Фармакокинетика ВТД

После перорального приема ВТД концентрация висмута в слизи желудка и слизистой сохраняется в пределах трех часов, после чего резко падает вследствие нормального обновления слизи [40]. Несмотря на то, что небольшая часть микропреципитатов ВТД может проникать в микроворсинки и путем эндоцитоза попадать в клетки эпителия, точные механизмы транспорта висмута в системный кровоток до настоящего времени неизвестны. Однако очевидно, что этот процесс происходит преимущественно в верхнем отделе тонкой кишки [41].

Биодоступность препаратов висмута низкая и у ВТД составляет 0,2–0,5% от введенной дозы [42, 43]. Н2-гистаминоблокаторы и ингибиторы протонной помпы могут увеличивать этот показатель [44]. После попадания в кровь препарат больше чем на 90% связывается с белками плазмы.

Измерение концентрации висмута в крови и моче после курсового применения ВТД в дозе 360 мг/сут в течение 4–6 недель показало большую вариабельность этого показателя. Так, концентрация висмута в крови варьировала от 9,3 до 17,7 мкг/л и выходила на плато примерно к 4-й неделе применения препарата [45]. В отдельных исследованиях были зафиксированы более высокие уровни препарата в крови (33–51 мкг/л), однако это не сопровождалось развитием побочных эффектов [46, 47]. Концентрация висмута в крови, как и площадь под фармакокинетической кривой, выше в том случае, если препарат принимается утром, по сравнению с ранним вечерним приемом [48].

В исследованиях на животных показано, что преимущественное накопление препарата происходит в почках и в значительно меньшей концентрации он обнаруживается в легких, печени, мозге, сердце и скелетной мускулатуре [49].

Особенности метаболизма и элиминации висмута изучены недостаточно. Период полувыведения висмута из крови и мочи у пациентов с интоксикацией составляет соответственно 5,2 и 4,5 дня [50]. У здоровых добровольцев и пациентов с гастритом клиренс составляет примерно 22–102 мл/мин (медиана 55 мл/мин) и Т1/2 около 5 дней (Т1/2 β до 21 дня), что свидетельствует о тканевом депонировании препарата и его медленной мобилизации оттуда [51]. На выведение препарата оказывает влияние функция почек, и при ее ухудшении почечный клиренс препарата может снижаться. Некоторые фармакокинетические показатели ВТД приведены в табл. 2.

Фармакокинетика ВТД после приема 420 мг препарата

Клиническая эффективность ВТД

ВТД является важным компонентом клинических схем антихеликобактерной терапии либо в составе традиционной квадротерапии, либо в качестве дополнительного компонента тройной терапии первой линии, что дает прирост эффективности эрадикации на 15–20% [52, 53, 54]. В первую очередь, это обусловлено способностью ВТД преодолевать резистентность H. pylori к антибиотикам (особенно к кларитромицину), а не собственной бактерицидной активностью препарата висмута [55–57]. Интерес представляет также включение ВТД в схемы последовательной антихеликобактерной терапии [58].

Безопасность ВТД

Несмотря на статус тяжелого металла, висмут и его соединения считаются нетоксичными, в отличие от расположенных рядом в периодической таблице мышьяка, сурьмы, свинца и олова. Нетоксичность соединений висмута объясняется преимущественно за счет их нерастворимости в нейтральных водных растворах и биологических жидкостях и крайне низкой биодоступностью. Большинство соединений висмута являются даже менее токсичными, чем хлорид натрия [59].

A. C. Ford и соавт. в рамках мета­анализа, проведенного по публикациям баз MEDLINE и EMBASE, включающего 35 рандомизированных контролируемых исследований и 4763 пациента, пришли к выводу, что терапия язвенной болезни желудка с использованием препаратов висмута безопасна и хорошо переносится. Наиболее часто встречающимся побочным эффектом является потемнение стула за счет образования сульфида висмута [60].

У очень небольшой части больных может встречаться легкое кратковременное повышение уровня трансаминаз, однако оно исчезает после окончания курса терапии. Высокие дозы ВТД, применяемые длительное время, теоретически могут быть причиной развития энцефалопатии, однако зафиксировано очень небольшое число таких поражений центральной нервной системы. Наиболее манифестное, но обратимое проявление висмутовой энцефалопатии описано у мужчины, получившего два 28-дневных курса ВТД с приемом 600 мг препарата 4 раза в день и принимавшего периодически по 240 мг/сут в течение двух лет [61].

Заключение

Уникальность ВТД состоит в том, что он сочетает в себе свойства гастропротекторного и антибактериального препарата. Его многокомпонентный механизм действия обеспечивает защиту слизистой от воздействия различных повреждающих факторов, а антихеликобактерная активность позволяет преодолевать устойчивость H. pylori к антибиотикам, повышая эффективность фармакотерапии. В общем виде совокупность отдельных компонентов механизма действия препарата представлена на рис.

Предполагаемый механизм действия коллоидного висмута субцитрата.

Новые направления создания препаратов висмута для лечения гастроэнтерологических заболеваний включают разработку висмут-содержащих наноструктур (bismuth-containing nanoparticles, Bi NPs). Так, созданный препарат нанотрубок висмута субкарбоната обладает мощным действием в отношении H. pylori (50% ингибирование в концентрации 10 мкг/мл) [62], а Bi NPs потенциально активен против грамотрицательных микроорганизмов, включая P. aeruginosa [63].

Наночастицы висмута в МИК 0,5 ммоль/л способны полностью подавлять формирование биопленки S. mutans, что сравнимо с эффектом применения хлоргексидина [64]. В работе тех же авторов водный коллоид наночастиц Bi2O3 со средним размером 77 нм эффективно угнетал рост и образование биопленок C. albicans, не проявляя цитотоксичности [65]. Делаются попытки синтеза висмут-фторхинолоновых комплексов, активных в отношении фторхинолон-резистентых штаммов микроорганизмов [66].

Исчерпывающие сведения по современным направлениям медицинской химии соединений висмута можно найти в обзоре J. A. Salvador и соавт. [67].

Литература

  1. Yang N., Sun H. Biological chemistry of antimony and bismuth / Biological chemistry of arsenic, antimony and bismuth/Sun H. (Ed.). Singapore: John Wiley & Sons Ltd., 2011. 400 р.
  2. Li W., Jin L., Zhu N. et al. Structure of colloidal bismuth subcitrate (CBS) in dilute HCl: unique assembly of bismuth citrate dinuclear units ([Bi(cit)2Bi]2-) // J Am Chem Soc. 2003. Vol. 125, № 4. P. 2408–12409.
  3. Andrews P. C., Deacon G. B., Forsyth C. M. et al. Towards a structural understanding of the anti-ulcer and anti-gastritis drug bismuth subsalicylate // Angew Chem Int Ed Engl. 2006. Vol. 45, № 34. P. 5638–5642.
  4. Mendis A. H. W., Marshall B. J. Helicobacter pylori and bismuth / Biological chemistry of arsenic, antimony and bismuth / Sun H (Ed.). Singapore: John Wiley & Sons Ltd., 2011. 400 р.
  5. Morgenstern A., Bruchertseifer F., Apostolidis C. Bismuth-213 and Actinium-225 — generator performance and evolving therapeutic applications of two generator-derived alpha-emitting radioisotopes // Current Radiopharmaceuticals. 2012. Vol. 5, № 3. P. 221–227.
  6. Lee S. P. A potential mechanism of action of colloidal bismuth subcitrate; diffusion barrier to hydrochloric acid // Scand J Gastroenterol. 1982. Vol. 17, Suppl. 80. P. 17–21.
  7. Turner N. C., Martin G. P., Marriott C. The influence of native porcine gastric mucus gel on hydrogen ion diffusion: the effect of potentially ulcerogenic agents // J Pharm Pharmacol. 1985. Vol. 37, № 11. P. 776–780.
  8. Tasman-Jones C., Maher C., Thomsen L. et al. Mucosal defences and gastroduodenal disease // Digestion. 1987. Vol. 37, Suppl. 2. P. 1–7.
  9. Williams D. R. Analytical and computer simulation studies of a colloidal bismuth citrate system used as an ulcer treatment // J Inorg Nucl Chem. 1977. Vol. 39, № 4. P. 711–714.
  10. Soutar R. L, Coghill S. B. Interaction of tripotassium dicitrato bismuthate with macrophages in the rat and in vitro // Gastroenterology. 1986. Vol. 91, № 1. P. 84–93.
  11. Coghill S. B., Hopwood D., McPherson S., Hislop S. The ultrastructural localisation of De-Nol (colloidal tripotassium dicitrato-bismuthate — TDB) in the upper gastrointestinal tract of man and rodents following oral and instrumental administration // J Pathol. 1983. Vol. 139, № 2. P. 105–114.
  12. Hollanders D., Morrissey S. M., Mehta J. Mucus secretion in gastric ulcer patients treated with tripotassium dicitrato bismuthate (De-Nol) // Br J Clin Pract. 1983. Vol. 37, № 3. P. 112–114.
  13. Roberts N. B., Taylor W. H., Westcott C. Effect of cyclo-alkyl lactamimides upon amylase, lipase, trypsin and chymotrypsin // J Pharm Pharmacol. 1982. Vol. 34, № 6. P. 397–400.
  14. Baron J. H., Barr J., Batten J. et al. Acid, pepsin, and mucus secretion in patients with gastric and duodenal ulcer before and after colloidal bismuth subcitrate (De-Nol) // Gut. 1986. Vol. 27, № 5. P. 486–490.
  15. Wieriks J., Hespe W., Jaitly K. D. et al. Pharmacological properties of colloidal bismuth subcitrate (CBS, De-Nol) // Scand J Gastroenterol. 1982. Vol. 17, Suppl.80. P. 11–16.
  16. Stiel D., Murray D. J., Peters T. J. Uptake and subcellular localisation of bismuth in the gastrointestinal mucosa of rats after short term administration of colloidal bismuth subcitrate // Gut. 1985. Vol. 26, № 4. P. 364–368.
  17. Hall D. W.R., van de Hoven W. E. Protective properties of colloidal bismuth subcitrate on the gastric mucosa // Scand J Gastroenterol. 1986. Vol. 21, Suppl. 122. P. 11–13.
  18. Estela R., Feller A., Backhouse C. et al. Effects of colloidal bismuth subcitrate and aluminum hydroxide on gastric and duodenal levels of prostaglandin E2 // Rev Med Chil. 1984. Vol. 112, № 10. P. 975–981.
  19. Konturek S. J., Bilski J., Kwiecien N. et al. De-Nol stimulates gastric and duodenal alkaline secretion through prostaglandin dependent mechanism // Gut. 1987. Vol. 28, № 12. P. 1557–1563.
  20. Crampton J. R., Gibbons L. C., Rees W. D. Effect of certain ulcer-healing agents on amphibian gastroduodenal bicarbonate secretion // Scand J Gastroenterol. 1986. Vol. 21, Suppl. 125. P. 113–118.
  21. Moshal M. G., Gregory M. A., Pillay C., Spitaels J. M. Does the duodenal cell ever return to normal? A comparison between treatment with cimetidine and denol // Scand J Gastroenterol. 1979. Vol. 14, Suppl. 54. P. 48–51.
  22. Gilster J., Bacon K., Marlink K. et al. Bismuth subsalicylate increases intracellular Ca2+, MAP-kinase activity, and cell proliferation in normal human gastric mucous epithelial cells // Dig Dis Sci. 2004. Vol. 49, № 3. P. 370–378.
  23. Kovac S., Loh S. W., Lachal S. et al. Bismuth ions inhibit the biological activity of non-amidated gastrins in vivo // Biochem Pharmacol. 2012. Vol. 83, № 4. P. 524–530.
  24. Beil W., Bierbaum S., Sewing K. F. Studies on the mechanism of action of colloidal bismuth subcitrate. I. Interaction with sulfhydryls // Pharmacology. 1993. Vol. 47, № 2. P. 135–140.
  25. Wagner S., Beil W., Mai U. E. et al. Interaction between Helicobacter pylori and human gastric epithelial cells in culture: effect of antiulcer drugs // Pharmacology. 1994. Vol. 49, № 4. P. 226–237.
  26. Stratton C. W., Warner R. R., Coudron P. E., Lilly N. A. Bismuth-mediated disruption of the glycocalyx-cell wall of Helicobacter pylori: ultrastructural evidence for a mechanism of action for bismuth salts // J Antimicrob Chemother. 1999. Vol. 43, № 5. P. 659–666.
  27. Ge R. G., Sun H. Z. Bioinorganic chemistry of bismuth and antimony: target sites of metallodrugs // Acc Chem Res. 2007. Vol. 40, № 4. P. 267–274.
  28. Ge R. G., Sun X, Gu Q. et al. A proteomic approach for the identification of bismuth-binding proteins in Helicobacter pylori // J Biol Inorg Chem. 2007. Vol. 12, № 6. P. 831–842.
  29. Lambert J. R., Midolo P. The actions of bismuth in the treatment of Helicobacter pylori infection // Aliment Pharmacol Ther. 1997. Vol. 11, Suppl. 1. P. 27–33.
  30. Stratton C. W., Warner R. R., Coudron P. E., Lilly N. A. Bismuth-mediated disruption of the glycocalyx-cell wall of Helicobacter pylori: ultrastructural evidence for a mechanism of action for bismuth salts // J Antimicrob Chemother. 1999. Vol. 43, № 5. P. 659–666.
  31. Tsang C. N., Ho K. S., Sun H., Chan W. T. Tracking Bismuth anti-ulcer drug uptake in single Helicobacter pylori cells // J Am Chem Soc. 2011. Vol. 133, № 19. P. 7355–7357.
  32. Xia W., Li H., Sun H. Functional disruption of HypB, a GTPase of Helicobacter pylori, by bismuth // Chem Commun (Camb). 2014. Vol. 50, № 13. P. 1611–1614.
  33. Li H., Sun H. Recent advances in bioinorganic chemistry of bismuth // Curr Opin Chem Biol. 2012. Vol. 16, № 1–2. P. 74–83.
  34. Cun S, Sun H. A zinc-binding site by negative selection induces metallodrug susceptibility in an essential chaperonin // Proc Natl Acad Sci USA. 2010. Vol. 107, № 11. P. 4943–4948.
  35. Baer W., Koopmann H., Wagner S. Effects of substances inhibiting or uncoupling respiratory-chain phosphorylation of Helicobacter pylori // Zentralbl Bakteriol. 1993. Vol. 280, № 1. P. 253–258.
  36. Pitson S. M., Mendz G. L., Srinivasan S., Hazell S. L. The tricarboxylic acid cycle of Helicobacter pylori // Eur J Biochem. 1999. Vol. 260, № 1. P. 258–267.
  37. Jin L., Szeto K. Y., Zhang L. et al. Inhibition of alcohol dehydrogenase by bismuth // J Inorg Biochem. 2004. Vol. 98, № 8. P. 1331–1337.
  38. Ottlecz A., Romero J. J., Lichtenberger L. M. Effect of ranitidine bismuth citrate on the phospholipase A2 activity of Naja naja venom and Helicobacter pylori: a biochemical analysis // Aliment Pharmacol Ther. 1999. Vol. 13, № 7. P. 875–881.
  39. Tsang C. N., Bianga J., Sun H. et al. Probing of bismuth antiulcer drug targets in H. pylori by laser ablation-inductively coupled plasma mass spectrometry // Metallomics. 2012. Vol. 4, № 3. 277–283.
  40. Lambert J. R., Yeomans N. D. Campylobacter pylori — gastroduodenal pathogen or opportunistic bystander? // Aust N Z J Med. 1988. Vol. 18, № 4. P. 555–556.
  41. Coghill S. B., Hopwood D., McPherson S., Hislop S. The ultrastructural localisation of De-Nol (colloidal tripotassium dicitrato-bismuthate-TDB) in the upper gastrointestinal tract of man and rodents following oral and instrumental administration // J Pathol. 1983. Vol. 139, № 2. P. 105–114.
  42. Treiber G., Gladziwa U., Ittel T. H. et al. Tripotassium dicitrato bismuthate: absorption and urinary excretion of bismuth in patients with normal and impaired renal function // Aliment Pharmacol Ther. 1991. Vol. 5, № 5. 491–502.
  43. Phillips R. H., Whitehead M. W., Lacey S. et al. Solubility, absorption, and anti-Helicobacter pylori activity of bismuth subnitrate and colloidal bismuth subcitrate: In vitro data do not predict In vivo efficacy // Helicobacter. 2000. Vol. 5, № 3. P. 176–182.
  44. Nwokolo C. U., Prewett E. J., Sawyerr A. M. et al. The effect of histamine H2-receptor blockade on bismuth absorption from three ulcer-healing compounds // Gastroenterology. 1991. Vol. 101, № 4. P. 889–894.
  45. Lee S. P. Studies on the absorption and excretion of tripotassium dicitrato-bismuthate in man // Res Commun Chem Pathol Pharmacol. 1981. Vol. 34, № 2. 359–364.
  46. Hamilton I., Worsley B. W., O’Connor H. J., Axon A. T. R. Effects of tripotassium dicitrato bismuthate (TDB) tablets or cimetidine in the treatment of duodenal ulcer // Gut. 1983. Vol. 24, № 12. P. 1148–1151.
  47. Dekker W., Dal Monte P. R., Bianchi Porro G. et al. An international multi-clinic study comparing the therapeutic efficacy of colloidal bismuth subcitrate coated tablets with chewing tablets in the treatment of duodenal ulceration // Scand J Gastroenterol. 1986. Vol. 21, Suppl.122. P. 46–50.
  48. Nwokolo C. U., Gavey C. J., Smith J. T. et al. The absorption of bismuth from oral doses of tripotassium dicitrato bismuthate // Aliment Pharmacol Ther. 1989. Vol. 3, № 1. P. 29–39.
  49. Wieriks J., Hespe W., Jaitly K. et al. Pharmacological properties of colloidal bismuth subcitrate (CBS, DE-NOL) // Scand J Gastroenterol. 1982. Vol. 17, Suppl.80. P. 11–16.
  50. Allain P., Chaleil D., Emile J. L’elevation des concentrations de bismuth dans les tissus des malades intoxiques // Therapie. 1980. Vol. 35, № 3. P. 303–304.
  51. Froomes P. R., Wan A. T., Keech A. C. et al. Absorption and eliminationof bismuth from oral doses of tripotassium dicitratobismuthate // Eur J Clin Pharmacol. 1989. Vol. 37, № 5. P. 533–536.
  52. Ивашкин В. Т., Маев И. В., Лапина Т. Л. и др. Рекомендации Российской гастроэнтерологической ассоциации по диагностике и лечению инфекции Helicobacter pylori у взрослых // Рос. журн. гастроэнтеролии гепатологии, колопроктологии. 2012. № 1. C. 87–89.
  53. Стандарты диагностики и лечения кислотозависимых и ассоциированных с Helicobacter pylori заболеваний (Пятое московское соглашение) // Эксперимент. клин. гастроэнтерол. 2013. № 5. С. 3–11.
  54. Маев И. В., Самсонов А. А., Коровина Т. И. и др. Висмута трикалия дицитрат повышает эффективность антихеликобактерной терапии первой линии // Эксперимент. клин. гастроэнтерол. 2012. № 8. C. 92–97.
  55. Williamson R., Pipkin G. A. Does bismuth prevent antimicrobial resistance of Helicobacter pylori?/Helicobacter pylori. Basic Mechanisms to Clinical Cure 1998/Ed. by R. H. Hunt, G. N. J. Tytgat. Dordrecht; Boston; London: Kluwer Acad. Publ., 1998. P. 416–425.
  56. Yoon J. H., Baik G. H., Kim Y. S. et al. Comparison of the eradication rate between 1-nd 2-week bismuth-containing quadruple rescue therapies for Helicobacter pylori eradication // Gut Liver. 2012. Vol. 6, № 4. P. 434–439.
  57. Sun Q., Liang X., Zheng Q. et al. High efficacy of 14-ay triple therapy-based, bismuth-containing quadruple therapy for initial Helicobacter pylori eradication // Helicobacter. 2010. Vol. 15, № 3. P. 233–238.
  58. Uygun A., Ozel A. M., Sivri B. et al. Efficacy of a modified sequential therapy including bismuth subcitrate as first-line therapy to eradicate Helicobacter pylori in a Turkish population // Helicobacter. 2012. Vol. 17, № 6. P. 486–490.
  59. Salvador J. A., Figueiredo S. A., Pinto R. M., Silvestre S. M. Bismuth compounds in medicinal chemistry // Future Med Chem. 2012. Vol. 4, № 11. P. 1495–1523.
  60. Ford A. C., Malfertheiner P., Giguere M. et al. Adverse events with bismuth salts for Helicobacter pylori eradication: systematic review and meta-analysis // World J Gastroenterol. 2008. Vol. 14, № 48. 7361–7370.
  61. Weller M. P. I. Neuropsychiatric symptoms following bismuth intoxication // Postgraduate Medical Journal. 1988. Vol. 64, № 750. P. 308–310.
  62. Chen R., So M. H., Yang J. et al. Fabrication of bismuth subcarbonate nanotube arrays from bismuth citrate // Chem Commun. 2006. Vol. 21. P. 2265–2267.
  63. Pelgrift R. Y., Friedman A. J. Nanotechnology as a therapeutic tool to combat microbial resistance // Adv Drug Deliv Rev. 2013. Vol. 65, № 13–14. P. 1803–1815.
  64. Hernandez-Delgadillo R., Velasco-Arias D., Diaz D. et al. Zerovalent bismuth nanoparticles inhibit Streptococcus mutans growth and formation of biofilm // Int J Nanomedicine. 2012. Vol. 7. P. 2109–2113.
  65. Hernandez-Delgadillo R., Velasco-Arias D., Martinez-Sanmiguel J. J. et al. Bismuth oxide aqueous colloidal nanoparticles inhibit Candida albicans growth and biofilm formation // Int J Nanomedicine. 2013. Vol. 8. P. 1645–1652.
  66. Shaikh A. R., Giridhar R., Megraud F., Yadav M. R. Metalloantibiotics: synthesis, characterization and antimicrobial evaluation of bismuth-fluoroquinolone complexes against Helicobacter pylori. 2009. Acta Pharm. 59, 259–271.
  67. Salvador J. A., Figueiredo S. A., Pinto R. M., Silvestre S. M. Bismuth compounds in medicinal chemistry // Future Med Chem. 2012. Vol. 4, № 11. P. 1495–1523.

С. В. Оковитый1, доктор медицинских наук, профессор
Д. Ю. Ивкин, кандидат биологических наук

ГОУ ВПО СПХФА МЗ РФ, Санкт-Петербург

1 Контактная информация: okovityy@mail.ru

Как выбрать пробиотики для кишечника

Клиническая эффективность ВТД

ВТД является важным компонентом клинических схем антихеликобактерной терапии либо в составе традиционной квадротерапии, либо в качестве дополнительного компонента тройной терапии первой линии, что дает прирост эффективности эрадикации на 15–20% [52, 53, 54]. В первую очередь, это обусловлено способностью ВТД преодолевать резистентность H. pylori к антибиотикам (особенно к кларитромицину), а не собственной бактерицидной активностью препарата висмута [55–57]. Интерес представляет также включение ВТД в схемы последовательной антихеликобактерной терапии [58].

Безопасность ВТД

Несмотря на статус тяжелого металла, висмут и его соединения считаются нетоксичными, в отличие от расположенных рядом в периодической таблице мышьяка, сурьмы, свинца и олова. Нетоксичность соединений висмута объясняется преимущественно за счет их нерастворимости в нейтральных водных растворах и биологических жидкостях и крайне низкой биодоступностью. Большинство соединений висмута являются даже менее токсичными, чем хлорид натрия [59].

A. C. Ford и соавт. в рамках мета­анализа, проведенного по публикациям баз MEDLINE и EMBASE, включающего 35 рандомизированных контролируемых исследований и 4763 пациента, пришли к выводу, что терапия язвенной болезни желудка с использованием препаратов висмута безопасна и хорошо переносится. Наиболее часто встречающимся побочным эффектом является потемнение стула за счет образования сульфида висмута [60].

У очень небольшой части больных может встречаться легкое кратковременное повышение уровня трансаминаз, однако оно исчезает после окончания курса терапии. Высокие дозы ВТД, применяемые длительное время, теоретически могут быть причиной развития энцефалопатии, однако зафиксировано очень небольшое число таких поражений центральной нервной системы. Наиболее манифестное, но обратимое проявление висмутовой энцефалопатии описано у мужчины, получившего два 28-дневных курса ВТД с приемом 600 мг препарата 4 раза в день и принимавшего периодически по 240 мг/сут в течение двух лет [61].

Заключение

Уникальность ВТД состоит в том, что он сочетает в себе свойства гастропротекторного и антибактериального препарата. Его многокомпонентный механизм действия обеспечивает защиту слизистой от воздействия различных повреждающих факторов, а антихеликобактерная активность позволяет преодолевать устойчивость H. pylori к антибиотикам, повышая эффективность фармакотерапии. В общем виде совокупность отдельных компонентов механизма действия препарата представлена на рис.

Предполагаемый механизм действия коллоидного висмута субцитрата.

Новые направления создания препаратов висмута для лечения гастроэнтерологических заболеваний включают разработку висмут-содержащих наноструктур (bismuth-containing nanoparticles, Bi NPs). Так, созданный препарат нанотрубок висмута субкарбоната обладает мощным действием в отношении H. pylori (50% ингибирование в концентрации 10 мкг/мл) [62], а Bi NPs потенциально активен против грамотрицательных микроорганизмов, включая P. aeruginosa [63].

Наночастицы висмута в МИК 0,5 ммоль/л способны полностью подавлять формирование биопленки S. mutans, что сравнимо с эффектом применения хлоргексидина [64]. В работе тех же авторов водный коллоид наночастиц Bi2O3 со средним размером 77 нм эффективно угнетал рост и образование биопленок C. albicans, не проявляя цитотоксичности [65]. Делаются попытки синтеза висмут-фторхинолоновых комплексов, активных в отношении фторхинолон-резистентых штаммов микроорганизмов [66].

Исчерпывающие сведения по современным направлениям медицинской химии соединений висмута можно найти в обзоре J. A. Salvador и соавт. [67].

Литература

  1. Yang N., Sun H. Biological chemistry of antimony and bismuth / Biological chemistry of arsenic, antimony and bismuth/Sun H. (Ed.). Singapore: John Wiley & Sons Ltd., 2011. 400 р.
  2. Li W., Jin L., Zhu N. et al. Structure of colloidal bismuth subcitrate (CBS) in dilute HCl: unique assembly of bismuth citrate dinuclear units ([Bi(cit)2Bi]2-) // J Am Chem Soc. 2003. Vol. 125, № 4. P. 2408–12409.
  3. Andrews P. C., Deacon G. B., Forsyth C. M. et al. Towards a structural understanding of the anti-ulcer and anti-gastritis drug bismuth subsalicylate // Angew Chem Int Ed Engl. 2006. Vol. 45, № 34. P. 5638–5642.
  4. Mendis A. H. W., Marshall B. J. Helicobacter pylori and bismuth / Biological chemistry of arsenic, antimony and bismuth / Sun H (Ed.). Singapore: John Wiley & Sons Ltd., 2011. 400 р.
  5. Morgenstern A., Bruchertseifer F., Apostolidis C. Bismuth-213 and Actinium-225 — generator performance and evolving therapeutic applications of two generator-derived alpha-emitting radioisotopes // Current Radiopharmaceuticals. 2012. Vol. 5, № 3. P. 221–227.
  6. Lee S. P. A potential mechanism of action of colloidal bismuth subcitrate; diffusion barrier to hydrochloric acid // Scand J Gastroenterol. 1982. Vol. 17, Suppl. 80. P. 17–21.
  7. Turner N. C., Martin G. P., Marriott C. The influence of native porcine gastric mucus gel on hydrogen ion diffusion: the effect of potentially ulcerogenic agents // J Pharm Pharmacol. 1985. Vol. 37, № 11. P. 776–780.
  8. Tasman-Jones C., Maher C., Thomsen L. et al. Mucosal defences and gastroduodenal disease // Digestion. 1987. Vol. 37, Suppl. 2. P. 1–7.
  9. Williams D. R. Analytical and computer simulation studies of a colloidal bismuth citrate system used as an ulcer treatment // J Inorg Nucl Chem. 1977. Vol. 39, № 4. P. 711–714.
  10. Soutar R. L, Coghill S. B. Interaction of tripotassium dicitrato bismuthate with macrophages in the rat and in vitro // Gastroenterology. 1986. Vol. 91, № 1. P. 84–93.
  11. Coghill S. B., Hopwood D., McPherson S., Hislop S. The ultrastructural localisation of De-Nol (colloidal tripotassium dicitrato-bismuthate — TDB) in the upper gastrointestinal tract of man and rodents following oral and instrumental administration // J Pathol. 1983. Vol. 139, № 2. P. 105–114.
  12. Hollanders D., Morrissey S. M., Mehta J. Mucus secretion in gastric ulcer patients treated with tripotassium dicitrato bismuthate (De-Nol) // Br J Clin Pract. 1983. Vol. 37, № 3. P. 112–114.
  13. Roberts N. B., Taylor W. H., Westcott C. Effect of cyclo-alkyl lactamimides upon amylase, lipase, trypsin and chymotrypsin // J Pharm Pharmacol. 1982. Vol. 34, № 6. P. 397–400.
  14. Baron J. H., Barr J., Batten J. et al. Acid, pepsin, and mucus secretion in patients with gastric and duodenal ulcer before and after colloidal bismuth subcitrate (De-Nol) // Gut. 1986. Vol. 27, № 5. P. 486–490.
  15. Wieriks J., Hespe W., Jaitly K. D. et al. Pharmacological properties of colloidal bismuth subcitrate (CBS, De-Nol) // Scand J Gastroenterol. 1982. Vol. 17, Suppl.80. P. 11–16.
  16. Stiel D., Murray D. J., Peters T. J. Uptake and subcellular localisation of bismuth in the gastrointestinal mucosa of rats after short term administration of colloidal bismuth subcitrate // Gut. 1985. Vol. 26, № 4. P. 364–368.
  17. Hall D. W.R., van de Hoven W. E. Protective properties of colloidal bismuth subcitrate on the gastric mucosa // Scand J Gastroenterol. 1986. Vol. 21, Suppl. 122. P. 11–13.
  18. Estela R., Feller A., Backhouse C. et al. Effects of colloidal bismuth subcitrate and aluminum hydroxide on gastric and duodenal levels of prostaglandin E2 // Rev Med Chil. 1984. Vol. 112, № 10. P. 975–981.
  19. Konturek S. J., Bilski J., Kwiecien N. et al. De-Nol stimulates gastric and duodenal alkaline secretion through prostaglandin dependent mechanism // Gut. 1987. Vol. 28, № 12. P. 1557–1563.
  20. Crampton J. R., Gibbons L. C., Rees W. D. Effect of certain ulcer-healing agents on amphibian gastroduodenal bicarbonate secretion // Scand J Gastroenterol. 1986. Vol. 21, Suppl. 125. P. 113–118.
  21. Moshal M. G., Gregory M. A., Pillay C., Spitaels J. M. Does the duodenal cell ever return to normal? A comparison between treatment with cimetidine and denol // Scand J Gastroenterol. 1979. Vol. 14, Suppl. 54. P. 48–51.
  22. Gilster J., Bacon K., Marlink K. et al. Bismuth subsalicylate increases intracellular Ca2+, MAP-kinase activity, and cell proliferation in normal human gastric mucous epithelial cells // Dig Dis Sci. 2004. Vol. 49, № 3. P. 370–378.
  23. Kovac S., Loh S. W., Lachal S. et al. Bismuth ions inhibit the biological activity of non-amidated gastrins in vivo // Biochem Pharmacol. 2012. Vol. 83, № 4. P. 524–530.
  24. Beil W., Bierbaum S., Sewing K. F. Studies on the mechanism of action of colloidal bismuth subcitrate. I. Interaction with sulfhydryls // Pharmacology. 1993. Vol. 47, № 2. P. 135–140.
  25. Wagner S., Beil W., Mai U. E. et al. Interaction between Helicobacter pylori and human gastric epithelial cells in culture: effect of antiulcer drugs // Pharmacology. 1994. Vol. 49, № 4. P. 226–237.
  26. Stratton C. W., Warner R. R., Coudron P. E., Lilly N. A. Bismuth-mediated disruption of the glycocalyx-cell wall of Helicobacter pylori: ultrastructural evidence for a mechanism of action for bismuth salts // J Antimicrob Chemother. 1999. Vol. 43, № 5. P. 659–666.
  27. Ge R. G., Sun H. Z. Bioinorganic chemistry of bismuth and antimony: target sites of metallodrugs // Acc Chem Res. 2007. Vol. 40, № 4. P. 267–274.
  28. Ge R. G., Sun X, Gu Q. et al. A proteomic approach for the identification of bismuth-binding proteins in Helicobacter pylori // J Biol Inorg Chem. 2007. Vol. 12, № 6. P. 831–842.
  29. Lambert J. R., Midolo P. The actions of bismuth in the treatment of Helicobacter pylori infection // Aliment Pharmacol Ther. 1997. Vol. 11, Suppl. 1. P. 27–33.
  30. Stratton C. W., Warner R. R., Coudron P. E., Lilly N. A. Bismuth-mediated disruption of the glycocalyx-cell wall of Helicobacter pylori: ultrastructural evidence for a mechanism of action for bismuth salts // J Antimicrob Chemother. 1999. Vol. 43, № 5. P. 659–666.
  31. Tsang C. N., Ho K. S., Sun H., Chan W. T. Tracking Bismuth anti-ulcer drug uptake in single Helicobacter pylori cells // J Am Chem Soc. 2011. Vol. 133, № 19. P. 7355–7357.
  32. Xia W., Li H., Sun H. Functional disruption of HypB, a GTPase of Helicobacter pylori, by bismuth // Chem Commun (Camb). 2014. Vol. 50, № 13. P. 1611–1614.
  33. Li H., Sun H. Recent advances in bioinorganic chemistry of bismuth // Curr Opin Chem Biol. 2012. Vol. 16, № 1–2. P. 74–83.
  34. Cun S, Sun H. A zinc-binding site by negative selection induces metallodrug susceptibility in an essential chaperonin // Proc Natl Acad Sci USA. 2010. Vol. 107, № 11. P. 4943–4948.
  35. Baer W., Koopmann H., Wagner S. Effects of substances inhibiting or uncoupling respiratory-chain phosphorylation of Helicobacter pylori // Zentralbl Bakteriol. 1993. Vol. 280, № 1. P. 253–258.
  36. Pitson S. M., Mendz G. L., Srinivasan S., Hazell S. L. The tricarboxylic acid cycle of Helicobacter pylori // Eur J Biochem. 1999. Vol. 260, № 1. P. 258–267.
  37. Jin L., Szeto K. Y., Zhang L. et al. Inhibition of alcohol dehydrogenase by bismuth // J Inorg Biochem. 2004. Vol. 98, № 8. P. 1331–1337.
  38. Ottlecz A., Romero J. J., Lichtenberger L. M. Effect of ranitidine bismuth citrate on the phospholipase A2 activity of Naja naja venom and Helicobacter pylori: a biochemical analysis // Aliment Pharmacol Ther. 1999. Vol. 13, № 7. P. 875–881.
  39. Tsang C. N., Bianga J., Sun H. et al. Probing of bismuth antiulcer drug targets in H. pylori by laser ablation-inductively coupled plasma mass spectrometry // Metallomics. 2012. Vol. 4, № 3. 277–283.
  40. Lambert J. R., Yeomans N. D. Campylobacter pylori — gastroduodenal pathogen or opportunistic bystander? // Aust N Z J Med. 1988. Vol. 18, № 4. P. 555–556.
  41. Coghill S. B., Hopwood D., McPherson S., Hislop S. The ultrastructural localisation of De-Nol (colloidal tripotassium dicitrato-bismuthate-TDB) in the upper gastrointestinal tract of man and rodents following oral and instrumental administration // J Pathol. 1983. Vol. 139, № 2. P. 105–114.
  42. Treiber G., Gladziwa U., Ittel T. H. et al. Tripotassium dicitrato bismuthate: absorption and urinary excretion of bismuth in patients with normal and impaired renal function // Aliment Pharmacol Ther. 1991. Vol. 5, № 5. 491–502.
  43. Phillips R. H., Whitehead M. W., Lacey S. et al. Solubility, absorption, and anti-Helicobacter pylori activity of bismuth subnitrate and colloidal bismuth subcitrate: In vitro data do not predict In vivo efficacy // Helicobacter. 2000. Vol. 5, № 3. P. 176–182.
  44. Nwokolo C. U., Prewett E. J., Sawyerr A. M. et al. The effect of histamine H2-receptor blockade on bismuth absorption from three ulcer-healing compounds // Gastroenterology. 1991. Vol. 101, № 4. P. 889–894.
  45. Lee S. P. Studies on the absorption and excretion of tripotassium dicitrato-bismuthate in man // Res Commun Chem Pathol Pharmacol. 1981. Vol. 34, № 2. 359–364.
  46. Hamilton I., Worsley B. W., O’Connor H. J., Axon A. T. R. Effects of tripotassium dicitrato bismuthate (TDB) tablets or cimetidine in the treatment of duodenal ulcer // Gut. 1983. Vol. 24, № 12. P. 1148–1151.
  47. Dekker W., Dal Monte P. R., Bianchi Porro G. et al. An international multi-clinic study comparing the therapeutic efficacy of colloidal bismuth subcitrate coated tablets with chewing tablets in the treatment of duodenal ulceration // Scand J Gastroenterol. 1986. Vol. 21, Suppl.122. P. 46–50.
  48. Nwokolo C. U., Gavey C. J., Smith J. T. et al. The absorption of bismuth from oral doses of tripotassium dicitrato bismuthate // Aliment Pharmacol Ther. 1989. Vol. 3, № 1. P. 29–39.
  49. Wieriks J., Hespe W., Jaitly K. et al. Pharmacological properties of colloidal bismuth subcitrate (CBS, DE-NOL) // Scand J Gastroenterol. 1982. Vol. 17, Suppl.80. P. 11–16.
  50. Allain P., Chaleil D., Emile J. L’elevation des concentrations de bismuth dans les tissus des malades intoxiques // Therapie. 1980. Vol. 35, № 3. P. 303–304.
  51. Froomes P. R., Wan A. T., Keech A. C. et al. Absorption and eliminationof bismuth from oral doses of tripotassium dicitratobismuthate // Eur J Clin Pharmacol. 1989. Vol. 37, № 5. P. 533–536.
  52. Ивашкин В. Т., Маев И. В., Лапина Т. Л. и др. Рекомендации Российской гастроэнтерологической ассоциации по диагностике и лечению инфекции Helicobacter pylori у взрослых // Рос. журн. гастроэнтеролии гепатологии, колопроктологии. 2012. № 1. C. 87–89.
  53. Стандарты диагностики и лечения кислотозависимых и ассоциированных с Helicobacter pylori заболеваний (Пятое московское соглашение) // Эксперимент. клин. гастроэнтерол. 2013. № 5. С. 3–11.
  54. Маев И. В., Самсонов А. А., Коровина Т. И. и др. Висмута трикалия дицитрат повышает эффективность антихеликобактерной терапии первой линии // Эксперимент. клин. гастроэнтерол. 2012. № 8. C. 92–97.
  55. Williamson R., Pipkin G. A. Does bismuth prevent antimicrobial resistance of Helicobacter pylori?/Helicobacter pylori. Basic Mechanisms to Clinical Cure 1998/Ed. by R. H. Hunt, G. N. J. Tytgat. Dordrecht; Boston; London: Kluwer Acad. Publ., 1998. P. 416–425.
  56. Yoon J. H., Baik G. H., Kim Y. S. et al. Comparison of the eradication rate between 1-nd 2-week bismuth-containing quadruple rescue therapies for Helicobacter pylori eradication // Gut Liver. 2012. Vol. 6, № 4. P. 434–439.
  57. Sun Q., Liang X., Zheng Q. et al. High efficacy of 14-ay triple therapy-based, bismuth-containing quadruple therapy for initial Helicobacter pylori eradication // Helicobacter. 2010. Vol. 15, № 3. P. 233–238.
  58. Uygun A., Ozel A. M., Sivri B. et al. Efficacy of a modified sequential therapy including bismuth subcitrate as first-line therapy to eradicate Helicobacter pylori in a Turkish population // Helicobacter. 2012. Vol. 17, № 6. P. 486–490.
  59. Salvador J. A., Figueiredo S. A., Pinto R. M., Silvestre S. M. Bismuth compounds in medicinal chemistry // Future Med Chem. 2012. Vol. 4, № 11. P. 1495–1523.
  60. Ford A. C., Malfertheiner P., Giguere M. et al. Adverse events with bismuth salts for Helicobacter pylori eradication: systematic review and meta-analysis // World J Gastroenterol. 2008. Vol. 14, № 48. 7361–7370.
  61. Weller M. P. I. Neuropsychiatric symptoms following bismuth intoxication // Postgraduate Medical Journal. 1988. Vol. 64, № 750. P. 308–310.
  62. Chen R., So M. H., Yang J. et al. Fabrication of bismuth subcarbonate nanotube arrays from bismuth citrate // Chem Commun. 2006. Vol. 21. P. 2265–2267.
  63. Pelgrift R. Y., Friedman A. J. Nanotechnology as a therapeutic tool to combat microbial resistance // Adv Drug Deliv Rev. 2013. Vol. 65, № 13–14. P. 1803–1815.
  64. Hernandez-Delgadillo R., Velasco-Arias D., Diaz D. et al. Zerovalent bismuth nanoparticles inhibit Streptococcus mutans growth and formation of biofilm // Int J Nanomedicine. 2012. Vol. 7. P. 2109–2113.
  65. Hernandez-Delgadillo R., Velasco-Arias D., Martinez-Sanmiguel J. J. et al. Bismuth oxide aqueous colloidal nanoparticles inhibit Candida albicans growth and biofilm formation // Int J Nanomedicine. 2013. Vol. 8. P. 1645–1652.
  66. Shaikh A. R., Giridhar R., Megraud F., Yadav M. R. Metalloantibiotics: synthesis, characterization and antimicrobial evaluation of bismuth-fluoroquinolone complexes against Helicobacter pylori. 2009. Acta Pharm. 59, 259–271.
  67. Salvador J. A., Figueiredo S. A., Pinto R. M., Silvestre S. M. Bismuth compounds in medicinal chemistry // Future Med Chem. 2012. Vol. 4, № 11. P. 1495–1523.

С. В. Оковитый1, доктор медицинских наук, профессор
Д. Ю. Ивкин, кандидат биологических наук

ГОУ ВПО СПХФА МЗ РФ, Санкт-Петербург

1 Контактная информация: okovityy@mail.ru

Как выбрать пробиотики для кишечника

Правильное, сбалансированное содержание белков, жиров и углеводов является ключом к здоровью на долгие годы. Продукты не способны в полной мере обеспечить организм человека всем необходимым. Есть целый перечень лекарств, которые помогают держать себя в хорошей форме и не болеть от легкого дуновения ветра.

Предлагаем список лучших пробиотиков. Перед началом терапии рекомендуется проконсультироваться с врачом, чтобы исключить наличие противопоказаний и правильно рассчитать дозировку.

Полезные свойства

Пробиотики – живые микроорганизмы, которые могут принести пользу человеку. В большинстве случаев это бактерии, но могут быть и другие представители микробов (например, дрожжи). Пробиотики несут пользу для кишечника, нормализуя микрофлору и устраняя дисбактериоз.

Даже лучшие пробиотики для восстановления микрофлоры нужно принимать правильно, чтобы достичь заявленного производителем результата:

  • пить за час до еды;
  • курс терапии – до полного исчезновения симптомов;
  • запивать небольшим количеством воды.

Лечение дисбактериоза должно проводиться в несколько этапов. Пробиотики первого поколения принимать от 2 до 4 недель, второго – от 5 до 7 дней, третьего и четвертого – не более 7 дней.

Нормы и различные вариации

Нормы и различные вариации полезных бактерий

Пробиотики колонизируют кишечник полезными бактериями, противодействуют патогенной (вредной) флоре, вызывающей запор или диарею, повышают иммунитет.
Основную массу бактерий – пробиотиков можно разделить на 2 вида: лакто- и бифидобактерии. В каждом из них существует значительное количество подвидов. Они оказывают то или иное благотворное влияние на организм человека.

Существуют различные типы пробиотиков:

  • Монокомпонентные. Первое поколение, содержащее бактерии одного вида (коли- бифидо- или лактосодержащие).
  • Антагонисты. Второе поколение, которое включает препараты конкурентного действия. Они не являются представителями естественной микрофлоры желудочно-кишечного тракта.
  • Поликомпонентные симбиотики. Третье поколение, которое состоит из более одного штамма полезных микроорганизмов. Они, как правило, усиливают действие друг друга.
  • Сорбированные бифидосодержащие. Четвертое поколение отличается наличием активных компонентов, которые обладают выраженным иммуномодулирующим действием.
  • Синбиотики. Пятое поколение, содержащее облигатную флору и вещества пребиотического действия.

В зависимости от поколения препарата в рецептуру могут быть включены энтерококки. Названия звучат жутко, но ингредиенты препарата не вредят человеку. Продукты изготавливаются в сухом и жидком виде.

Отклонения от нормы

Многие из необходимых микроорганизмов находятся в ежедневной пище (молочные продукты, овощи, фрукты), но в некоторых случаях необходим дополнительный прием пробиотиков:

  • частые простуды для укрепления иммунной системы;
  • синдром раздраженного кишечника для улучшения подвижности и восстановления слизистой оболочки кишечника;
  • пищевая аллергия (бактерии образуют защитный слой, который предотвращает проникновение аллергена в кровь);
  • непереносимость лактозы;
  • дефицит витаминов B, H или K;
  • во время грудного вскармливания (пробиотики положительно влияют на здоровье матери и ребенка);
  • после приема антибиотиков для восстановления микрофлоры.

Непатогенные живые микроорганизмы поддерживают синтез интерферона, снимая симптомы аллергии. Действующие компоненты нейтрализуют бактерии Helicobacter Pylori, которые вызывают язвенную болезнь желудка.

Чем отличаются пробиотики от пребиотиков?

Чем отличаются пробиотики от пребиотиков

Обе группы биоактивных препаратов разработаны для восстановления полезной микрофлоры кишечника. Но их действие несколько различно, т. к. они имеют различную биологическую структуру:

  • Пробиотики. Состоят из дрожжей, бифидо- и лактобактерий. В норме в небольшом количестве они населяют организм человека, помогая усваивать питательные вещества и переваривать пищу.
  • Пребиотики. Включают фруктозоолигосахариды, низкомолекулярные углеводы, лактулозу и инсулин. В достаточном количестве можно получить из таких продуктов питания, как чеснок, бананы, крупы и горох.

Могут ли навредить пробиотики?

Пробиотики практически не имеют противопоказания. Не рекомендуется принимать при онкологических заболеваниях, поражении лимфатический и кровеносной системы, ВИЧ. С осторожностью рекомендуется принимать в период беременности и лактации. Маленьким детям допустимо давать только те препараты, которые не имеют возрастных ограничений.

​​​​​​​

 

Как выбрать пробиотики для кишечника?

Лучшие пробиотики для восстановления кишечника может посоветовать только врач. Должны быть учтены основные критерии: возраст пациента, состояние организма, характер дисфункций, противопоказания и пр. Самолечение может не дать должного результата и привести к развитию проблем со здоровьем.

В список препаратов включены лучшие пробиотики для восстановления микрофлоры кишечника. Рейтинг основан на эффективности, безопасности и соотношении цена-качество.

Как выбрать пробиотики для кишечника

№1 – «Нормофлорин-Д» (Бифилюкс, Россия)

Биологически активная добавка разработана на основе лактобактерий и их метаболитов. Используется в комплексном лечении язвы двенадцатиперстной кишки и желудка, при ожирении и метаболическом синдроме. Назначается после антибактериальной терапии для восстановления нарушенного микробиоценоза.

Нормофлорин-Д биокомплекс концентрат жидкий культуры лактобактерий и бифидобактерий флакон 100 мл (БАД)

№2 – «Бифиформ» (Ferrosan, Дания)

Противодиарейный препарат регулирует равновесие микрофлоры кишечника. Содержит Bifidobacterium longum и Enterococcus faecium. МИБП-эубиотик назначается при непереносимости лактозы, для восстановления микрофлоры кишечника и для лечения хеликобактерной инфекции в составе комплексной терапии.

Бифиформ капсулы кишечнорастворимые 30 шт.

№3 – «Линекс» (Lek d. d., Словения)

Находится в первых рядах списка пробиотиков для кишечника. Основные активные компоненты этого препарата стимулируют изменение рН путем брожения лактозы. Это тормозит развитие патогенных и условно-патогенных микроорганизмов и создает благоприятные условия для пищеварительных ферментов.

Активные вещества, входящие в «Линекс» устойчивы к антибиотикам. Они оказывают влияние не только на нижние отделы кишечника, но и на верхние (этими свойствами обладают далеко не все пробиотики). Многокомпонентное средство, пригодно практически для всех пациентов, включая детей (даже тех, кто находится на искусственном питании).

Линекс капсулы 32 шт.

№4 – «Хилак Форте» (Merckle, Германия)

Комбинированный препарат для нормализации кислотности желудка в соответствии с физиологической нормой. Биологически восстанавливает микрофлору кишечника. Таким образом, создает неблагоприятную среду для жизнедеятельности патогенных и условно-патогенных бактерий.

Хилак Форте капли для приема внутрь 100 мл флакон-капельница

№5 – «Линекс Форте» (Sandoz, Словения)

Пробиотик регулирует равновесие микрофлоры кишечника. Разработан на основе молочнокислых живых бактерий, которые представляют собой составляющие естественной микрофлору. Широко используется при дисбактериоза, запорах и хеликобактериозе у детей и взрослых.

Линекс Форте капсулы 14 шт.

№6 – «Бифидумбактерин» (Ланафарм, Россия)

Лучший пробиотик для восстановления микрофлоры, который устойчив ко многим лекарственным средствам и антибиотикам. «Бифидумбактерин» является антагонистом достаточно широкого спектра болезнетворных и условно болезнетворных микроорганизмов. Выпускается в форме ректальных суппозиториев и капсул.

Эффективность препарата обусловлена сильной концентрацией бифидобактерий. Быстро нормализует микрофлору кишечника, которая, будучи естественной, накапливает токсические вещества (как поступающие в организм извне, так и находящиеся в нем) и разлагает их на нетоксичные компоненты. Нельзя давать детям, страдающим непереносимостью молочных продуктов.

Бифидумбактерин суппозитории для агинального или ректального введения 10 млн. КОЕ 10 шт.

№7 – «Бак-Сет Форте» (Probiotics International, Великобритания)

Мульти-пробиотик нового поколения, который включает в состав 14 видов пробиотических живых бактерий. Они дополняют действие друг друга, устраняя проблемы с пищеварением у детей от 3-х летнего возраста и у взрослых. Усовершенствованная микрокапсулированная технология способствует сохранению полезных свойств бактерий на протяжении всего срока хранения препарата.

Бак-Сет Форте капсулы 20 шт.

№8 – «Бифиформ Баланс» (Pfizer, Россия)

Один из лучших пробиотиков для восстановления микрофлоры кишечника. разработан на основе лакто- и бифидобактерий. Биологически активная добавка к пище назначается для лечения дисбактериоза различной этиологии и поддерживает микрофлору кишечника. Способствует коррекции функциональных нарушений желудочно-кишечного тракта.

Бифиформ Баланс капсулы 20 шт.

№9 – «Флорин Форте» (Партнер, Россия)

Лакто- и бифидобактерии, входящие в состав, принимают участие в процессах синтеза аскорбиновой кислоты, калия, витаминов группы В. В результате повышается устойчивость к агрессивным воздействиям окружающей среды. Также действующие компоненты участвуют в обменных процессах желчных кислот и пигментов. В их присутствии происходит синтез веществ, оказывающих антибактериальное действие. Также препарат повышает иммунную-реактивность человеческого организма.

Флорин Форте порошок для приема внутрь пак. 30 шт.

№10 – «Бактериофаг» (Микроген НПО, Россия)

Стафилококковый раствор входит в список лучших пробиотиков для кишечника для взрослых и детей. Используется преимущественно в составе комплексной терапии с антибактериальными препаратами и другими лекарственными средствами.

Бактериофаг стафилококковый раствор для приема внутрь, местного и наружного применения 20 мл флакон 4 шт.

№11 – «Секстафаг» (Микроген НПО, Россия)

Завершает список препаратов пробиотиков для кишечника. Иммунобиологический препарат специфически лизирует бактерии стрептококков и стафилококков, протеи, кишечной и синегнойной палочки. Назначается при энтеральных и гнойно-воспалительных заболеваниях. При необходимости может быть использован в составе комплексной терапии.

Секстафаг раствор для приема внутрь, местного и наружного применения 20 мл 4 шт.

Выводы

Польза пробиотиков

Пробиотические средства нормализуют процессы пищеварения, активируя перистальтику кишечника и восстанавливая микрофлору. Препараты способствуют синтезу полиаминов, укрепляют клеточный цитоскелет и регенерируют кишечный эпителий, повышая защитные функции организма. Они не только уменьшают газообразование, н и тормозят рост вредоносных микроорганизмов.

Какие пробиотики принимать в том или ином случае может посоветовать врач. Специалист отталкивается от показаний и общего состояния организма пациента, исключая развитие передозировки или побочных реакций.

Литература:
https://www.vidal.ru/drugs/clinic-pointer/11.12.01.01
https://medi.ru/info/15562/
https://www.rlsnet.ru/fg_index_id_626.htm
https://medi.ru/spisok/probiotiki/

Понравилась статья? Поделить с друзьями:
  • Пептид тимуса инструкция по применению
  • Пептид hgh 176 191 инструкция
  • Пептид hgh 176 191 инструкция
  • Пептид gonadorelin инструкция по применению
  • Пептамен цена инструкция по применению цена отзывы