Описание
Характеристики
Заявки просим присылать на адрес sales@texenergo.com
По всем другим вопрос ЦПК support@texenergo.com
ООО «Тэксэнерго Электрик» находится по адресу 141580, Московская обл, Солнечногорский р-н, дер. Черная Грязь, дом 65
Одним из эффективных методов повышения энергоэффективности системы освещения и снижения затрат на её эксплуатацию является использование систем управления освещением. Основываясь на многолетнем опыте эксплуатации различных объектов, холдинг БЛ ГРУПП разработал собственную систему управления АСУНО «БРИЗ».
АСУНО «БРИЗ» включает в себя линейку различного оборудования и ПО, предназначенного для автоматизации систем уличного, архитектурного и промышленного освещения.
— Шкафы управления освещением (ШУНО);
— Регуляторы напряжения;
— Автоматизированные пункты питания наружного освещения (АППНО);
— Контроллеры;
— Программное обеспечение.
Дополнительно НПО GALAD предоставляет услуги по проектированию объектов, шеф-монтажу и обучению персонала клиента. Ниже представлен перечень стандартного оборудования. При этом наша компания предлагает возможность разработки и изготовления оборудования по требованию клиента.
Шкафы управления освещением (ШУНО)
Предназначены для автономного и/или удаленного включения освещения, сбора и обработки диагностической и контрольной информации, коммерческого учета электроэнергии.
Шкаф управления освещением на базе контроллеров БРИЗ-РВ предназначен для автономного включения и отключения наружного освещения по астрономическому расписанию с возможностью синхронизации по системам ГЛОНАСС/GPS. Встроенное программное обеспечение позволяет определять время включения и отключения по координатам установки оборудования (широте и долготе).
Шкаф управления освещением на базе контроллера БРИЗ-ТМ (до 6 отходящих трехфазных линий, связь по GSM/GPRS или Ethernet) предназначен для дистанционного включения и отключения наружного освещения по командам диспетчера, сбора и передачи диагностической информации.
Шкаф управления освещением на базе контроллера БРИЗ DMX. Предназначен для управления архитектурным RGBW освещением по протоколу DMX 512.
Преимущества использования ШУНО:
— Снижение затрат на обслуживание системы освещения за счет удаленного контроля её параметров;
— Точный учет и анализ потребляемой электроэнергии;
— Быстрое выявление и, как следствие, быстрое устранение аварийных ситуаций.
Регуляторы напряжения
Предназначены для группового управления световым потоком в линии методом снижения напряжения в сети. Являются энергосберегающим оборудованием и предназначены для управления процессом пуска, стабилизации и понижения энергопотребления светильников наружного освещения с лампами высокого давления (натриевыми или ртутными), использующих электромагнитные ПРА, и специальными LED светильниками GALAD (LED, Стандарт LED, Волна LED[e6] )
Регулятор напряжения БРИЗ.GALAD
Регулятор напряжения с ручным управлением предназначен для оптимизации расхода электрической энергии, питающей осветительные системы, путем снижения напряжения питания.
Регулятор напряжения БРИЗ.GALAD.РВ
Регулятор напряжения с автоматическим управлением по годовому расписанию предназначен для оптимизации расхода электрической энергии, питающей осветительные системы, путем снижения напряжения питания.
Преимущества использования Регулятора напряжения:
— Экономия потребляемой электроэнергии до 35%;
— Выравнивание фазного напряжения – увеличение срока службы светотехнического оборудования.
Автоматизированные пункты питания наружного освещения (АППНО)
Предназначены для питания и управления установками наружного освещения по отходящим трехфазным линиям. АППНО выполняет функции вводно-распределительного устройства и имеет возможность подключения регулятора напряжения, а также подсоединение шкафов управления типа ШУНО-СС.GALAD.хх и автоматизированной информационно-измерительной системы учета электроэнергии (АИИСКУЭ).
Автоматизированный пункт питания наружного освещения (6 отходящих трехфазных линий по 100А), обеспечивающий автономное управление наружным освещением с помощью контроллера «БРИЗ-РВ» (автономное включение и отключение наружного освещения по годовому расписанию).
Автоматизированный пункт питания наружного освещения (6 отходящих трехфазных линий по 100А), обеспечивающий дистанционное управление наружным освещением с помощью контроллера «БРИЗ-ТМ» (включение и отключение наружного освещения по командам диспетчера, сбор и передача диагностической информации).
Преимущества использования АППНО:
— Одновременное выполнение функций вводно-распределительного устройства и шкафа управления;
— Полный удаленный контроль системы.
Контроллеры
НПО GALAD предлагает различные контроллеры для автоматизации инфраструктурных сетей и процессов (освещение, водоснабжение, отопление и др.). Все контроллеры являются собственной разработкой компании. Данные контроллеры являются основным компонентом ШУНО, АППНО и регуляторов напряжения.
Контроллер управления Бриз РВ
Предназначен для автономного управления наружным освещением по хранящемуся в нем астрономическому расписанию включений и выключений. Имеет в своем составе модуль Глонасс/GPS.
Контроллер управления «БРИЗ-ТМ»
Предназначен для дистанционного включения и отключения наружного освещения по командам диспетчера, сбора и передачи диагностической информации (до 6 отходящих трехфазных линий, связь по GSM/GPRS или Ethernet).
Контроллер управления Бриз-DMX
Предназначен для воспроизведения загруженных цветодинамических сценариев (потоков DMX-512).
Контроллер предназначен для управления уличным освещением по данным календаря, хранящегося в энергонезависимой памяти и показаний часов реального времени. Контроллер имеет два канала управления. Первый канал работает по программе управления (календарю), где указывается время включения и отключения на каждый день года. Второй канал может работать как по календарю, так и в режиме «ночного сокращения освещения».
Общие технические характеристики
Рабочие условия применения:
Относительная влажность от 5 до 95% при 35 °C
Атмосферное давление от 66,0 до 106,7 кПа
Синусоидальные вибрации частотой 10-55 Гц, с амплитудой смещения не более 0,15 мм
Температура транспортирования от минус 40 до плюс 55 °C
Средний срок службы 40 лет
Средняя наработка на отказ 140 000 часов
Основные технические и метрологические характеристики:
Номинальное напряжение питания 220 (+10/-15) В
Потребляемая мощность 6 Вт
Количество каналов управления 2
Коммутируемое напряжение не более 250 В
Коммутируемый ток на канал не более 0,3 А
Количество срабатываний 1 000 000
Тип батареи CR 2032
Ведение времени при отсутствии питания 1 год
Срок хранения батареи 10 лет
Погрешность хода часов 1 сек/сутки
Сеть SyBus
Физический интерфейс сети RS-485
Скорость обмена 9600, 38400, 153600, 307200 бод
Степень защиты IP20
Диапазон рабочих температур окружающего воздуха от -40 до +70 °C
Масса 0,6 кг
На чтение 20 мин Просмотров 6 Опубликовано 11 апреля 2023 Обновлено 11 апреля 2023
Содержание
- Основные виды схем управления освещением
- Управление освещением при помощи автоматических выключателей в щите
- Управление освещением местными выключателями с одного, двух, трех и более мест
- Управление выключателями с одного места
- Управление выключателями двух мест
- Управление выключателями трех и более мест
- Управление освещением с использованием импульсного реле
- Управление освещением с использованием контакторов (магнитных пускателей)
- Конструкция контактора и принцип работы
- Базовая схема управления освещением при помощи контактора
- Схемы управления освещением при помощи контактора и кнопок — схема «самоподхвата»
- Базовая схема и принцип работы
- Схема «самоподхвата» для управления освещением с нескольких мест
- Схемы управления освещением при помощи контактора и импульсного реле
- Управление освещением с использованием реле времени
- Базовая схема и принцип работы
- Схемы управления освещением нескольких линий при помощи реле времени
- Управление освещением с использованием реле времени для лестничных клеток
- Управление освещением с использованием фотореле
- Управление освещением с использованием реле напряжения
- Управление освещением с использованием датчиков движения
- Управление освещением с использованием контроллеров
- Скачать примеры схем управления освещением
Основные виды схем управления освещением
В статье рассмотрим основные виды схем управления освещением, которые применяются в щитах освещения и шкафах управления освещением как для автоматического, так и для ручного управления наружным (уличным, декоративным) и внутренним освещением.
Управление освещением при помощи автоматических выключателей в щите
Простейшим способом управления освещением является включение и отключение автоматического выключателя в щите освещения. Это решение применяется в щитах аварийного освещения с постоянно горящими светильниками, которые не требуют частого включения и отключения, а доступ к управлению освещением должен иметь только квалифицированный персонал.
Схема управления освещением при помощи автомата в щите
Но вообще, автоматические выключатели не предназначены для частого включения и отключения, поэтому для управления освещением дополнительно внутрь щита устанавливают выключатель.
Схема управления освещением при помощи переключателя внутри щита
У ведущих производителей подобные выключатели есть в модульном исполнении (например, переключатели E211 у ABB или iSSW у Schneider Electric).
Номинальный ток переключателя ограничен, поэтому для управления мощными нагрузками его может быть недостаточно. В таком случае следует использовать схемы управления освещением при помощи контакторов.
Управление освещением местными выключателями с одного, двух, трех и более мест
Самый распространённый способ управления освещением — выключателями освещения. Данный способ знаком каждому, т.к. управление освещением в квартирах реализовано именно так. Этот способ применяется также в общественных (офисные, торговые, административные) и промышленных зданиях для местного управления освещением.
Управление выключателями с одного места
Простейший и наиболее распространённый — управлением одно- , двух- и трехклавишными выключателями с одного места.
Схема управления освещением одноклавишным выключателем
Двухклавишные и трехклавишные выключатели позволяют управлять несколькими светильниками или разными группами включения в многоламповом светильнике.
Схема управления освещением двухклавишным выключателем
Схема управления освещением трехклавишным выключателем
Управление выключателями двух мест
Для управления освещением в двух мест используют переключатели. Внешне они выглядят как обычные выключатели, но конструктивно отличаются. Такой переключатель содержит перекидной контакт. Соответственно, включение и отключение светильника зависит от положения клавиш на обоих переключателях.
Схема управления освещением переключателями с двух мест
Данная схема управления чаще всего используется в коридорах, т.к. позволяет включить освещение при входе в коридор и отключить при выходе из него. Также переключатели используют для управления освещением в гостиничных номерах и квартирах. Удобно включить общее освещение при входе в спальню, а отключить не вставая с кровати.
Управление выключателями трех и более мест
Для управления освещением с трех мест потребуется ещё один вид выключателя — перекрестный переключатель. Он устанавливается в схеме между переключателями (на схеме обозначен SA2).
Схема управления освещением переключателями с трех мест
Для управления освещением с четырёх мест потребуется установка ещё одного перекрестного переключателя.
Схема управления освещением переключателями с четырех мест
Теоретически, таким образом можно организовать управлением освещением с большого числа мест, добавляя в схему перекрестные переключатели, но так не делают. С точки зрения простоты схемы, удобства и по экономическим соображениям, управление с трех и более мест целесообразнее делать с использованием импульсных реле и кнопочных выключателей.
Управление освещением с использованием импульсного реле
Импульсное реле позволяет организовать управление освещением одного, двух, трех, четырех и практически неограниченного числа мест. Для реализации схемы потребуется импульсное (бистабильное) реле и кнопочные (нажимные) выключатели.
Для понимания логики работы схемы следует разобраться с особенностями работы импульсного реле. Это реле каждый раз переключает свои контакты при подачи импульса на катушку управления.
В зависимости от производителя, подача импульса может быть как на основной питающий вход реле, так и на отдельный вход управления.
Существуют различные версии импульсного реле с разным набором пар контактов NO (нормально открытыми), NC (нормально закрытыми), перекидными контактами и их различной комбинацией.
Рассмотрим работу схемы управления освещением с самой простой версией импульсного реле с одной NO парой контактов.
Схема управления освещением при помощи импульсного реле
Силовая цепь питания светильников состоит из автоматического выключателя QF1 и контактов импульсного реле KI1. Управление импульсным реле осуществляется кнопочными (нажимными) выключателями SB1, SB2. подключенными параллельно на клеммы X1:1 и X1:2.
В начальном положении контакты реле KI1 разомкнуты (NO). При нажатии на кнопку SB её контакты 1 и 2 замыкаются и на катушку реле поступает управляющий импульс. Реле меняет положение контактов — силовая цепь замыкается, освещение включается.
Повторное нажатии на кнопку SB подаст на катушку реле ещё один импульс и реле опять сменит состояние контактов — силовая цепь разомкнётся, освещение отключится.
Как видим, применяя данную схему можно существенно сэкономить на кабеле и монтажных работах.
Схемы с использованием импульсного реле для управления освещением применяют в жилых, общественных и промышленных зданиях.
Управление освещением с использованием контакторов (магнитных пускателей)
Контакторы (магнитные) пускатели широко используются в схемах управления освещением и инженерным оборудованием.
Конструкция контактора и принцип работы
Конструктивно контактор состоит из неподвижной части сердечника, катушки, неподвижной группы контактов, подвижного сердечника с подвижной парой контактов.
При подачи напряжения на катушку, подвижная часть сердечника под воздействием электромагнитного поля вместе с закреплённой на ней подвижной группой контактов притягивается к неподвижной части сердечника. При этом подвижная и неподвижная группа контактов замыкается.
При снятии напряжения с катушки, подвижная часть сердечника под воздействием пружины возвращается в исходное положение и группы контактов размыкаются.
Мы рассмотрели принцип работы контактора с NO (нормально разомкнутыми) контактами. Аналогичным образом работают контакторы с NC (нормально закрытыми) контактами и перекидными контактами.
Базовая схема управления освещением при помощи контактора
Рассмотрим работу базовой схемы управления освещением при помощи контактора. Силовая цепь питания светильников состоит из автоматического выключателя QF1 и NO (нормально открытых) контактов контактора KM1. Цепь управления состоит из автоматического выключателя SF1 и катушки контактора KM1, между которыми включается контакт управляющего элемента (подключается между клеммами X1:1 и X1:2).
Управление освещением при помощи контактора. Базовая схема
Управляющий контакт K разомкнут, катушка контактора KM1 без напряжения, контакты контактора разомкнуты.
При замыкании управляющего контакта K на катушку контактора KM1 подаётся питание и контактор замыкает свои контакты. Силовая цепь замкнута — освещение включается.
При размыкании управляющего контакта цепь управления размыкается. С катушки контактора снимается напряжение и его контакты возвращаются в исходное положение (разомкнуты). Силовая цепь размыкается — освещение отключается.
В качестве управляющего контакта может выступать обычный одноклавишный выключатель освещения, устанавливаемый в нужном месте на стене помещения. Такая схема применяется в квартирах, когда устанавливают при входе в квартиру мастер-выключатель, отключающий все нагрузки кроме тех, которые нельзя отключать (холодильник, например).
Такая же схема с мастер-выключателем применяется в гостиницах, когда в щите номера устанавливают контактор, управляемый карточным выключателем.
Также в качестве управляющего выключателя может выступать выключатель или переключатель SA1, устанавливаемый в щите (например, модульный переключатель E211 у ABB, iSSW у Schneider Electric или подобный).
Управление освещением при помощи контактора и выключателя в щите
Схемы управления освещением при помощи контактора и кнопок — схема «самоподхвата»
Часто при управлении освещением производственных зданий, а также наружного освещения применяется схема «самоподхвата».
Базовая схема и принцип работы
Рассмотрим работу схемы для питания однофазной цепи освещения. Для реализации данной схемы нам понадобятся:
- автоматических выключателя QF1 для защиты силовой цепи
- автоматический выключатель SF1 для защиты цепи управления
- контактор KM1 c двумя парами нормально разомкнутых контактов 2NO
- кнопка SB1 «ПУСК» с нормально разомкнутыми контактами NO
- кнопка SB2 «СТОП» с нормально замкнутыми контактами NC
- сигнальная лампа HL1 для индикации включения освещения
Управление освещением при помощи контактора и кнопок — схема самоподхвата
Кнопки SB2, SB1 и катушку контактора KM1 подключаем последовательно друг за другом. Параллельно с катушкой подключаем сигнальную лампу. Первую пару NO контактов контактора KM1.1 подключаем в силовую цепь, а вторую пару NO контактов контактора KM1.2 подкючаем параллельно NO контактам кнопки SB1.
- В начальном положении цепь управления разомкнута: контакты кнопки SB1 разомкнуты, катушка контактора KM1 без напряжения, пары контактов KM1.1 и KM1.2 разомкнуты, лампа HL1 не горит.
- Нажимаем кнопку SB1. Контакты SB1 замыкаются, контакты SB2 замкнуты, на катушку контактора KM1 подаётся напряжение и загорается сигнальная лампа HL1. Контактор KM1 замыкает свои пары контактов KM1.1 и KM1.2. Силовая цепь замыкается и включается освещение.
- Отпускаем кнопку SB1. Контакты SB1 размыкаются, но подключенная параллельно пара контактов KM1.2 замкнута, поэтому катушка контактора KM1 остаётся под напряжением и не размыкает свои пары контактов.
- Нажимаем кнопку SB2. Контакты SB2 размыкаются, с катушки контактора KM1 снимается напряжение, пары контактов KM1.1 и KM1.2 размыкаются, сигнальная лампа гаснет, освещение отключается.
Как видим, при замыкании кнопки SB1 контактор сам «подхватывает» своё питание за счёт второй пары контактов. Из-за этого данную схему назвали схемой «самоподхвата».
Пожалуй, это одна из основных схем для шкафов и пультов управления освещением. Корпус шкафа делают металлическим, а на переднюю дверцу выводят кнопки и сигнальные лампы. Эту же схему применяют для управления двигателями.
Схема «самоподхвата» для управления освещением с нескольких мест
Также схему «самоподхвата» можно применить для управления освещением с нескольких мест. В этом случае в качестве пар кнопок использую кнопочные посты, устанавливаемые в нужных местах.
Нормально открытые NO контакты кнопочных постов соединяем параллельно, нормально закрытые NC контакты — последовательно. Таким образом, замыкание любого NO-контакта замкнёт цепь питания катушки контактора, а размыкание любого NC-контакта разомкнёт.
Управление освещением с нескольких мест при помощи контактора и кнопок — схема самоподхвата
Подобным образом можно управлять сразу несколькими группами освещения одновременно. Для этого нужно немного видоизменить схему. Контактор 4KM1, установленный в цепи управления, одной парой контактов 4KM1.2 будет «подхватывать» своё питание, а второй парой контактов 4KM1.1 управлять питанием катушек контакторов, включающих освещение.
Управление освещением нескольких групп с нескольких мест при помощи контактора и кнопок — схема самоподхвата
Схемы управления освещением при помощи контактора и импульсного реле
Ещё одним вариантом схемы управления с нескольких мест является комбинированная схема с использованием контакторов и импульсного реле. Данную схему применяют в случае, когда одной кнопкой нужно включить сразу несколько групп освещения.
Рассмотрим данный тип схемы для управления тремя группами освещения с трех мест.
- В начальном состоянии контакты импульсного реле KI1 разомкнуты. Катушки контакторов 1KM1, 2KM1, 3KM1 находятся без напряжения, их пары контактов разомкнуты. Силовые цепи разомкнуты и освещение отключено.
- Нажимаем кнопку, например, SB1и, тем самым, подаем управляющий импульс на катушку импульсного реле KI1. Импульсное реле меняет состояние контактов и замыкает свою пару контактов. На катушки контакторов 1KM1, 2KM1, 3KM1 подаётся напряжение и они замыкают свои пары контактов. Силовые цепи замыкаются и включается освещение.
- Повторно нажимаем кнопку SB1 (либо любую другую — SB2, SB3) и подаем управляющий импульс на катушку импульсного реле KI1. Импульсное реле меняет состояние контактов и размыкает свою пару контактов. Напряжение с катушек контакторов 1KM1, 2KM1, 3KM1 снимается и они размыкают свои пары контактов. Силовые цепи размыкаются и освещение отключается.
Управление освещением нескольких групп с нескольких мест при помощи контактора и импульсного реле
При необходимости, данную схему можно доработать, включив параллельно катушкам контакторов сигнальную лампу, а также установить в щите кнопку для включения освещения с дверцы щита.
Управление освещением с использованием реле времени
Реле времени широко используются в схемах автоматики, в том числе для управления освещением.
Реле времени можно разделить на две большие группы:
- Программируемые реле времени — реле замыкает и размыкает свои контакты в соответствии с заданной программой;
- Таймеры — реле времени замыкает размыкает свои контакты на заданное время после приложения управляющего сигнала.
Программируемые реле времени и таймеры могут быть электронными и электромеханическими.
Программируемые реле времени могут быть с суточным (одна и та же программа повторяется каждые сутки), недельным (одна и та же программа повторяется каждую неделю) и годовым циклом (программа задаётся на год).
Базовая схема и принцип работы
Рассмотрим работу схемы управления освещением на базе программируемого реле времени, работающего по одной суточной программе.
Управление освещением при помощи реле времени. Базовая схема
Допустим, освещение должно быть включено ежедневно с 9:00 до 18:00. В реле времени устанавливаем текущее время и задаем программу, в соответствии с которой в 9:00 реле должно замкнуть свои контакты сроком на 9 часов. Ежедневно, при наступлении 9:00 реле времени KT1 замыкает свои контакты, силовая цепь оказывается замкнутой и освещение включено. Через 9 часов работа программы заканчивается и реле размыкает свои контакты — освещение отключается.
Схемы управления освещением нескольких линий при помощи реле времени
Для управления несколькими линиями по одной программе применяют реле времени в комбинации с контакторами. Контакторы включают и отключают питание, а реле времени управляет их работой.
Управление освещением при помощи реле времени и контакторов
Питание на катушки контакторов 1KM1, 2KM1, 3KM1 подаётся через трехпозиционный переключатель SA1 с нейтральным положением:
- В положении «Ручное» питание напрямую подаётся на катушки контакторов KM и они замыкают свои пары контактов, освещение включается в соответствии с заданной программой;
- В положении «0» цепь питания катушек контакторов разорвана и освещение отключено;
- В положении «Автомат» питание на катушки контакторов подаётся через контакты реле времени KT1. Включением и отключением освещения управляет реле времени, замыкая и размыкая свои контакты в соответствии с заданной программой.
При необходимости, можно дополнить схему сигнальной лампой HL, включенной параллельно катушкам контакторов, которая будет информировать о включении освещения.
Управление освещением с использованием реле времени для лестничных клеток
Для экономии электроэнергии и управления освещением с нескольких мест используют реле времени из группы таймеров. Данный тип реле замыкают или размыкают свои контакты после подачи на их катушку управляющего сигнала, замыкание или размыкание контактов происходит с заданной временной задержкой.
Основное применение данный тип реле времени нашёл в схемах управления двигателями и схемах АВР (автоматического ввода резерва), но для управления освещением также используется. Например, для управления освещением лестничных клеток.
Рассмотрим применение и работу реле времени для решения данной задачи:
- В начальный момент времени контакты реле KT1 разомкнуты, освещение отключено. Кнопки SB1, SB2. установлены на каждом этаже лестничной клетки и подключены параллельно к управляющим контактам реле времени KT1.
- При нажатии любую из кнопок SB, на катушку реле времени KT1 поступает управляющий сигнал, оно замыкает свои контакты, освещение включается, а реле времени начинает отсчет.
- По прошествии заданного времени реле KT1 размыкает свои контакты и освещение отключается.
- Если при замкнутых контактах реле (т.е. до истечения заданного времени) поступает новый управляющий сигнал, то отсчет времени начинается заново.
Управление освещением лестничных клеток с использованием реле времени
Таким образом, человек, заходя на лестничную клетку, нажимает кнопочный выключатель SB и включает освещение. На следующем этаже опять нажимает кнопку и т.д. Через заданное время освещение на лестничной клетке отключается. Настройка задержки отключения выбирается таким образом, чтобы человек достаточно времени, чтобы дойти от одного кнопочного выключателя до другого.
Данную схему можно также использовать для управления освещением в коридорах. Она позволяет организовать включение освещения с нескольких мест (как при использовании импульсного реле) и при этом ещё сэкономить электроэнергию.
Управление освещением с использованием фотореле
Фотореле (сумеречное реле, сумеречный выключатель) используют для управления наружным (уличным, декоративным) освещением. Фотореле состоит из двух частей: самого реле, устанавливаемого в щит, и выносного датчика освещенности.
Рассмотрим работу схемы управления наружным освещением на базе самой простой версии фотореле, реагирующей только на уровень освещенности.
Датчик освещенности (фотодатчик) BL1 подаёт сигнал на фотореле KL1 пропорционально уровню освещённости. При снижении уровня освещённости ниже заданного, фотореле KL1 замыкает свою пару контактов. Силовая цепь замыкается, включается наружное освещение. При повышении уровня освещенности выше заданного, фотореле KL1 размыкает свою пару контактов и наружное освещение отключается.
Управление наружным освещением при помощи фотореле. Базовая схема
В линейках ведущих производителей представлено несколько вариаций фотореле:
- Самая простая версия — фотореле реагирует только на уровень освещенности. Реле комплектуется фотодатчиком;
- Версия с возможностью задать программу включения (одну или несколько). Фотореле замыкает и размыкает свои контакты в зависимости от уровня освещенности и в соответствии с заданной программой. Реле комплектуется фотодатчиком;
- Астрореле. Реле фотодатчиком не комплектуется. Управление включение осуществляется по заданным программам. Время восхода и заката реле определяет автоматически в зависимости от заданных географических высоты, долготы и астрономического времени.
Как видим, по своему функционалу программируемые фотореле являются своего рода реле времени с дополнительными функциями.
На практике базовая схема управления наружным освещением обычное не применяется, т.к. необходимо одновременно включать сразу несколько групповых линий. Установка на каждую групповую линию фотореле нецелесообразно как с экономической точки зрения, так и с точки зрения здравого смысла. Поэтому в щитах наружного освещения и шкафах управления наружным освещением устанавливают одно фотореле, которое управляет питанием катушек контакторов, замыкающих силовые цепи.
Рассмотрим работу доработанной версии схемы управления наружным освещением.
Управление наружным освещением при помощи фотореле и контакторов
Питание на катушки контакторов 1KM1, 2KM1, 3KM1 подаётся через трехпозиционный переключатель SA1 с нейтральным положением:
- В положении «Ручное» питание напрямую подаётся на катушки контакторов KM и они замыкают свои пары контактов, наружное освещение включается вне зависимости от уровня освещённости
- В положении «0» цепь питания катушек контакторов разорвана и наружное освещение отключено вне зависимости от уровня освещённости
- В положении «Автомат» питание на катушки контакторов подаётся через контакты фотореле KL1. Включением и отключением наружного освещения управляет фотореле, замыкая и размыкая свои контакты в зависимости от уровня освещённости.
При необходимости, можно дополнить схему сигнальной лампой HL, включенной параллельно катушкам контакторов, которая будет информировать о включении наружного освещения.
Фотореле с несколькими программами имеет количество пар контактов в соответствии с количеством предусмотренных программ. Таким образом, можно запрограммировать несколько групп включения наружного освещения.
Управление освещением с использованием реле напряжения
Реле напряжения предназначено для других целей, но мы его будем использовать для управление освещением.
Допустим, при пропадании напряжения (снижении ниже допустимого значения и/или повышении выше допустимого значения) в щите рабочего освещения необходимо включить аварийное освещение в щите аварийного освещения.
Для этого на вводе в щит Щит1 устанавливаем реле напряжения SQZ3 производства ABB (KV1). Данное реле имеет перекидной контакт. При выходе напряжения в сети за допустимые пределы, а также при обрыве любой из фаз, реле меняет положение контактов. Выводим контакты 3 и 5 на клеммы X1:1 и X1:2 для удобства подключения сигнального кабеля.
В щите Щит2 реализована стандартная схема управления освещением при помощи контактора. Сигнальный кабель от щита Щит1 подключаем на клеммы в щит Щит2 в цепь управления питанием катушки контактора KM1.
Управление освещением при помощи реле напряжения с NO контактами
При срабатывании реле KV1 в щите Щит1 реле меняет положение контактов и пара контактов 3 и 5 становится замкнутой. Таким образом, цепь питания катушки контактора KM1 в щите Щит2 замыкается, на катушку подаётся напряжение и контактор KM1 замыкает свою пару контактов. Силовая цепь замыкается, включается освещение, подключенное к щиту Щит2.
При возвращении напряжения на вводе в щит Щит1 в допустимые пределы, реле KV1 возвращает свои контакты в исходное положение, размыкая пару контактов 3 и 5. Цепь питания катушки контактора KM1 размыкается, напряжение с катушки контактора снимается и он размыкает свои контакты. Силовая цепь размыкается, освещение, подключенное к щиту Щит2, отключается.
Вместо реле напряжения SQZ3 можно взять аналог у другого производителя, либо установить несколько реле (реле минимального напряжения, реле максимального напряжения, реле контроля фаз), а их управляющие NO-контакты соединить параллельно. Таким образом, при срабатывании любого реле будет генерироваться управляющий сигнал на включение освещения в щите Щит2.
Для большей надежности и страховки от обрыва сигнального кабеля используют схему с нормально закрытыми NC контактами.
Управление освещением при помощи реле напряжения с NC контактами
Принцип работы данной схемы аналогичен предыдущей с единственным отличием, что мы используем нормально закрытые NC контакты в цепи управления. В нормальном режиме (без напряжения на катушке) контакты контактора KM1 замкнуты. Но, т.к., мы используем NC контакт реле напряжения KV1, то в нормальном режиме катушка контактора KM1 в щите Щит2 оказывается под напряжением и размыкает свои контакты. Соответственно, цепь питания контакторов 1KM1, 2KM1 в щите Щит2 разомкнута, питание с их катушек снято и их контакты разомкнуты. Силовая цепь питания освещения, подключенного к щиту Щит2 разомкнута и освещение отключено.
При срабатывании реле напряжения KV1 в щите Щит1 пара контактов 4 и 5 размыкается и, тем самым, разрывается цепь питания катушки KM1 в щите Щит2. Без напряжения NC контакты контактора KM1 возвращаются в исходное положение — замыкаются, тем самым на катушки контакторов 1KM1, 2KM1 подается напряжение и они замыкают свои контакты. Силовая цепь питания освещения замыкается и освещение включается.
Вместо реле напряжения SQZ3 можно взять аналог у другого производителя, либо установить несколько реле (реле минимального напряжения, реле максимального напряжения, реле контроля фаз), а их управляющие NC-контакты соединить последовательно. Таким образом, при срабатывании любого реле либо обрыве сигнального кабеля будет генерироваться управляющий сигнал на включение освещения в щите Щит2, т.к. будет разрываться сеть питания катушки управляющего контактора KM1 с NC-контактами.
Управление освещением с использованием датчиков движения
Датчики движения давно перестали быть чем-то дорогим и экзотическим. Их давно уже применяют для управления освещением и экономии электроэнергии в общественных зданиях (например, в санузлах) и в загородных домах (в основном для управления наружным освещением).
Датчик представляет собой миниконтактор, который замыкает свои контакты при обнаружении движения в контролируемой зоне.
Как и с обычным выключателем, датчик следует подключать до светильника так, чтобы при его разомкнутых контактах, светильник оказывался без напряжения.
Управление освещением датчиком движения. Базовая схема
Для одновременного управления несколькими группами или для управления трехфазным группами датчики движения используют совместно с контакторами. Контакт датчик SM1 подключают в цепь питания катушки контактора KM1. При срабатывании датчика (обнаружено движение в контролируемой зоне) датчик замыкает свои контакты. Цепь питания катушки контактора KM1, на катушку подается напряжение. Контактор KM1 замыкает свои контакты, силовая цепь замыкается и включается освещение.
При размыкании контактов датчика движения SM1, цепь питания катушки контактора KM1 размыкаетя, с неё снимается напряжение. Контактор размыкает свою пару контактов и разрывает силовую цепь питания освещения. Освещение отключается.
Управление освещением датчиком движения и контактором
При управлении несколькими группами, катушки их контакторов подключаются в схему параллельно.
Также можно реализовать управление освещением по сигналу от нескольких датчиков движения. Контакты датчиков подключаются параллельно на клеммы X1:1, X1:2. При срабатывании любого из датчиков будет замкнута управляющая цепь, подано питание на катушки контакторов и, как следствие, включено освещение.
Управление освещением с использованием контроллеров
На больших объектах управление освещением осуществляют по командам из BMS — Building Management System — Системы управления зданием. Программы управления освещением записаны в контроллерах, контроллеры выдают управляющие сигналы в щиты освещения. В щитах освещения для включения и отключения освещения применены схемы с контакторами.
Скачать примеры схем управления освещением
Для получения чертежа dwg с примерами схем управления освещением из этой статьи заполните контактные данные в форме и на указанный email придёт письмо со ссылкой на скачивание файла.
Источник
World Class Design | World Class Function | 30 Years Expertise In Industrial Motor Control HG102633v6.00a Combined PRODUCT MANUAL: PL/X DIGITAL DC DRIVE PARTS 1, 2, 3 & BLOCKS Contents 3 NOTE. These instructions do not purport to cover all details or variations in equipment, or to provide for every possible contingency to be met in connection with installation, operation, or maintenance. Should further information be desired or should particular problems arise which are not covered sufficiently for the purchaser's purposes, the matter should be referred to the local Supplier sales office. The contents of this instruction manual shall not become part of or modify any prior or existing agreement, commitment, or relationship. The sales contract contains the entire obligation of Sprint Electric Ltd. The warranty contained in the contract between the parties is the sole warranty of Sprint Electric Ltd. Any statements contained herein do not create new warranties or modify the existing warranty. IMPORTANT MESSAGE This is a version 6.00a manual. Version 6.10 and above software has all the functions described. See 5.1.7 Finding the software version number of the unit. DO YOU NEED HELP? See 14.13 What to do in the event of a problem. Other PL/X manuals. Part 2 APPLICATION BLOCKS, Part 3 PL/X 275-980 (from 650A to 2250A), SERIAL COMMS and STACK DRIVER. All also available to download from www.sprint-electric.com For the PILOT+ online configuration tool please refer to the PILOT+ Manual . Use this manual with the main PL / PLX Digital DC Drive product manuals. 1 Table of contents 1 2 Table of contents ................................................................................... 3 Warnings ............................................................................................. 13 2.1 2.2 2.3 2.4 3 General Warnings.......................................................................................................... 13 Warnings and Instructions ............................................................................................... 14 General Risks ............................................................................................................... 15 Summary of further WARNINGS ......................................................................................... 16 Introduction and Technical Data ................................................................ 19 3.1 Introduction ................................................................................................................ 20 3.2 How do they work? ........................................................................................................ 20 3.2.1 Useful things to know about the PL/X .............................................................................. 21 3.2.2 Tips for using the manual ............................................................................................. 21 3.3 General Technical Data .................................................................................................. 22 3.3.1 Regenerative stopping with PL models ............................................................................. 22 3.3.2 Supply voltages required for all models ............................................................................ 22 3.3.3 Control terminals electrical specification......................................................................... 24 3.4 Control terminals overview.............................................................................................. 25 3.4.1 General requirements ................................................................................................. 25 3.4.2 Digital inputs and outputs............................................................................................. 25 3.4.2.1 Encoder inputs.................................................................................................... 26 3.4.2.2 Digital outputs.................................................................................................... 26 3.4.3 Analogue inputs ......................................................................................................... 26 3.4.4 Analogue tachogenerator input ...................................................................................... 27 3.4.5 Signal test pins .......................................................................................................... 27 3.5 Control terminal default functions..................................................................................... 27 3.5.1 Run, Jog, Start, Cstop ................................................................................................. 29 3.5.2 Summary of default terminal functions ............................................................................ 31 3.6 Supply loss shutdown ..................................................................................................... 32 3.7 PILOT+ ....................................................................................................................... 32 4 Basic application ................................................................................... 33 4.1 Basic speed or torque control ........................................................................................... 34 4.2 Main Contactor operation................................................................................................ 35 4.2.1 Contactor control questions and answers .......................................................................... 35 4.3 Main contactor wiring options .......................................................................................... 37 4.3.1 Main contactor isolating AC stack supply........................................................................... 37 4.3.2 Main contactor isolating AC stack and auxiliary supplies........................................................ 37 4 Contents 4.3.3 Main contactor isolating DC armature .............................................................................. 38 4.3.4 Using pushbuttons for simple STOP / START (Coast to stop) ................................................... 39 4.3.5 Using pushbuttons for STOP / START (With ramp to stop, jog and slack take up) .......................... 40 4.4 ESSENTIAL pre-start checks.............................................................................................. 41 4.4.1 POWER ENGINEERING .................................................................................................. 41 4.4.2 MECHANICAL ENGINEERING ........................................................................................... 41 4.5 CONTROL ENGINEERING COMMISSIONING PROCEDURES............................................................. 42 4.5.1 Quick start calibration ................................................................................................. 42 4.5.2 Quick start calibration step by step ................................................................................. 43 4.5.3 Quick start current loop AUTOTUNE ................................................................................. 43 4.5.4 PASSIVE MOTOR defaults / Using passive motor menu for small test motors ................................ 44 5 Menu tree structure ............................................................................... 45 5.1 Key functions ............................................................................................................... 46 5.1.1 Incrementing and decrementing parameter values. ............................................................. 47 5.1.2 PARAMETER SAVE ....................................................................................................... 47 5.1.3 Restoring the drive parameters to the default condition ....................................................... 47 5.1.4 Branch hopping between monitor windows ........................................................................ 47 5.1.5 Power up windows...................................................................................................... 47 5.1.6 Default % DIAGNOSTIC summary windows .......................................................................... 48 5.1.7 Finding the software version number of the unit. ................................................................ 48 5.2 ENTRY MENU................................................................................................................ 48 5.2.1 Full menu diagram (Change parameters)........................................................................... 49 5.2.2 Full menu diagram (Change parameters continued) ............................................................. 50 5.2.3 Full menu diagram (Diagnostics) ..................................................................................... 51 5.2.4 Full menu diagram (Motor drive alarms, serial links and display functions) ................................. 52 5.2.5 Full menu diagram (Application blocks and configuration) ..................................................... 53 5.2.6 Full menu diagram (Configuration continued)..................................................................... 54 5.2.7 Full menu diagram (Block OP and Fieldbus configs, Drive personality and Conflict Help) ................ 55 5.3 Archiving PL/X recipes ................................................................................................... 56 6 CHANGE PARAMETERS............................................................................. 57 6.1 CHANGE PARAMETERS / CALIBRATION ................................................................................. 59 6.1.1 CALIBRATION / Block diagram........................................................................................ 60 6.1.2 CALIBRATION / Rated armature amps PIN 2 QUICK START................................................... 60 6.1.3 CALIBRATION / Current limit (%) PIN 3 QUICK START ......................................................... 61 6.1.4 CALIBRATION / Rated field amps PIN 4 QUICK START ........................................................ 61 6.1.5 CALIBRATION / Base rated motor rpm PIN 5 QUICK START .................................................. 62 6.1.6 CALIBRATION / Desired max rpm PIN 6 QUICK START......................................................... 62 6.1.7 CALIBRATION / Zero speed offset PIN 7........................................................................... 62 6.1.8 CALIBRATION / Max tacho volts PIN 8 ............................................................................. 63 6.1.9 CALIBRATION / Speed feedback type PIN 9 QUICK START ................................................... 64 6.1.10 CALIBRATION / ENCODER SCALING ................................................................................. 65 6.1.10.1 ENCODER SCALING / Quadrature enable PIN 10 ......................................................... 66 6.1.10.2 ENCODER SCALING / Encoder lines PIN 11................................................................ 67 6.1.10.3 ENCODER SCALING / Motor / encoder speed ratio PIN 12 ............................................. 67 6.1.10.4 ENCODER SCALING / Encoder sign PIN 13................................................................. 67 6.1.11 CALIBRATION / IR compensation PIN 14 ......................................................................... 68 6.1.12 CALIBRATION / Field current feedback trim PIN 15 ........................................................... 68 6.1.13 CALIBRATION / Armature volts trim PIN 16 ..................................................................... 68 6.1.14 CALIBRATION / Analog tacho trim PIN 17 ....................................................................... 69 6.1.15 CALIBRATION / Rated armature volts PIN 18 QUICK START ................................................ 69 6.1.16 CALIBRATION / EL1/2/3 rated AC volts PIN 19 QUICK START .............................................. 69 6.1.17 CALIBRATION / Motor 1 or 2 select PIN 20 ...................................................................... 70 6.2 CHANGE PARAMETERS / RUN MODE RAMPS ........................................................................... 71 6.2.1 RUN MODE RAMPS / Block diagram including JOG ................................................................ 72 6.2.2 RUN MODE RAMPS / Ramp output monitor PIN 21............................................................... 73 6.2.3 RUN MODE RAMPS / Forward up time PIN 22..................................................................... 73 6.2.4 RUN MODE RAMPS / Forward down time PIN 23 ................................................................. 73 6.2.5 RUN MODE RAMPS / Reverse up time PIN 24 ..................................................................... 73 6.2.6 RUN MODE RAMPS / Reverse down time PIN 25.................................................................. 73 6.2.7 RUN MODE RAMPS / Ramp input PIN 26 ........................................................................... 74 Contents 5 6.2.8 RUN MODE RAMPS / Forward minimum speed PIN 27........................................................... 74 6.2.9 RUN MODE RAMPS / Reverse minimum speed PIN 28 ........................................................... 74 6.2.10 RUN MODE RAMPS / Ramp automatic preset PIN 29 ........................................................... 75 6.2.11 RUN MODE RAMPS / Ramp external preset PIN 30 ............................................................. 75 6.2.12 RUN MODE RAMPS / Ramp preset value PIN 31 ................................................................. 75 6.2.13 RUN MODE RAMPS / Ramp S-profile % PIN 32 ................................................................... 75 6.2.14 RUN MODE RAMPS / Ramp hold enable PIN 33.................................................................. 75 6.2.15 RUN MODE RAMPS / Ramping threshold PIN 34................................................................. 76 6.2.16 RUN MODE RAMPS / Ramping flag PIN 35........................................................................ 76 6.3 CHANGE PARAMETERS / JOG CRAWL SLACK .......................................................................... 77 6.3.1 JOG CRAWL SLACK / Block diagram including RUN MODE RAMPS .............................................. 78 6.3.2 JOG CRAWL SLACK / Jog speed 1 / 2 PINs 37 / 38.............................................................. 79 6.3.3 JOG CRAWL SLACK / Slack speed 1 / 2 PINs 39 / 40............................................................ 79 6.3.4 JOG CRAWL SLACK / Crawl speed PIN 41 ......................................................................... 79 6.3.5 JOG CRAWL SLACK / Jog mode select PIN 42 .................................................................... 80 6.3.6 JOG CRAWL SLACK / Jog/Slack ramp PIN 43 ..................................................................... 80 6.4 CHANGE PARAMETERS / MOTORISED POT RAMP...................................................................... 81 6.4.1 MOTORISED POT RAMP / Block diagram ............................................................................ 82 6.4.2 MOTORISED POT RAMP / MP output monitor PIN 45 ............................................................ 82 6.4.3 MOTORISED POT RAMP / MP Up / Down time PINs 46 / 47 .................................................... 82 6.4.4 MOTORISED POT RAMP / MP Up / Down command PINs 48 / 49 .............................................. 83 6.4.5 MOTORISED POT RAMP / MP Maximum / minimum clamps PINs 50 / 51 .................................... 83 6.4.6 MOTORISED POT RAMP / MP preset PIN 52 ....................................................................... 83 6.4.7 MOTORISED POT RAMP / MP Preset value PIN 53................................................................ 84 6.4.8 MOTORISED POT RAMP / MP memory boot up PIN 54........................................................... 84 6.5 CHANGE PARAMETERS / STOP MODE RAMP ........................................................................... 85 6.5.1 STOP MODE RAMP / Block diagram .................................................................................. 85 6.5.1.1 Block diagram of contactor control........................................................................... 86 6.5.1.2 Speed profile when stopping................................................................................... 87 6.5.1.3 Contactor drop out .............................................................................................. 87 6.5.1.4 Precise stopping.................................................................................................. 88 6.5.2 STOP MODE RAMP / Stop ramp time PIN 56 ...................................................................... 88 6.5.3 STOP MODE RAMP / Stop time limit PIN 57....................................................................... 88 6.5.4 STOP MODE RAMP / Live delay mode PIN 58 ..................................................................... 89 6.5.5 STOP MODE RAMP / Drop-out speed PIN 59 ...................................................................... 89 6.5.6 STOP MODE RAMP / Drop-out delay PIN 60 ....................................................................... 89 6.6 CHANGE PARAMETERS / SPEED REF SUMMER ......................................................................... 90 6.6.1 SPEED REF SUMMER / Block diagram ................................................................................ 90 6.6.2 SPEED REF SUMMER / Internal speed reference 1 PIN 62 ...................................................... 91 6.6.3 SPEED REF SUMMER / Auxiliary speed reference 2 PIN 63 ..................................................... 91 6.6.4 SPEED REF SUMMER / Speed reference 3 monitor PIN 64 ...................................................... 91 6.6.5 SPEED REF SUMMER / Ramped speed reference 4 PIN 65 ...................................................... 91 6.6.6 SPEED REF SUMMER / Speed/Current Reference 3 sign PIN 66 ............................................... 91 6.6.7 SPEED REF SUMMER / Speed/Current Reference 3 ratio PIN 67 .............................................. 92 6.7 CHANGE PARAMETERS / SPEED CONTROL ............................................................................. 92 6.7.1 SPEED CONTROL / Block diagram .................................................................................... 93 6.7.2 SPEED CONTROL / Max positive speed reference PIN 69....................................................... 93 6.7.3 SPEED CONTROL / Max negative speed reference PIN 70...................................................... 93 6.7.4 SPEED CONTROL / Speed proportional gain PIN 71 ............................................................. 93 6.7.5 SPEED CONTROL / Speed integral time constant PIN 72 ....................................................... 94 6.7.6 SPEED CONTROL / Speed integral reset enable PIN 73......................................................... 94 6.7.7 SPEED CONTROL / SPEED PI ADAPTION ............................................................................. 94 6.7.7.1 SPEED PI ADAPTION / Low break point PIN 74 ............................................................ 95 6.7.7.2 SPEED PI ADAPTION / High break point PIN 75............................................................ 95 6.7.7.3 SPEED PI ADAPTION / Low breakpoint proportional gain PIN 76 ....................................... 95 6.7.7.4 SPEED PI ADAPTION / Low breakpoint integral time constant PIN 77................................. 95 6.7.7.5 SPEED PI ADAPTION / Integral % during ramp PIN 78 .................................................... 95 6.7.7.6 SPEED PI ADAPTION / Speed loop adaption enable PIN 79.............................................. 96 6.7.7.7 SPEED PI ADAPTION / Using small speed inputs ............................................................ 96 6.8 CHANGE PARAMETERS / CURRENT CONTROL ......................................................................... 97 6.8.1 CURRENT CONTROL / Block diagram ................................................................................ 98 6 Contents 6.8.2 CURRENT CONTROL / Current clamp scaler PIN 81 ............................................................. 98 6.8.3 CURRENT CONTROL / CURRENT OVERLOAD ........................................................................ 98 6.8.3.1 CURRENT OVERLOAD / Overload % target PIN 82 ......................................................... 99 6.8.3.1.1 Diagram showing O/LOAD % TARGET set to 105% ..................................................... 99 6.8.3.1.2 How to get overloads greater than 150% using 82)O/LOAD % TARGET .......................... 100 6.8.3.1.3 Maximum overload table ................................................................................ 100 6.8.3.2 CURRENT OVERLOAD / Overload ramp time PIN 83 .................................................... 100 6.8.4 CURRENT CONTROL / I DYNAMIC PROFILE........................................................................ 101 6.8.4.1 I DYNAMIC PROFILE / Profile enable PIN 84 ............................................................. 101 6.8.4.2 I DYNAMIC PROFILE / Speed break point for high current limit PIN 85 .............................. 102 6.8.4.3 I DYNAMIC PROFILE / Speed break point for low current limit PIN 86 ............................... 102 6.8.4.4 I DYNAMIC PROFILE / Profile current for low current limit PIN 87 .................................. 102 6.8.5 CURRENT CONTROL / Dual current clamps enable PIN 88 ................................................... 102 6.8.6 CURRENT CONTROL / Upper current clamp PIN 89 ........................................................... 103 6.8.7 CURRENT CONTROL / Lower current clamp PIN 90 ........................................................... 103 6.8.8 CURRENT CONTROL / Extra current reference PIN 91........................................................ 103 6.8.9 CURRENT CONTROL / Autotune enable PIN 92 ................................................................ 103 6.8.10 CURRENT CONTROL / Current amp proportional gain PIN 93 .............................................. 104 6.8.11 CURRENT CONTROL / Current amp integral gain PIN 94.................................................... 104 6.8.12 CURRENT CONTROL / Discontinuous current point PIN 95 ................................................. 105 6.8.12.1 Setting the current loop control terms manually. ...................................................... 105 6.8.13 CURRENT CONTROL / 4 quadrant mode enable PIN 96 ..................................................... 105 6.8.14 CURRENT CONTROL / Speed bypass current reference enable PIN 97 ................................... 105 6.9 CHANGE PARAMETERS / FIELD CONTROL ............................................................................ 106 6.9.1 FIELD CONTROL / Block diagram................................................................................... 107 6.9.2 FIELD CONTROL / Field enable PIN 99 .......................................................................... 108 6.9.3 FIELD CONTROL / Voltage output % PIN 100 ................................................................... 108 6.9.4 FIELD CONTROL / Field proportional gain PIN 101 ............................................................ 108 6.9.5 FIELD CONTROL / Field integral gain PIN 102.................................................................. 108 6.9.6 FIELD CONTROL / FLD WEAKENING MENU ........................................................................ 109 6.9.6.1 FLD WEAKENING MENU / Field weakening enable PIN 103............................................ 110 6.9.6.2 FLD WEAKENING MENU / Field weakening proportional gain PIN 104............................... 110 6.9.6.3 FLD WEAKENING MENU / Field weakening integral time constant PIN 105 ........................ 110 6.9.6.4 FLD WEAKENING MENU / Field weakening derivative time constant PIN 106 ..................... 110 6.9.6.5 FLD WEAKENING MENU / Field weakening feedback derivative time constant PIN 107 ......... 111 6.9.6.6 FLD WEAKENING MENU / Field weakening feedback integral time constant PIN 108 ............ 111 6.9.6.7 FLD WEAKENING MENU / Spillover armature voltage % PIN 109 ..................................... 111 6.9.6.8 FLD WEAKENING MENU / Minimum field current % PIN 110 ........................................... 111 6.9.7 FIELD CONTROL / Standby field enable PIN 111............................................................... 112 6.9.8 FIELD CONTROL / Standby field current PIN 112 .............................................................. 112 6.9.9 FIELD CONTROL / Quench delay PIN 113 ....................................................................... 112 6.9.10 FIELD CONTROL / Field reference input PIN 114............................................................. 112 6.10 CHANGE PARAMETERS / ZERO INTERLOCKS ........................................................................ 113 6.10.1 ZERO INTERLOCKS / Block diagram .............................................................................. 114 6.10.2 ZERO INTERLOCKS / Standstill enable PIN 115 ............................................................... 114 6.10.3 ZERO INTERLOCKS / Zero reference start enable PIN 116.................................................. 114 6.10.4 ZERO INTERLOCKS / Zero interlocks speed level PIN 117 .................................................. 114 6.10.5 ZERO INTERLOCKS / Zero interlocks current level PIN 118................................................. 115 6.10.6 ZERO INTERLOCKS / At zero reference flag PIN 119......................................................... 115 6.10.7 ZERO INTERLOCKS / At zero speed flag PIN 120 ............................................................. 115 6.10.8 ZERO INTERLOCKS / At standstill flag PIN 121................................................................ 115 6.10.8.1 Low speed performance ..................................................................................... 115 6.10.9 ZERO INTERLOCKS / SPINDLE ORIENTATE ....................................................................... 116 6.10.9.1 SPINDLE ORIENTATE / Block diagram ..................................................................... 117 6.10.9.1.1 Spindle orientate operation ........................................................................... 117 6.10.9.2 SPINDLE ORIENTATE / Zero speed lock PIN 122 ....................................................... 118 6.10.9.3 SPINDLE ORIENTATE / Marker enable PIN 240 ......................................................... 118 6.10.9.3.1 Marker specification .................................................................................... 118 6.10.9.4 SPINDLE ORIENTATE / Marker offset PIN 241 .......................................................... 119 6.10.9.5 SPINDLE ORIENTATE / Position reference PIN 242 .................................................... 120 6.10.9.6 SPINDLE ORIENTATE / Marker frequency monitor PIN 243 .......................................... 120 Contents 6.10.9.7 7 7 SPINDLE ORIENTATE / In position flag PIN 244 ........................................................ 120 DIAGNOSTICS ...................................................................................... 121 7.1 DIAGNOSTICS / SPEED LOOP MONITOR............................................................................... 7.1.1 SPEED LOOP MONITOR / Total speed reference monitor PIN 123 .......................................... 7.1.2 SPEED LOOP MONITOR / Speed demand monitor PIN 124.................................................... 7.1.3 SPEED LOOP MONITOR / Speed error monitor PIN 125 ....................................................... 7.1.4 SPEED LOOP MONITOR / Armature volts monitor PIN 126 ................................................... 7.1.5 SPEED LOOP MONITOR / Armature volts % monitor PIN 127................................................. 7.1.6 SPEED LOOP MONITOR / Back emf % monitor PIN 128........................................................ 7.1.7 SPEED LOOP MONITOR / Tachogenerator volts monitor PIN 129 ........................................... 7.1.8 SPEED LOOP MONITOR / Motor RPM monitor PIN 130......................................................... 7.1.9 SPEED LOOP MONITOR / Encoder RPM monitor PIN 132...................................................... 7.1.10 SPEED LOOP MONITOR / Speed feedback % monitor PIN 131 .............................................. 7.2 DIAGNOSTICS / ARM I LOOP MONITOR ............................................................................... 7.2.1 ARM I LOOP MONITOR / Armature current demand monitor PIN 133 ...................................... 7.2.2 ARM I LOOP MONITOR / Armature current % monitor PIN 134 .............................................. 7.2.3 ARM I LOOP MONITOR / Armature current amps monitor PIN 135 ......................................... 7.2.4 ARM I LOOP MONITOR / Upper current limit monitor PIN 136 .............................................. 7.2.5 ARM I LOOP MONITOR / Lower current limit monitor PIN 137 .............................................. 7.2.6 ARM I LOOP MONITOR / Actual prevailing upper/ lower current limits PINs 138 / 139 ................ 7.2.7 ARM I LOOP MONITOR / Overload limit monitor PIN 140..................................................... 7.2.8 ARM I LOOP MONITOR / At current limit flag PIN 141 ........................................................ 7.3 DIAGNOSTICS / FLD I LOOP MONITOR ................................................................................ 7.3.1 FLD I LOOP MONITOR / Field demand monitor PIN 143 ...................................................... 7.3.2 FLD I LOOP MONITOR / Field current % monitor PIN 144 .................................................... 7.3.3 FLD I LOOP MONITOR / Field current amps monitor PIN 145................................................ 7.3.4 FLD I LOOP MONITOR / Field firing angle of advance monitor PIN 146.................................... 7.3.5 FLD I LOOP MONITOR / Field active monitor PIN 147 ........................................................ 7.4 DIAGNOSTICS / ANALOG IO MONITOR ................................................................................ 7.4.1 ANALOG IO MONITOR / UIP2 to 9 analogue input monitor PINs 150 to 157................................ 7.4.2 ANALOG IO MONITOR / AOP1/2/3 analogue output monitor PINs 159, 160, 161 ........................ 7.5 DIAGNOSTICS / DIGITAL IO MONITOR ................................................................................ 7.5.1 DIGITAL IO MONITOR / UIP2 to 9 digital input monitor PIN 162 ............................................ 7.5.2 DIGITAL IO MONITOR / DIP1 to 4 and DIO1 to 4 digital input monitor PIN 163........................... 7.5.3 DIGITAL IO MONITOR / DOP1 to 3 + Control IPs digital monitor PIN 164 .................................. 7.5.4 DIGITAL IO MONITOR / +Armature bridge flag PIN 165....................................................... 7.5.5 DIGITAL IO MONITOR / Drive start flag PIN 166 ............................................................... 7.5.6 DIGITAL IO MONITOR / Drive run flag PIN 167 ................................................................. 7.5.7 DIGITAL IO MONITOR / Internal running mode monitor PIN 168 ............................................ 7.6 DIAGNOSTICS / BLOCK OP MONITOR ................................................................................. 7.6.1 BLOCK OP MONITOR / General description ...................................................................... 7.7 DIAGNOSTICS / EL1/2/3 RMS MON PIN 169 ....................................................................... 7.8 DIAGNOSTICS / DC KILOWATTS MON PIN 170 .................................................................... 8 122 122 123 123 123 123 123 124 124 124 124 125 126 126 126 126 126 127 127 127 128 128 128 128 129 129 130 130 130 131 131 131 132 132 132 132 132 133 134 134 134 MOTOR DRIVE ALARMS........................................................................... 135 8.1 MOTOR DRIVE ALARMS menu .......................................................................................... 8.1.1 MOTOR DRIVE ALARMS / Speed feedback mismatch trip enable PIN 171 ................................. 8.1.2 MOTOR DRIVE ALARMS / Speed feedback mismatch tolerance PIN 172 ................................... 8.1.3 MOTOR DRIVE ALARMS / Field loss trip enable PIN 173 ...................................................... 8.1.4 MOTOR DRIVE ALARMS / Digital OP short circuit trip enable PIN 174 ..................................... 8.1.5 MOTOR DRIVE ALARMS / Missing pulse trip enable PIN 175.................................................. 8.1.6 MOTOR DRIVE ALARMS / Reference exchange trip enable PIN 176......................................... 8.1.7 MOTOR DRIVE ALARMS / Overspeed delay time PIN 177 ..................................................... 8.1.8 MOTOR DRIVE ALARMS / STALL TRIP MENU ...................................................................... 8.1.8.1 STALL TRIP MENU / Stall trip enable PIN 178 ........................................................... 8.1.8.2 STALL TRIP MENU / Stall current level PIN 179 ......................................................... 8.1.8.3 STALL TRIP MENU / Stall time PIN 180 ................................................................... 8.1.9 MOTOR DRIVE ALARMS / Active and stored trip monitors PINS 181 / 182 ................................ 8.1.10 MOTOR DRIVE ALARMS / External trip reset enable PIN 183 ............................................... 8.1.11 MOTOR DRIVE ALARMS / DRIVE TRIP MESSAGE ................................................................. 8.1.11.1 DRIVE TRIP MESSAGE / Armature overcurrent........................................................... 136 137 139 139 139 140 140 140 141 141 141 141 142 143 143 143 8 Contents 8.1.11.2 8.1.11.3 8.1.11.4 8.1.11.5 8.1.11.6 8.1.11.7 8.1.11.8 8.1.11.9 8.1.11.10 8.1.11.11 8.1.11.12 8.1.11.13 8.1.11.14 8.1.11.15 8.1.11.16 8.1.11.17 8.1.11.18 8.1.11.19 9 DRIVE TRIP MESSAGE / Armature overvolts .............................................................. 143 DRIVE TRIP MESSAGE / Field overcurrent ................................................................ 143 DRIVE TRIP MESSAGE / Field loss .......................................................................... 144 DRIVE TRIP MESSAGE / User trip ........................................................................... 144 DRIVE TRIP MESSAGE / Thermistor on T30 ............................................................... 144 DRIVE TRIP MESSAGE / Overspeed ......................................................................... 144 DRIVE TRIP MESSAGE / Speed feedback mismatch ..................................................... 145 DRIVE TRIP MESSAGE / Stall trip ........................................................................... 145 DRIVE TRIP MESSAGE / Missing pulse .................................................................... 145 DRIVE TRIP MESSAGE / Supply phase loss ............................................................... 145 DRIVE TRIP MESSAGE / Synchronization loss ........................................................... 146 DRIVE TRIP MESSAGE / Heatsink overtemp ............................................................. 146 DRIVE TRIP MESSAGE / Short circuit digital outputs ................................................. 146 DRIVE TRIP MESSAGE / Bad reference exchange ...................................................... 146 DRIVE TRIP MESSAGE / Cannot autotune................................................................ 147 DRIVE TRIP MESSAGE / Autotune quit ................................................................... 147 DRIVE TRIP MESSAGE / Contactor lock out ............................................................. 147 DRIVE TRIP MESSAGE / Warning flags.................................................................... 147 SELF TEST MESSAGE ..............................................................................148 9.1.1 SELF TEST MESSAGE / Data corruption............................................................................ 148 9.1.2 SELF TEST MESSAGE / Disable GOTO, GETFROM ................................................................ 148 9.1.3 SELF TEST MESSAGE / Self cal tolerance ......................................................................... 148 9.1.4 SELF TEST MESSAGE / Proportional armature current cal fail ................................................ 148 9.1.5 SELF TEST MESSAGE / Integral armature current cal fail...................................................... 148 9.1.6 SELF TEST MESSAGE / Stop drive to adjust parameter......................................................... 149 9.1.7 SELF TEST MESSAGE / Enter password ............................................................................ 149 9.1.8 SELF TEST MESSAGE / Enable GOTO, GETFROM ................................................................. 149 9.1.9 SELF TEST MESSAGE / GOTO CONFLICT ........................................................................... 149 9.1.10 SELF TEST MESSAGE / Internal error code ...................................................................... 149 9.1.11 SELF TEST MESSAGE / Authorisation needed ................................................................... 149 9.1.12 SELF TEST MESSAGE / Memory write error...................................................................... 150 9.1.13 SELF TEST MESSAGE / Memory version error ................................................................... 150 9.1.13.1 Transferring files using PILOT+............................................................................. 150 10 SERIAL LINKS, RS232 and FIELDBUS ...........................................................151 10.1 SERIAL LINKS / RS232 PORT1 ......................................................................................... 152 10.1.1 RS232 PORT1 / Connection pinouts .............................................................................. 153 10.1.2 RS232 PORT1 / Port1 Baud rate PIN 187....................................................................... 153 10.1.3 RS232 PORT1 / Port1 function PIN 188 ........................................................................ 153 10.1.4 How to use USB ports on external PC ............................................................................ 153 10.2 RS232 PORT1 / PARAMETER EXCHANGE............................................................................. 154 10.2.1 PARAMETER EXCHANGE / Drive transmit ........................................................................ 154 10.2.1.1 PARAMETER EXCHANGE with a locked recipe page 3................................................... 155 10.2.1.2 Transmitting parameter data file to a PC. Windows 95 to Windows XP. ........................... 155 10.2.2 PARAMETER EXCHANGE / Drive receive ......................................................................... 156 10.2.2.1 Receiving parameter data file from a PC. Windows 95 to Windows XP............................. 156 10.2.3 PARAMETER EXCHANGE / menu list to host..................................................................... 157 10.2.3.1 Transmitting a menu list to a PC. Windows 95 to windows XP ....................................... 157 10.2.3.2 PARAMETER EXCHANGE / Drive to drive.................................................................. 158 10.2.3.3 PARAMETER EXCHANGE / Eeprom transfer between units ............................................ 159 10.2.4 Rules of parameter exchange relating to software version.................................................. 159 10.2.4.1 PL PILOT Legacy configuration tool and SCADA ......................................................... 160 10.3 RS232 PORT1 / PORT1 REF EXCHANGE .............................................................................. 161 10.3.1 REFERENCE EXCHANGE / Reference exchange slave ratio PIN 189 ....................................... 162 10.3.2 REFERENCE EXCHANGE/ Reference exchange slave sign PIN 190 ......................................... 162 10.3.3 REFERENCE EXCHANGE / Reference exchange slave monitor PIN 191 ................................... 162 10.3.4 REFERENCE EXCHANGE / Reference exchange master monitor PIN 192 ................................. 162 10.3.5 REFERENCE EXCHANGE / Reference exchange master GET FROM .......................................... 162 11 DISPLAY FUNCTIONS ..............................................................................163 11.1 11.2 DISPLAY FUNCTIONS / Reduced menu enable ..................................................................... 163 DISPLAY FUNCTIONS / PASSWORD CONTROL....................................................................... 163 Contents 9 11.2.1 PASSWORD CONTROL / Enter password ......................................................................... 11.2.2 PASSWORD CONTROL / Alter password .......................................................................... 11.3 DISPLAY FUNCTIONS / Language select............................................................................. 11.4 DISPLAY FUNCTIONS / Software version ............................................................................ 11.5 Remotely mounted display unit ...................................................................................... 12 APPLICATION BLOCKS ........................................................................... 165 12.1 General rules ............................................................................................................ 12.1.1 Sample times ......................................................................................................... 12.1.2 Order of processing ................................................................................................. 12.1.3 Logic levels ........................................................................................................... 12.1.4 Activating blocks .................................................................................................... 12.1.4.1 Conflicting GOTO connections ............................................................................. 12.1.4.2 Application blocks PIN table................................................................................ 13 164 164 164 164 164 165 165 165 166 166 166 166 CONFIGURATION .................................................................................. 167 13.1 Driveweb Ethernet Connectivity and PILOT+ configuration tool ............................................... 13.2 CONFIGURATION menu................................................................................................. 13.2.1 PL PILOT legacy configuration tool.............................................................................. 13.3 Configurable connections ............................................................................................. 13.3.1 Key features of GOTO window .................................................................................... 13.3.2 Key features of GET FROM window............................................................................... 13.3.3 Summary of GOTO and GET FROM windows .................................................................... 13.3.4 JUMPER connections ................................................................................................ 13.3.5 Block Disconnect PIN 400......................................................................................... 13.3.6 Hidden parameters.................................................................................................. 13.3.7 CONFIGURATION / ENABLE GOTO, GETFROM................................................................... 13.4 CONFIGURATION / UNIVERSAL INPUTS .............................................................................. 13.4.1 UNIVERSAL INPUTS / Block diagram.............................................................................. 13.4.1.1 UIPX SETUP / UIP(2) to (9) Input range PIN 3(2)0 to 3(9)0 .......................................... 13.4.1.2 UIPX SETUP / UIP(2) to (9) Input offset PIN 3(2)1 to 3(9)1 .......................................... 13.4.1.2.1 4-20mA loop input SETUP .............................................................................. 13.4.1.3 UIPX SETUP / UIP(2) to (9) Linear scaling ratio PIN 3(2)2 to 3(9)2................................. 13.4.1.4 UIPX SETUP / UIP(2) to (9) Maximum clamp level PIN 3(2)3 to 3(9)3 ............................. 13.4.1.5 UIPX SETUP / UIP(2) to (9) Minimum clamp level PIN 3(2)4 to 3(9)4 .............................. 13.4.1.6 UIPX SETUP / UIP(2) to (9) Make analog GOTO destination connection ............................ 13.4.1.7 UIPX SETUP / UIP(2) to (9) Make digital output 1 GOTO destination connection ................. 13.4.1.8 UIPX SETUP / UIP(2) to (9) Make digital output 2 GOTO destination connection ................. 13.4.1.9 UIPX SETUP / UIP(2) to (9) Digital input, high value for output 1 PIN 3(2)5 to 3(9)5........... 13.4.1.10 UIPX SETUP / UIP(2) to (9) Digital input, low value for output 1 PIN 3(2)6 to 3(9)6 .......... 13.4.1.11 UIPX SETUP / UIP(2) to (9) Digital input, high value for output 2 PIN 3(2)7 to 3(9)7 ......... 13.4.1.12 UIPX SETUP / UIP(2) to (9) Digital input, low value for output 2 PIN 3(2)8 to 3(9)8 .......... 13.4.1.13 UIPX SETUP / UIP(2) to (9) Threshold PIN 3(2)9 to 3(9)9........................................... 13.5 CONFIGURATION / ANALOG OUTPUTS .............................................................................. 13.5.1 ANALOG OUTPUTS / AOP4 Iarm output rectify enable PIN 250 ........................................... 13.5.2 ANALOG OUTPUTS / AOP1/2/3/4 SETUP........................................................................ 13.5.2.1 AOPX SETUP / AOP1/2/3 Dividing factor PINs 251 / 254 / 257 ................................... 13.5.2.2 AOPX SETUP / AOP1/2/3 Offset PINs 252 / 255 / 258.............................................. 13.5.2.3 AOPX SETUP / AOP1/2/3 Rectify mode enable PINs 253 / 256 / 259............................ 13.5.2.4 AOPX SETUP / AOP1/2/3 Make output GET FROM source connection .............................. 13.5.2.5 Default connections for AOP1/2/3 ........................................................................ 13.5.3 ANALOG OUTPUTS / Scope output select PIN 260 ........................................................... 13.6 CONFIGURATION / DIGITAL INPUTS.................................................................................. 13.6.1 Using DIP inputs for encoder signals. ............................................................................ 13.6.2 DIGITAL INPUTS / DIPX SETUP..................................................................................... 13.6.2.1 DIPX SETUP / DIP1/2/3/4 Input high value PINs 310 / 312 / 314 / 316 .......................... 13.6.2.2 DIPX SETUP / DIP1/2/3/4 Input low value PINs 311 / 313 / 315 / 317........................... 13.6.2.3 DIPX SETUP / DIP1/2/3/4 Make input value GOTO destination connection........................ 13.6.2.4 Default connections for DIP1/2/3/4 ...................................................................... 13.6.3 DIGITAL INPUTS / RUN INPUT SETUP............................................................................. 13.6.3.1 RUN INPUT SETUP / RUN input HI value PIN 318 ...................................................... 13.6.3.2 RUN INPUT SETUP / RUN input LO value PIN 319 ..................................................... 167 168 168 169 170 170 171 171 171 171 172 172 174 174 174 175 175 175 175 176 176 176 177 177 177 177 177 178 178 178 179 179 179 179 179 180 180 180 181 181 181 181 181 182 182 182 10 Contents 13.6.3.3 RUN INPUT SETUP / Make input value GOTO destination connection............................... 182 13.7 CONFIGURATION / DIGITAL IN/OUTPUTS ........................................................................... 183 13.7.1 DIGITAL IN/OUTPUTS / DIOX SETUP.............................................................................. 183 13.7.1.1 DIOX SETUP / DIO1/2/3/4 Output mode enable PINs 271 / 277 / 283 / 289..................... 184 13.7.1.2 DIOX SETUP / DIO1/2/3/4 OP val rectify enable PINs 272/ 278 / 284 /290...................... 184 13.7.1.3 DIOX SETUP / DIO1/2/3/4 OP comp threshold PINs 273 / 279 / 285 / 290....................... 184 13.7.1.4 DIOX SETUP / DIO1/2/3/4 OP inversion PINs 274 / 280 / 286 / 291............................... 184 13.7.1.5 DIOX SETUP / DIO1/2/3/4 Make output GET FROM source connection ............................. 185 13.7.1.6 DIOX SETUP / DIO1/2/3/4 Make input GOTO destination connection............................... 185 13.7.1.7 DIOX SETUP / DIO1/2/3/4 Input high value PINs 275 / 281 / 287 / 293 ......................... 185 13.7.1.8 DIOX SETUP / DIO1/2/3/4 Input low value PINs 276 / 282 / 288 / 294 .......................... 186 13.7.1.9 Default connections for DIO1/2/3/4 ...................................................................... 186 13.7.1.10 DIO1/2/3/4 Internal output result PINs 685/6/7/8 ................................................... 186 13.8 CONFIGURATION / DIGITAL OUTPUTS ............................................................................... 186 13.8.1 DIGITAL OUTPUTS / DOPX SETUP ................................................................................ 186 13.8.1.1 DOPX SETUP / DOP1/2/3 OP val rectifiy enable PINs 261 / 264 / 267 ............................ 187 13.8.1.2 DOPX SETUP / DOP1/2/3 OP comparator threshold PINs 262 / 265 / 268 ........................ 187 13.8.1.3 DOPX SETUP / DOP1/2/3 Output inversion enable PINs 263 / 266 / 269 ......................... 187 13.8.1.4 DOPX SETUP / DOP1/2/3 Make output GET FROM source connection .............................. 187 13.8.1.5 Default connections for DOP1/2/3 ........................................................................ 188 13.8.1.6 DOP1/2/3 Internal output result PINs 682/3/4 ......................................................... 188 13.9 CONFIGURATION / STAGING POSTS.................................................................................. 188 13.9.1 Connecting PINs with different units ............................................................................ 189 13.9.1.1 Connecting linear values with different units ........................................................... 189 13.9.1.2 Connecting logic values with different messages....................................................... 189 13.9.1.3 Connecting to multi-state logic parameters ............................................................. 190 13.9.2 STAGING POSTS / Digital / analog 1/2/3/4 PINs 296 to 303 ............................................... 190 13.10 CONFIGURATION / SOFTWARE TERMINALS ......................................................................... 191 13.10.1 SOFTWARE TERMINALS / Anded run PIN 305................................................................. 191 13.10.2 SOFTWARE TERMINALS / Anded jog PIN 306 ................................................................. 191 13.10.3 SOFTWARE TERMINALS / Anded start PIN 307 ............................................................... 192 13.10.4 SOFTWARE TERMINALS / Internal run input PIN 308 ....................................................... 192 13.11 CONFIGURATION / JUMPER CONNECTIONS ......................................................................... 193 13.11.1 JUMPER CONNECTIONS / Make jumper GET FROM source connection ................................... 193 13.11.2 JUMPER CONNECTIONS / Make jumper GOTO destination connection ................................... 193 13.12 CONFIGURATION / BLOCK OP CONFIG............................................................................... 194 13.12.1 BLOCK OP CONFIG / Block outputs GOTO ..................................................................... 195 13.12.2 Other GOTO windows ............................................................................................. 195 13.13 CONFIGURATION / FIELDBUS CONFIG ............................................................................... 195 13.14 CONFIGURATION / DRIVE PERSONALITY ............................................................................ 196 13.14.1 DRIVE PERSONALITY / PASSIVE MOTOR SET ................................................................... 196 13.14.2 DRIVE PERSONALITY / Recipe page PIN 677 ................................................................. 197 13.14.2.1 Recipe page block diagram................................................................................ 197 13.14.3 DRIVE PERSONALITY / Maximum current response PIN 678 ............................................... 197 13.14.4 DRIVE PERSONALITY / Armature current burden resistance PIN 680.................................... 198 13.14.4.1 50% / 100% rating select ................................................................................... 199 13.14.4.2 WARNING about changing BURDEN OHMS ............................................................... 200 13.14.4.3 Changing control or power cards ......................................................................... 200 13.15 CONFLICT HELP MENU.................................................................................................. 201 13.15.1 CONFLICT HELP MENU / Number of conflicts ................................................................. 201 13.15.2 CONFLICT HELP MENU / Multiple GOTO conflict PIN identifier ............................................ 201 14 Installation .........................................................................................203 14.1 Product rating table.................................................................................................... 204 14.2 Product rating labels ................................................................................................... 204 14.3 Semiconductor fuse ratings ........................................................................................... 204 14.3.1 Proprietary AC semi-conductor fuses ............................................................................ 205 14.3.2 Stock AC semi-conductor fuses ................................................................................... 205 14.3.3 Proprietary DC semi-conductor fuses ............................................................................ 206 14.3.4 Stock DC semi-conductor fuses ................................................................................... 206 14.4 PL/X family cover dimensions ........................................................................................ 207 Contents 11 14.5 Mechanical dimensions PL/X 5 - 50.................................................................................. 14.5.1.1 Mounting PL/X 5 - 50......................................................................................... 14.6 Mechanical dimensions PL/X 65 - 145............................................................................... 14.6.1.1 Mounting PL/X 65 - 145...................................................................................... 14.7 Mechanical dimensions PL/X 185 - 265 ............................................................................. 14.7.1.1 Mounting PL/X 185 - 265 .................................................................................... 14.7.1.2 Venting models PL/X 185 - 265 using back panel aperture ........................................... 14.7.1.3 Venting models PL/X 185 - 265 using standoff pillars.................................................. 14.8 Line reactors ............................................................................................................ 14.9 Wiring instructions ..................................................................................................... 14.9.1 Wiring diagram for AC supply to L1/2/3 different to EL1/2/3. (E.g. Low voltage field)............... 14.10 Terminal tightening torques .......................................................................................... 14.11 Installation guide for EMC ............................................................................................. 14.11.1 3-phase power supply port ....................................................................................... 14.11.2 Earthing and screening guidelines .............................................................................. 14.11.3 Earthing diagram for typical installation ...................................................................... 14.11.4 Guidelines when using filters .................................................................................... 14.12 Approvals UL, cUL, CE ................................................................................................. 14.12.1 CE Immunity ........................................................................................................ 14.12.2 CE Emissions ........................................................................................................ 14.12.3 UL, cUL .............................................................................................................. 14.13 What to do in the event of a problem .............................................................................. 14.13.1 A simple clarification of a technical issue..................................................................... 14.13.2 A complete system failure ....................................................................................... 15 PIN number tables ............................................................................... 219 15.1 Numeric tables .......................................................................................................... 15.1.1 Change parameters 2 - 121 ...................................................................................... 15.1.2 Diagnostics and alarms 123 - 183 ............................................................................... 15.1.3 Serial links 187 - 249 .............................................................................................. 15.1.4 Configuration 251 - 400........................................................................................... 15.1.5 Application blocks 401 - 680 ..................................................................................... 15.1.6 Hidden pins 680 - 720 ............................................................................................. 15.2 Menu list.................................................................................................................. 16 219 219 221 222 222 224 225 226 Index................................................................................................ 229 16.1 16.2 17 208 208 209 209 210 210 211 211 212 213 213 214 215 215 215 216 217 217 217 217 217 218 218 218 Record of modifications ............................................................................................... 233 Record of bug fixes ..................................................................................................... 234 Changes to product since manual publication .............................................. 234 There is a system block diagram at the back of the manual also available for downloading from the web site www.sprint-electric.com. Warnings 13 2 Warnings 2.1 General Warnings READ AND UNDERSTAND THIS MANUAL BEFORE APPLYING POWER TO THE PL/X DRIVE UNIT The PL/X motor drive controller is an open chassis component for use in a suitable enclosure Drives and process control systems are a very important part of creating better quality and value in the goods for our society, but they must be designed, installed and used with great care to ensure everyone's SAFETY. Remember that the equipment you will be using incorporates... High voltage electrical equipment Powerful rotating machinery with large stored energy Heavy components Your process may involve... Hazardous materials Expensive equipment and facilities Interactive components DANGER ELECTRIC SHOCK RISK Always use qualified personnel to design, construct and operate your systems and keep SAFETY as your primary concern. Thorough personnel training is an important aid to SAFETY and productivity. SAFETY awareness not only reduces the risk of accidents and injuries in your plant, but also has a direct impact on improving product quality and costs. If you have any doubts about the SAFETY of your system or process, consult an expert immediately. Do not proceed without doing so. HEALTH AND SAFETY AT WORK Electrical devices can constitute a safety hazard. It is the responsibility of the user to ensure the compliance of the installation with any acts or bylaws in force. Only skilled personnel should install and maintain this equipment after reading and understanding this instruction manual. If in doubt refer to the supplier. Note. The contents of this manual are believed to be accurate at the time of printing. The manufacturers, however, reserve the right to change the content and product specification without notice. No liability is accepted for omissions or errors. No liability is accepted for the installation or fitness for purpose or application of the PL/X motor drive unit. 14 Warnings 2.2 Warnings and Instructions WARNING Only qualified personnel who thoroughly understand the operation of this equipment and any associated machinery should install, start-up or attempt maintenance of this equipment. Non compliance with this warning may result in personal injury and/or equipment damage. Never work on any control equipment without first isolating all power supplies from the equipment. The drive and motor must be connected to an appropriate safety earth. Failure to do so presents an electrical shock hazard. CAUTION This equipment was tested before it left our factory. However, before installation and start-up, inspect all equipment for transit damage, loose parts, packing materials etc. This product conforms to IPOO protection. Due consideration should be given to environmental conditions of installation for safe and reliable operation. Never perform high voltage resistance checks on the wiring without first disconnecting the product from the circuit being tested. STATIC SENSITIVE This equipment contains electrostatic discharge (ESD) sensitive parts. Observe static control precautions when handling, installing and servicing this product. THESE WARNINGS AND INSTRUCTIONS ARE INCLUDED TO ENABLE THE USER TO OBTAIN MAXIMUM EFFECTIVENESS AND TO ALERT THE USER TO SAFETY ISSUES APPLICATION AREA: Industrial (non-consumer) "Motor speed control utilising DC motors". PRODUCT MANUAL: This manual is intended to provide a description of how the product works. It is not intended to describe the apparatus into which the product is installed. This manual is to be made available to all persons who are required to design an application, install, service or come into direct contact with the product. APPLICATIONS ADVICE: Applications advice and training is available from Sprint Electric. Warnings 15 2.3 General Risks INSTALLATION: THIS PRODUCT IS CLASSIFIED AS A COMPONENT AND MUST BE USED IN A SUITABLE ENCLOSURE Ensure that mechanically secure fixings are used as recommended. Ensure that cooling airflow around the product is as recommended. Ensure that cables and wire terminations are as recommended and clamped to required torque. Ensure that a competent person carries out the installation and commissioning of this product. Ensure that the product rating is not exceeded. APPLICATION RISK: ELECTROMECHANICAL SAFETY IS THE RESPONSIBILITY OF THE USER The integration of this product into other apparatus or systems is not the responsibility of the manufacturer or distributor of the product. The applicability, effectiveness or safety of operation of this equipment, or that of other apparatus or systems is not the responsibility of the manufacturer or distributor of the product. Where appropriate the user should consider some aspects of the following risk assessment. RISK ASSESSMENT: Under fault conditions or conditions not intended. 1. The motor speed may be incorrect. 2. The motor speed may be excessive. 3. The direction of rotation may be incorrect. 4. The motor may be energised. In all situations the user should provide sufficient guarding and/or additional redundant monitoring and safety systems to prevent risk of injury. NOTE: During a power loss event the product will commence a sequenced shut down procedure and the system designer must provide suitable protection for this case. MAINTENANCE: Maintenance and repair should only be performed by competent persons using only the recommended spares (or return to factory for repair). Use of unapproved parts may create a hazard and risk of injury. WHEN REPLACING A PRODUCT IT IS ESSENTIAL THAT ALL USER DEFINED PARAMETERS THAT DEFINE THE PRODUCT'S OPERATION ARE CORRECTLY INSTALLED BEFORE RETURNING TO USE. FAILURE TO DO SO MAY CREATE A HAZARD AND RISK OF INJURY. PACKAGING: The packaging is combustible and if disposed of incorrectly may lead to the generation of toxic fumes, which are lethal. WEIGHT: Consideration should be given to the weight of the product when handling. REPAIRS: Repair reports can only be given if the user makes sufficient and accurate defect reporting. Remember that the product without the required precautions can represent an electrical hazard and risk of injury, and that rotating machinery is a mechanical hazard. PROTECTIVE INSULATION: 1. All exposed metal insulation is protected by basic insulation and user bonding to earth i.e. Class 1. 2. Earth bonding is the responsibility of the installer. 3. All signal terminals are protected by basic insulation, and the user earth bonding. (Class 1). The purpose of this protection is to allow safe connection to other low voltage equipment and is not designed to allow these terminals to be connected to any un-isolated potential. It is essential that all the following warnings are read and understood. 16 Warnings 2.4 Summary of further WARNINGS This summary is provided for convenience only. Please read the entire manual prior to first time product use. 0V on T13 must be used for protective clean earth connection. Terminals T30 and T36 must be linked if external over-temperature sensors are not used. See 3.5 Control terminal default functions. WARNING. Do not rely on any drive function to prevent the motor from operating when personnel are undertaking maintenance, or when machine guards are open. Electronic control is not accepted by safety codes to be the sole means of inhibition of the controller. Always isolate the power source before working on the drive or the motor or load. See 3.5 Control terminal default functions. The CSTOP must be high for at least 50mS prior to START going high. See 3.5 Control terminal default functions. Contactor coils usually have a high inductance. When the contactor is de-energised it can produce high energy arcing on the internal PL/X control relay. This may degrade the life of the relay and/or produce excessive EMC emissions. Ensure that the contactor coil is snubbered. Refer to contactor supplier for details. See 4.2 Main Contactor operation. The essential elements of controlling the contactor are as follows. 1) It must be possible to release the contactor without relying on electronics. 2) The contactor must not break current. To obey this rule the following applies:a) The PL/X must not attempt to deliver armature current until after the contactor has closed. b) The armature current must be brought to zero before the contactor has opened. 3) The contactor control circuit must be compatible with all likely application requirements. Follow the instructions and all the above requirements are under the control of the PL/X automatically. See 4.2 Main Contactor operation. It may be necessary for installations to have over-riding external independent systems for de-energising the main contactor. In this case it is recommended that the CSTOP terminal be opened 100mS in advance of the main contacts opening. Failure to achieve this may result in damage to the unit. Note. If the users main contactor has a closing time delay of greater than 75mS, then it is essential that steps are taken to delay the release of armature current until the main contact has closed. 1) Insert an auxiliary normally open contact on the main contactor in series with the RUN input on T31. 2) Alternatively use contactor wiring method shown in 4.3.2. See 4.2 Main Contactor operation. It is dangerous to utilise a DC contactor when field weakening is employed without also connecting T41 and T43 to the motor armature. This ensures that the PL/X can measure the armature voltage even when the contactor is open. See 4.3.3 Main contactor isolating DC armature. This is a summary of the essential parameters that should be checked prior to allowing power to the motor. You must be able to put a tick against every section. Failure to comply with these requirements may cause incorrect functioning or damage to the drive and/or installation and will invalidate any warranty. See 4.4 ESSENTIAL pre-start checks. All external fuses must be of the correct rating and type. The I2t rating must be less than the rating specified in the rating tables. This includes main and auxiliary fuses. See 4.4 ESSENTIAL pre-start checks. Check the 3 phase auxiliary supply phasing on ELl /2/3 equates to the phasing of the main stack supply on Ll/2/3, and the 1 ph control supply on T52/53 is correct. See 4.4 ESSENTIAL pre-start checks. Disconnect the drive for wiring tests using a megger. See 4.4 ESSENTIAL pre-start checks. If the load regenerates or regenerative braking is employed, then a DC rated armature fuse with the correct I2t rating in series with the motor armature is highly recommended. See 4.4 ESSENTIAL pre-start checks. Warnings 17 A protective clean earth connection must be made to the control 0V on T13 to ensure that the installation complies with protective class1 requirements. See 4.4 ESSENTIAL pre-start checks. The emergency stopping and safety procedure, including local and remote actuators must be checked prior to applying power to the motor. See 4.4 ESSENTIAL pre-start checks. If you wish to abandon changes made since the last save, simply remove the control supply WITHOUT having performed parameter save. See 5.1.2 PARAMETER SAVE. Sometimes it is useful to return a unit to its default setup condition. E.g. a trial configuration may prove to be unworkable and it is easier to start again. If all 4 keys are held down during the application of the control supply, then the drive will automatically display the default parameters and connections. (EXCEPT those in the CALIBRATION menu, and 100)FIELD VOLTS OP % for MOTOR 1 and MOTOR 2, and 680)Iarm BURDEN OHMS). The defaults will only be permanently retained however if they are then saved using the PARAMETER SAVE menu. To revert to the last saved set, simply turn the control supply off, without doing a PARAMETER SAVE and on again. Also the PASSWORD is reset to 0000. See 11.2 DISPLAY FUNCTIONS / PASSWORD CONTROL. See also 13.14.2 DRIVE PERSONALITY / Recipe page PIN 677, for details of 2 and 3 key reset operation and power up messages. See 5.1.3 Restoring the drive parameters to the default condition. If your DESIRED MAXIMUM RPM is higher than the BASE RATED RPM then you will need to implement field weakening in the CHANGE PARAMETERS / FIELD CONTROL menu. You must however verify that your motor and load are rated for rotation above base speed. Failure to do so may result in mechanical failure with disastrous consequences. If however your desired maximum rpm is low compared to the base rpm then you need to be aware of the heat dissipation in the motor at full torque. Use motor force venting if necessary. See 6.1.6 CALIBRATION / Desired max rpm PIN 6 QUICK START. WARNING. Do not use AVF feedback mode with field weakening systems. See 6.9.6 FIELD CONTROL / FLD WEAKENING MENU for a note about AVF / field weakening trip. AVF feedback contains more ripple than tacho feedback. It may be necessary for smooth operation to reduce the SPEED CONTROL loop gain with AVF. See 6.7.4 SPEED CONTROL / Speed proportional gain PIN 71. See 6.1.9 CALIBRATION / Speed feedback type PIN 9 QUICK START. When the drive is first being commissioned it is recommended that the AVF mode be used initially. This allows any other speed feedback transducers to be examined for correct outputs prior to relying on them for control safety. For systems employing a DC contactor you must use T41 and T43 for remote AVF. See 6.1.9 CALIBRATION / Speed feedback type PIN 9 QUICK START. Current loop control terms. If you change your supply voltage, current calibration or motor type, the 3 values for PINs 93/94/95 must be adjusted accordingly. (Either by using the AUTOTUNE function or manually). See 6.8.9 CURRENT CONTROL / Autotune enable PIN 92 See 6.8.12.1 Setting the current loop control terms manually. Warning. Field reversal or disconnection. Due to the high inductance of motor fields it may take several seconds for the field current to decay to zero after the field output has been inhibited by the PL/X. Do not open circuit the field unless the field current has reached zero. See 6.9 CHANGE PARAMETERS / FIELD CONTROL. WARNING. When using field weakening and a DC side power contactor, the motor armature must be connected to the REMOTE AV sensing terminals T41 and T43. Failure to do this will cause flashover of the commutator because the AVF feedback is lost when the contactor opens. See 6.9.6 FIELD CONTROL / FLD WEAKENING MENU. WARNING. All these alarms are generated by semiconductor electronics. Local safety codes may mandate electro-mechanical alarm systems. All alarms must be tested in the final application prior to use. The suppliers and manufacturers of the PL/X are not responsible for system safety. See 8.1 MOTOR DRIVE ALARMS menu. 18 Warnings WARNING. The feedback loss protection afforded in field weakening mode is limited to total feedback loss only. This is because the speed / AVF relationship is not maintained in field weakening mode. If a partial loss of feedback occurs the motor may run to excessive speed. When the field has been completely weakened and is at its minimum level, the armature overvoltage trip will come into operation. This may only occur at a dangerous speed. It is therefore recommended that a mechanical device and or back up system be utilised to protect against this possibility. See 6.9.6.8 FLD WEAKENING MENU / Minimum field current % PIN 110. And 8.1.1 MOTOR DRIVE ALARMS / Speed feedback mismatch trip enable PIN 171. WARNING. For rated field currents that are less than 25% of model rating the alarm threshold may be too low to trigger. The alarm must be tested. To overcome this problem, 4)RATED FIELD AMPS may be set to a higher level and 114)FIELD REFERENCE set lower. This has the effect of raising the threshold. E.g. Set 4)RATED FIELD AMPS to twice motor rating and 114)FIELD REFERENCE to 50.00%. See 8.1.3 MOTOR DRIVE ALARMS / Field loss trip enable PIN 173 WARNING. When using armature voltage feedback the IR drop may be sufficient to provide a signal in excess of 117)ZERO INTLK SPD % and hence the stall alarm will not operate. Set 14)IR COMPENSATION as accurately as possible, and then test the alarm with a stalled motor. (Disable the field) Progressively increase current limit to above the 179)STALL CUR LEVEL, to check that the AV speed feedback remains below 117)ZERO INTLK SPD %. It may be necessary to increase 117)ZERO INTLK SPD % to ensure tripping. See 8.1.8.1 STALL TRIP MENU / Stall trip enable PIN 178. After a DATA CORRUPTION message. Check that the calibration parameters and drive personality Iarm burden value are correct. See 9.1.1 SELF TEST MESSAGE / Data corruption. Warning the 24V supply on pin 2 may damage your PC or other instrument. If in doubt do not connect it. The transmit must be connected to the receive on each port. See 10.1.1 RS232 PORT1 / Connection pinouts. Parameter exchange general WARNING. Check the CALIBRATION parameters are correct after any process of PARAMETER EXCHANGE. See 10.2 RS232 PORT1 / PARAMETER EXCHANGE. And 10.2.3.3. PARAMETER EXCHANGE / Eeprom transfer between units. WARNING about changing BURDEN OHMS. It is important that 680)Iarm BURDEN OHMS, is set as closely as possible to the actual resistance used on the power board. DO NOT ALLOW THE MODEL RATING TO EXCEED THE VALUES IN THE RATING TABLE AND ON THE RATING LABEL FOUND UNDER THE UPPER END CAP. FAILURE TO HEED THIS WARNING WILL INVALIDATE ANY WARRANTY, AND VIOLATE APPROVAL STANDARDS. NO LIABILITY IS ACCEPTED BY THE MANUFACTURER AND/OR DISTRIBUTOR FOR FAULTS CAUSED BY RE-RATING OF THE PRODUCT.See 13.14.4.2 WARNING about changing BURDEN OHMS. WARNING. All units must be protected by correctly rated semi-conductor fuses. Failure to do so will invalidate warranty.See 14.3 Semiconductor fuse ratings. WIRING INSTRUCTIONS. VERY IMPORTANT. Read all warnings in section 14.9 WARNING Safety earthing always takes precedence over EMC earthing. See 14.11.2 Earthing and screening guidelines. IM P O R T A N T S A F E T Y W A R N IN G S T h e A C s u p p ly f il t e r s m u s t n o t b e u s e d o n s u p p li e s t h a t a r e u n - b a l a n c e d o r f lo a t w i t h re s p e c t t o e a rt h See 14.11.4 Guidelines when using filters. T h e d r i v e a n d A C f i lt e r m u s t o n l y b e u s e d w it h a p e rm a n e n t e a rt h c o n n e c t io n . N o p l u g s / s o c k e t s a r e a llo w e d i n t h e A C s u p p ly T h e A C s u p p l y f i lt e r c o n t a i n s h ig h v o lt a g e c a p a c it o rs a n d s h o u ld n o t b e t o u c h e d f o r a p e rio d o f 2 0 s e c o n d s a f t e r t h e r e m o v a l o f t h e A C s u p p ly Introduction and Technical Data 19 3 Introduction and Technical Data 3 Introduction and Technical Data ................................................................ 19 3.1 Introduction ................................................................................................................ 20 3.2 How do they work? ........................................................................................................ 20 3.2.1 Useful things to know about the PL/X .............................................................................. 21 3.2.2 Tips for using the manual ............................................................................................. 21 3.3 General Technical Data .................................................................................................. 22 3.3.1 Regenerative stopping with PL models ............................................................................. 22 3.3.2 Supply voltages required for all models ............................................................................ 22 3.3.3 Control terminals electrical specification......................................................................... 24 3.4 Control terminals overview.............................................................................................. 25 3.4.1 General requirements ................................................................................................. 25 3.4.2 Digital inputs and outputs............................................................................................. 25 3.4.3 Analogue inputs ......................................................................................................... 26 3.4.4 Analogue tachogenerator input ...................................................................................... 27 3.4.5 Signal test pins .......................................................................................................... 27 3.5 Control terminal default functions..................................................................................... 27 3.5.1 Run, Jog, Start, Cstop ................................................................................................. 29 3.5.2 Summary of default terminal functions ............................................................................ 31 3.6 Supply loss shutdown ..................................................................................................... 32 3.7 PILOT+ ....................................................................................................................... 32 20 Introduction and Technical Data 3.1 Introduction The PL/X DC motor controller uses closed loop control of armature current and feedback voltage to give precise control of motor torque and speed. The unit also controls the motor excitation field. The closed loop parameters are programmable by the user and a wealth of inputs and outputs are provided to allow very complex motion control processes to be achieved. The series is comprised of 5 frame variants each with 2 and 4 quadrant models. Selected 2 quadrant models also offer a unique regenerative stopping facility. Please also refer to Part 3 PL/X 275-980 for extra details of frame 4 and 5 high power drives. Programming the unit is designed to be simple. A large backlit alphanumeric display guides the user through a friendly menu structure to select options and parameter changes. Built in application software blocks are provided to be connected up as desired. Comprehensive fault monitoring and serial communications allow off site programming and remote diagnostics. All models are stock items. These units are very compact. The savings made possible in panel space and enclosure costs may be significant. 3.2 How do they work? Speed reference from user Speed error amplifier Speed feedback scaling Outer speed loop The signal here represents armature current demand. Current error amplifier Firing circuit and 3-phase bridge. AC in, DC out. Current feedback scaling M Tacho Inner current loop This shows the basic arrangement of the drive control loops. The 3-phase thyristor bridge is a phase-controlled rectifier, which delivers power to the motor armature. The armature current (and hence the motor torque) is sensed to provide feedback to the inner current loop. After being scaled this is compared to the current demand. The current error amplifier is able to detect any difference, and then act in such a way that the current feedback remains identical to the current demand during normal operation. This inner loop monitors the armature current and delivers more current or less current as required. The outer speed loop works in the same way as the inner current loop but uses different parameters. In the above example, the demand is provided by the user in the form of a speed reference, and the speed feedback is derived from a shaft-mounted tachometer. Any difference is detected and translated into a new current demand level. This level provides the right amount of current (and hence torque) to reduce the speed error to zero. This new demand level is presented to the inner current loop, which obeys as rapidly as possible. The whole process is performed on a continuous basis giving superb speed accuracy and dynamic performance. In typical systems, there are numerous house keeping tasks and interface requirements. For these, the PL/X series has a wealth of standard features to benefit the user. A range of standard application blocks is included, with a user-friendly configuration facility that displays a description of the selected connection points. The programming menu is designed for rapid travel to the desired parameter using 4 keys and a large backlit alphanumeric display. A large number of monitoring facilities is available to enable display of all points in the block diagram. The unit is configured using PILOT+, a PC windows based configuration and monitoring tool. See the PILOT+ manual for further information and 13.2.1 PL PILOT legacy configuration tool Introduction and Technical Data 21 3.2.1 Useful things to know about the PL/X 1) The unit comes from the factory with a built in default personality which will be suitable for most applications, but may be re-programmed by the user. Up to 3 total instrument recipes can be stored. 2) The default personality can be restored by holding down all 4 keys and applying the control supply, but the calibration values relevant to the motor are unaffected by this procedure. See 5.1.3 and 13.14.2 3) There are over 700 programmable parameters available, but only a handful of these will need to be adjusted by most users. 4) Internal connections between blocks and parameters are easily altered to suit special applications. 5) All parameters have a unique identification number called a PIN (Parameter Identification Number) 6) When parameters are altered by the user they become effective immediately. However the alterations will be lost if the control supply is removed prior to performing a parameter save. 7) Most parameters may be adjusted while the drive is running to assist commissioning. If this is not advisable the unit requests a stop condition. 8) There is a built in ‘meter’ which allows monitoring of all relevant inputs and outputs including power connections, in engineering units and percentages. There are also default % diagnostic summary windows. 9) There is a large selection of robust inputs and outputs to interface with typical systems. 10) The drive personality is stored in one memory device which is designed to be transportable to another unit in the event of a breakdown. See 10.2.3.3 PARAMETER EXCHANGE / Eeprom transfer between units. 11) All the drive parameter values may be listed out on a printer. Parameters that have been altered from the default are identified in the listing. They may also be sent to, or received from, another unit or computer. 12) The unit contains standard special applications blocks that are normally switched off unless activated by the user. These include signal processors, PIDs etc. They do not take part in the prime control of the motor, but may be used to construct more complex systems at no extra cost. 13) There is a facility to provide a super fast current response for high performance applications. See 13.14.3 DRIVE PERSONALITY / Maximum current response PIN 678. 3.2.2 Tips for using the manual This is a version 600 manual. Version 6.10 and above software has all the functions described. See 5.1.7 Finding the software version number of the unit. 11.5 Remotely mounted display unit 1) Do not be intimidated by the size of the manual. Important facts are frequently mentioned more than once to avoid excessive cross referencing. 2) The manual looks large because it contains many graphics. For instance every parameter is described showing a symbolic picture of the display with the menu buttons alongside. 3) The sequence of the chapters flows in a similar sequence to the drive block diagram. 4) Every parameter has its own paragraph number which makes it easy to find. 5) There is a set of PIN number tables at the back, which cross reference to the paragraph number for every parameter. 6) There is a complete contents listing at the front of the manual giving paragraph and page numbers. Each chapter also has its own contents listing. There is also an index in section 16 at the back of the manual. 7) There will always be typing and technical errors in a complex document. Please inform your supplier of any errors you find. The authors are grateful for any information that will allow improvements to be made. 22 Introduction and Technical Data 3.3 General Technical Data Rating table Model PL 2 quadrant PLX 4 quadrant Maximum continuous shaft ratings kW HP HP at 460V at 460V at 500V 5 10 15 20 30 40 50 5 10 15 20 30 40 50 6.6 13.3 20 26.6 40 53.3 66.6 7.5 15 20 30 40 60 75 100% Armature Current DC Amps 12 24 36 51 72 99 123 PL and PLX PL and PLX PL and PLX *PL and PLX 65 85 115 145 65 85 115 145 90 115 155 190 100 125 160 200 155 205 270 330 16 16 16 16 216 216 216 216 PL and PLX *PL and PLX PL only 185 225 265 185 225 265 250 300 350 270 330 400 430 530 630 32 or 50 32 or 50 32 or 50 216 x 503 x 314 fv 216 x 503 x 314 fv 216 x 503 x 314 fv *PL *PL *PL *PL *PL *PL *PL and and and and and and and PLX PLX PLX PLX PLX PLX PLX Please also refer to Part 3 PL/X 275-980 100% Field Amps Dimensions mm (force vented = fv) 8 8 8 8 8 8 8 W 216 216 216 216 216 216 216 x H x 296 x 296 x 296 x 296 x 296 x 296 x 296 x D x 175 x 175 x 175 x 175 x 175 fv x 175 fv x 175 fv x x x x x x x x 410 410 410 410 218 218 218 218 fv fv fv fv for extra details of frame 4 and 5 high power drives. 3.3.1 Regenerative stopping with PL models * Starred models: (*PL) 2 Quadrant models have electronic regenerative stopping. See 6.5.2 STOP MODE RAMP / Stop ramp time PIN 56. 3.3.2 Supply voltages required for all models The supplies provided must be suitable for the motor employed Note. The 3 phase Field and Armature supplies are input through Main 3 phase 50 - 6Ohz separate terminals and Any supply from 12 to 500V AC nominal +/- 10% for armature power. (CE rating) may be at different Any supply from 12 to 480V AC nominal +/- 10% for armature power. (UL rating) levels if desired. See Auxiliary 3 phase 50 - 6OHz 14.9.1 Wiring diagram Any supply from 100 to 500V AC nominal +/- 10% for field power. (CE rating) for AC supply to L1/2/3 Any supply from 100 to 480V AC nominal +/- 10% for field power. (UL rating) different to EL1/2/3. (E.g. Low voltage field) Control 1 phase 50 - 60Hz They must however, Any supply from 110 to 240V AC+/- 10% 50VA. This is required to power the PL/X electronic circuits. PL/X 185/225/265 models also need a 50VA 110V 50/60Hz ac fan supply PL/X 275-980 frame 4 and 5 high power drives are available at standard ratings as above or MV versions for supplies up to 600V AC, or HV versions for supplies up to 690V AC. OUTPUT VOLTAGE RANGE Armature PLX and *PL 0 to +1.2 times AC supply. PL 0 to +/- 1.3 times AC supply. Note. 1.1 times AC supply is recommended if supply variations exceed –6%. Field 0 to 0.9 times AC supply on auxiliary terminals. (EL1, EL2, EL3) OUTPUT CURRENT RANGE Armature 0 to 100% continuous. 150% for 25 seconds +/- for PLX Field programmable minimum to 100% continuous with fail alarm. Note. There is a factory option to allow high inductance loads to be driven by the armature output. Introduction and Technical Data 23 Control Circuits: Fully isolated from power circuit. Control Action: Advanced PI with fully adaptive current loops for optimum dynamic performance. Self-Tuning Current Loop utilising "Autotune" algorithm. Adjustable speed PI with integral defeat. Speed Control: By Armature Voltage feedback with IR compensation. By encoder feedback or analogue tachogenerator. By a combination of encoder feedback and analogue tachogenerator or AVF. Speed range 100 to 1 typical with tachogenerator feedback. Steady State Accuracy: 0.1 % Analogue Tachogenerator Feedback. (subject to tachogenerator) 2 % Armature Voltage Feedback 0.01% Encoder only, Encoder + tacho, encoder + AVF – (With digital reference) Protection: Interline device networks. Overcurrent (instantaneous). Field failure. Motor over-temperature. Thyristor "Trigger" failure. Standstill logic. Diagnostics: With first fault latch, automatic display and power off memory. Diagnostic monitoring of all parameters in engineering and/or % units. Full diagnostic information available on RS232 using PILOT+ graphical tool. Digital I/O logic status plus automatic default % diagnostic summary windows Temperature: 0-40C ambient operating temperature. (35C for PL/X900 and PL/X980) Derate by 1% per Deg C above 40C up to 50C max. storage-+5C - +55C Protect from direct sunlight. Ensure dry, corrosive free environment. Humidity: 85% Relative humidity maximum. Note: - Relative humidity is temperature dependent, do not allow condensation. Atmosphere: Non-flammable, non-condensing. Altitude: Derate by 1% per 100 Metres above 1000 Metres Short circuit-rating: Suitable for use on a circuit capable of delivering not more than 5000A PL/X5-30, 10,000A PL/X40-145, 18000A PL/X185-265 RMS symmetrical amperes, 480 Volts AC maximum, when protected by aR class fuses. (See fuse table). See also PL/X 275-980 manual. Field output modes: Constant current, Constant voltage, Automatic weakening Delayed quenching after stop command to allow dynamic braking Economy mode to leave field excited at low level to prevent motor cooling Field supply inputs independent from armature supply inputs Special features: Field weakening Motorised pot simulator Connection Conflict Checker Dual motor swap Spindle orientation 3 Total Instrument Recipe pages PC configuration and monitoring tool Family of remote interface units. Application blocks: Centre winding, 2 Summers, Batch counter, Latch, 8 Multi-function, Preset Speed, 2 PIDs, Parameter profiler, 4 Comparators, 4 Changeover switches, Delay timer, Filters. Serial comms RS232 port, ANSI-X3.28-2.5-B I multi-drop. High energy MOV'S. Overcurrent 150% for 25s. Tacho failure. (With auto AVF back-up option). Thyristor Stack over-temperature. Zero-speed detection. Stall protection. Pollution Degree: 2, Installation cat: 3 Fieldbus options. Profibus, Devicenet. Ethernet using Driveweb technology. 24 Introduction and Technical Data 3.3.3 Control terminals electrical specification This describes the electrical spec. of the control terminals. The function that each terminal has may depend on the programmed choice of the user. The units are shipped with a set of default terminal functions, which are described later. Although the function of the terminal may change its electrical specification does not. 0V UIP2 UIP3 UIP4 UIP5 UIP6 UIP7 UIP8 UIP9 AOP1 AOP2 AOP3 1 2 3 4 5 6 7 8 9 10 11 12 0V DIGITAL INPUTS 4 digital inputs Logic low below 2V, Logic high above 4V. Low noise immunity. DIP1 DIP1 - DIP4 Overvoltage protection to +50V. Input impedance 10K Ohms DIP2 DIP3 and DIP4 may also be used for encoder quadrature signals DIP3 See sections 3.4.2.1, 6.1.9 and 6.1.10 for encoder information DIP4 DIGITAL IN/OUTPUTS 4 digital inputs. Also programmable as outputs (see digital outputs) DIO1 Logic low below 6V. Logic high above 16V. DIO2 DIO1 – DIO4 Overvoltage protection to +50V. Input impedance 10K Ohms DIO3 When used as digital outputs the spec. is the same as DOP1-3 DIO4 DIGITAL OUTPUTS 3 outputs (for 4 more outputs with this spec. use DIO1/2/3/4) DOP1 Short circuit protected. (Range 22 to 32 Volts for OP high) DOP2 DOP1 – DOP3 Over-temperature and over-voltage protected to +50V DOP3 Each output can deliver up to 350mA. Total for all outputs of 350mA, This spec. also applies to DIO1/2/3/4 when they are programmed as outputs 13 14 15 16 17 18 19 20 21 22 23 24 This connector is devoted to essentially fixed function controls TACH INPUT +/- 200V range Input impedance 150K Ohms 25 26 27 28 29 30 31 32 33 34 35 36 UNIVERSAL INPUTS UIP2 – UIP9 ANALOGUE OUTPUTS AOP1 AOP2 AOP3 and IARM on T29 8 analogue inputs with up to 5mV +sign resolution (+/- 0.4%) 4 input voltage ranges +/-5/10/20/30V on each input 8 digital inputs with settable thresholds. Good noise immunity. Overvoltage protected to +/-50V Input impedance 100K for input scaling at 5 and 10V range Input impedance 50K for input scaling above 10V range 4 analogue outputs (+/- 0.4%) 3 programmable, 1 committed to output armature current signal 2.5mV plus sign resolution Short circuit protection to 0V. Output current +/-5mA maximum Output range 0 to +/-11V. REFERENCE OUTPUTS +/-10.00V, 0.5%, 10mA max. Short circuit protection to 0V. ARMATURE CURRENT +/-5V linear output for +/-100% model rating current. Output current capability 10mA max. Short circuit protection to 0V. Programmable Uni-polar or Bi-polar output mode (tolerance+/-5%). IARM THERMISTOR INPUT THM Motor temperature thermistor. If unused then connect to 0V. OK<200 Ohms, Overtemp >2K Ohms. Connect from THM to 0V 0V TACH +10 -10 IARM THM RUN JOG START CSTOP +24V 0V 24V Logic inputs. Logic low below 6V, logic high above 16V Input impedance. 10K Ohms. Overvoltage protection to +50V RUN Drive enable. Electronic enable for current loop and contactor drop out delays JOG Jog input with programmable contactor drop out delay START Start/stop. Drops contactor out at zero speed. The drive will not start unless all alarms are clear. The drive will not restart after alarm induced contactor drop out, unless START is removed for at least 50mS and re-applied. CSTOP Coast stop. Drops contactor out immediately (100ms). Input impedance 10K Ohms. +24V +24V output for external logic (Range 22 to 32 Volts). Short circuit protected. Overvoltage protection to +50V. Shares total current capability of ‘Digital Outputs’ (350mA), plus extra 50mA of its own. Total maximum available 400mA. CONTACTOR control Introduction and Technical Data 25 Control terminals on lower power board numbers 41 to 53 (NC signifies no connection) RA+ RA- used for remote sensing of armature volts REMOTE AVF (Note, when using remote AVF, the Armature volts signal is read 3.3% high) CON1 and CON2 Volt free contact for main contactor coil up to 240V 500VA. Operated by START/JOG function, when CSTOP is high LATCH1 and LATCH2 Volt free contact operates at same time as CON1/2 240V 500VA. EARTH on 51 is used for dirty earth connection of control supply L and N are for control power 100-240V, 50 - 60Hz +/-10%, 50VA Note. RA+ NC RANC CON1 CON2 LAT1 LAT2 41 42 43 44 45 46 47 48 EARTH 51 N 52 L 53 The control supply is required to power the PL/X electronics and must be applied before running. 3.4 Control terminals overview. 3.4.1 General requirements The general requirements of industrial process equipment are that apart from performing their intrinsic function, they must interface with external systems. The most common requirements are for 4 types of interface. Analogue inputs, able to accept linear bi-polar reference or feedback signals. Analogue outputs able, to provide linear bi-polar signals. Digital inputs able, to recognise logic levels using 24V logic. Digital inputs for encoders signals of various amplitudes and type. Digital outputs able, to drive 24V relays, lamps, sensors etc. System requirements are variable. Some require a lot of one type of interface, others a selection of all types. The designers of the PL/X series of drives have attempted to provide sufficient of all types to meet all conceivable requirements. This has been achieved by making many of the terminals dual function. The possible boundaries are as follows. Up to 17 digital inputs, 8 analogue inputs 7 digital outputs 4 analogue outputs This is achieved by allowing the 8 analogue inputs to also be used as digital inputs, and 4 digital outputs that can be independently programmed as inputs. The analogue outputs do not usually need to be so numerous, as software connections can be made by the user. Even so 4 analogue outputs are available of which 3 are programmable. The analogue outputs are individually short circuit protected to 0V. However they are not protected for simultaneous shorts. 3.4.2 Digital inputs and outputs An important consideration is the ability of the equipment to survive a harsh environment. The most frequent types of problem are short circuits and excessive voltages being applied to the digital inputs and outputs. All the digital inputs and outputs can withstand up to +50V applied continuously. All digital outputs, including the 24V customer supply have been designed to withstand a direct short circuit to 0V. If a short circuit or overload occurs on one or more of the digital outputs, then all digital outputs are disabled and the short circuit condition is flagged. It is possible to enable or disable a drive trip in this event. Providing the fault has not caused external user relay logic to interrupt normal running, then the drive will continue to run if the trip is disabled. The short circuit condition may be signalled on one of the outputs by a low state if desired. If the short circuit is removed the digital outputs will recover to their original state. See 8.1.4 MOTOR DRIVE ALARMS / Digital OP short circuit trip enable PIN 174 and 8.1.11.14 DRIVE TRIP MESSAGE / Short circuit digital outputs and 7.5 DIAGNOSTICS / DIGITAL IO MONITOR. Note. The DIP digital inputs on T14-17 are also characterised for use as encoder inputs (hence low noise immunity). The DIO digital input/outputs on T18-21 are characterised for 24V logic (standard noise immunity). The UIP analogue inputs on T2-9 can also be used as digital inputs. (optimum noise immunity). 26 Introduction and Technical Data 3.4.2.1 Encoder inputs Note. DIP3 (T16, B train or sign) and DIP4 (T17, A train) are designed to accept bi-directional encoder pulse trains. DIP2 (T15) is designed to accept a MARKER for spindle orientation. The encoder outputs must be able to provide a logic low below 2V, a logic high above 4V, may range up to 50V max and up to 100KHz. These 2 inputs are single ended and non-isolated. For other types of encoder output, the user must provide some external conditioning circuitry. The output format may be pulse only for single direction, pulse with sign, or phase quadrature. See 6.1.10 CALIBRATION / ENCODER SCALING. Note. The UIPs offer much higher noise immunity for 24V logic signals. 3.4.2.2 Digital outputs When the digital outputs are shorted the 24V output will continue to operate with a current capability of 50mA. This is so that the CSTOP line does not go low and shut down the drive. If it is important that the drive continues running with a shorted digital output then a digital output set permanently high may be used as an auxiliary 24V power output for other tasks, allowing the main 24V output to be devoted entirely to the CSTOP function. The current capability of the digital outputs is also an important issue. Typically 50mA is a sufficient specification. However occasionally higher output current is required. The PL/X series addresses this by allowing a total current limit to be made available to all the digital outputs, allowing the user to exploit it as desired. For all 7 outputs together there is a maximum allowable limit of 350mA. Any one output is allowed to output up to 350mA. Any spare capacity within this limit is also available to the 24V output, which also has its own 50mA capability, giving a maximum total to the +24V output of 400mA if no digital output is being used. All digital outputs share this rail Internal current limited (350mA) +24V Output terminal Flywheel diode External load. E.g. relay coil 0V terminal This shows the output configuration for each digital output DOP1 to DOP3 and DIO1 to DIO4 The digital outputs are also designed to be OR,d together, or with outputs from other drives if desired. This is sometimes useful if an external event must wait for several outputs to go low. Each output is fitted with a flywheel diode to allow the safe driving of inductive loads, and because of the current limiting it is possible to drive lamps that may have a low cold resistance. 3.4.3 Analogue inputs UIP2 to UIP9 The analogue inputs are required to accurately measure +/-10V signals. The resolution (minimum recognisable steps) must be as small as possible and the conversion to a number must be as fast as possible to give good response times. The PL/X series not only possesses 8 analogue inputs, but also measures all of these with up to 5mV plus sign resolution and with excellent response time. In addition it is possible to programme the voltage range of each input to +/- 5, 10, 20 or 30V. This allows signals other than 10V full scale to be used, and enables the input to be used as a sophisticated digital input. This can be achieved by programming the input to the 30V range and setting the programmable threshold detector at 15V to recognise a 0 or 1. All the analogue input voltages can be monitored using the built in menus, which will display in the selected ranges of +/- 5.120V, +/10.240V, +/-20.480V and +/-30.720 Volts. See 6.7.7.7 SPEED PI ADAPTION / Using small speed inputs. The default gives low gain for small inputs. Note. When used as digital inputs the UIPs provide excellent noise immunity and settable threshold. Introduction and Technical Data 27 UIP When using 4-20mA loop signals all that is required is to fit an external burden resistor of 220 Ohms between the input and 0V. Then set up the relevant UIP to read the resulting voltage signal generated by passing the signal current through the burden. The diagram shows a 4-20mA signal flowing through an external burden resistor. 0V See 13.4.1.2.1 2 2 0 R 4-20mA loop input SETUP 3.4.4 Analogue tachogenerator input This input is intended solely for the connection of an analogue bi-polar DC tachogenerator. An AC tachogenerator with a rectified output may also be used with the PL series 2 quadrant drives. Terminals T25 0V and T26 TACH should be used for the two connections to the tachogenerator. A DC voltage of up to +/-200V DC maximum can be applied directly to T26 with respect to T25. See 6.1.9 CALIBRATION / Speed feedback type PIN 9 QUICK START, to select tach feedback, and 6.1.8 CALIBRATION / Max tacho volts PIN 8, to match the 100% feedback voltage and sign on T26. For forward motor rotation corresponding to a positive reference signal, the tachogenerator feedback voltage sign at terminal T26 with respect to T25 (OV) must correspond to the sign selected in the calibration menu. The programming facility allows selection of feedback voltages down to 0V, however it is not advisable in the interest of accuracy and smooth operation to use tachos with a voltage less than 10V at full speed. 3.4.5 Signal test pins There is a row of test pins just behind the middle control terminal used to monitor certain feedback signals. 0 volts I arm I field AVF 5.12V The Iarm signal is an attenuated unfiltered inverted version of terminal 29, and may be used to observe the current response of the PL/X. See 13.14.3 DRIVE PERSONALITY / Maximum current response PIN 678. See 13.5.1 ANALOG OUTPUTS / AOP4 Iarm output rectify enable PIN 250. Signal sign and amplitude is 0 to -/+2V linear output for 0 to+/-100% model rating current (inverted) for unrectified mode, or 0 to -2V linear output for 0 to+/-100% model rating current for rectified mode. The other signals are intended for factory use only. 3.5 Control terminal default functions When the drive is shipped the control terminals are allocated with default functions. These are chosen to be as generally useful as possible in most applications. All the programmable terminals are available to be reallocated to an alternative function by the user if desired. This is a list of the default functions. Note if after programming you wish to return the drive to this default function set up, then arrange to have all 4-menu keys depressed simultaneously during the application of control power. See 5.1.3 Restoring the drive parameters to the default condition, and see 13.14.2 DRIVE PERSONALITY / Recipe page PIN 677. OV terminal 0V T1 Aux. Speed Reference Analogue Input UIP2 T2 0 to +/-10V linear input for 0 to+/-100% speed. Overvoltage protected to +/-50V. Input impedance 100K. Speed Reference/Current demand Analogue Input UIP3 T3 0 to +/-10V linear input for 0 to+/-100% speed. Overvoltage protected to +/-50V. Input impedance 100K. (Note, this analogue input is sampled faster than the others for very rapid response applications. E. g. as a current reference. See 6.7.1 SPEED CONTROL / Block diagram). See 6.7.7.7 SPEED PI ADAPTION / Using small speed inputs. The default gives low gain for small inputs. Ramped Speed Reference Analogue Input UIP4 T4 0 to +/-10V linear input for 0 to+/-100% speed. Overvoltage protected to +/-50V. Input impedance 100K. 28 Introduction and Technical Data This input is routed through a programmable up/down ramp. See 6.7.7.7 SPEED PI ADAPTION / Using small speed inputs. The default gives low gain for small inputs. Lower Current Clamp (-ve) Analogue Input UIP5 T5 0 to -10V linear input for 0 to -150% armature current clamp level. Overvoltage protected to +/-50V. Input impedance 100K. Note. When negative, it operates as a clamp on the current demand generated by the speed loop. When positive it drives the demand and ignores the speed loop. Note a demand level cannot override a clamp level. See also T21. Main Current Limit/ Upper Current Clamp (+ve) Analogue Input UIP6 T6 0 to +10V linear input for 0 to +150% armature current clamp level. Overvoltage protected to +/-50V. Input impedance 100K. Note. When positive, it operates as a clamp on the current demand generated by the speed loop. When negative, it drives the demand and ignores the speed loop. Note a demand level cannot override a clamp level. See also T21. Motorised pot simulator, preset value enable Digital Input UIP7 T7 While this terminal is held high the motorised pot simulator is moved immediately to 0.00%. (default preset value). When it is taken low the motorised pot simulator output moves according to the Increase/Decrease inputs on terminals T8/T9. Motorised pot simulator, Increase Digital input UIP8 T8 Motorised pot simulator, Decrease Digital input UIP9 T9 Speed Feedback Analogue Output AOP1 T10 0 to +/-10V linear output for 0 to+/-100% speed feedback. Output current capability 5mA max. Short circuit protection to 0V. (AOP1 or 2 or 3, must not be simultaneously shorted to 0V). Programmable Uni-polar or Bi-polar output mode. Total Speed Reference Analogue Output AOP2 T11 0 to +/-10V linear output for 0 to+/-100% total speed reference. Output current capability +/-5mA max. Short circuit protection to 0V. (AOP1 or 2 or 3 must not be simultaneously shorted to 0V). Total current demand Analogue output AOP3 T12 0 to +/-10V linear output for 0 to +/-100% current demand. Output current capability +/-5mA max. Short circuit protection to 0V. (AOP1 or 2 or 3 must not be simultaneously shorted to 0V). Programmable Unipolar or Bi-polar output mode. 0V on T13 must be used for protective clean earth connection Spare input Marker input Encoder (B train or sign) Encoder (A train) Logic low below 2V, high Logic low below 2V, high Logic low below 2V, high Logic low below 2V, high above above above above 4V 4V 4V 4V Digital input Digital input Digital input Digital input 0V T13 DIP1 DIP2 DIP3 DIP4 T14 T15 T16 T17 Zero reference interlock Digital input DIO1 T18 This input selects an interlock that will prevent the main contactor from energising if the speed reference is not first returned to less than the 117) ZERO INTLCK SPD % setting. Jog mode select Digital input When low, jog/slack speed 1 is selected. When high, jog/slack speed 2 is selected. DIO2 T19 Ramp Hold Digital input DIO3 T20 If the input is high, the RUN MODE RAMP output is held at the last value irrespective of the Ramped Reference Input. When low, the output follows the ramped reference input with a ramp time determined by the FORWARD up/down and REVERSE up/down ramp time parameters. Dual Current Clamp Enable Digital input DIO4 T21 This input alters the configuration of the current clamps. When the input is low, Analogue input T6 provides a symmetric bi-polar current limit. When high, analogue input T6 is the positive current clamp and analogue input T5 is the negative current clamp. Introduction and Technical Data 29 Zero speed Digital Output DOP1 T22 The operating level of this output can be modified by 117) ZERO INTLK SPD % to give the desired speed threshold of operation. A high output +24V indicates Zero speed. Ramping flag Digital Output DOP2 T23 This goes high when the Run Mode Ramp is ramping. (Used to prevent speed loop integration during ramp). Drive healthy Digital Output DOP3 T24 This output is high when the controller is healthy. This means that no alarms have tripped and the drive is ready to run. OV terminal 0V T25 DC Tachogenerator Input TACH T26 Full speed setting range +/-10V to +/-200V. Input impedance 150K Ohms. Signal range 0V to +/-200V. User +10V Reference User -10V Reference +/-10.00V, 0.5%, 10mA max. Short circuit protection to 0V +10V T27 -10V T28 Armature Current Output IARM T29 0 to +/-5V linear output for 0 to+/-100% model current. Output current capability +/-10mA max. Short circuit protection to 0V. Programmable Uni-polar or Bi-polar output mode. Motor thermistor input THM T30 It is good practice to protect DC motors against sustained thermal overloads by fitting temperature sensitive resistors or switches in the field and interpole windings of the machine. These devices have a low resistance (typically 200 Ohm) up to a reference temperature 125 C. Above this temperature, their resistance rises rapidly to greater than 2000 Ohms. Motor over-temperature sensors should be connected in series between terminals T30 and T36. A motor over-temperature alarm will be displayed if the external resistance between T30 and T36 exceeds 1800 Ohms ± 20O Ohms. See 8.1.11.6 DRIVE TRIP MESSAGE / Thermistor on T30. Terminals T30 and T36 (0V COM) must be linked if external over-temperature sensors are not used. 3.5.1 Run, Jog, Start, Cstop Run Digital input RUN T31 The RUN Input provides a means of electronically inhibiting controller operation. If the RUN input is low, all control loops will be inhibited and the motor stops. RUN also controls the field. See 6.9 CHANGE PARAMETERS / FIELD CONTROL. If the contactor is being held in by a) The zero speed detector while the motor is decelerating or b) The contactor drop out delay, then this will be terminated by RUN going low and will result in immediate contactor drop out. (The RUN input terminal may also be used as a programmable digital input if it is not required as a RUN function) WARNING. Do not rely on any drive function to prevent the motor from operating when personnel are undertaking maintenance, or when machine guards are open. Electronic control is not accepted by safety codes to be the sole means of inhibition of the controller. Always isolate the power source before working on the drive or the motor or load. If the RUN input goes low at any point during the stopping process, either heading for zero speed or during the delay period, then the contactor will drop out straight away. 30 Introduction and Technical Data Jog Digital input JOG T32 When the Jog Input is held high the drive jogs (rotates slowly while requested to), provided input Start T33 is low. When the Jog Input is removed the drive will ramp down to zero obeying the Jog/Slack Ramp time. Jog speeds can be selected by input T19. See the description of the start input below for further information about the jog control. See 6.3.5 JOG CRAWL SLACK / Jog mode select PIN 42. Start/stop main contactor control Digital input START T33 When a high input is applied to this terminal the controller will operate provided there are no alarms, the coast stop input (T34) is already high, the controller run input (T31) is high and the Jog input is low. When the input is removed the controller will perform a ramped stop to zero speed. The rate of deceleration will be set according to the programmed stop ramp time. The PLX models will regenerate if necessary to maintain the ramp rate. So will the PL models that have the electronic stopping facility. The PL models that do not have this facility will not be able to decelerate faster than the natural coast down rate. For all models, when the motor has reached zero speed, then the main contactor will de-energise. See 6.3.5 JOG CRAWL SLACK / Jog mode select PIN 42 Note. The user control input contact must be maintained using external interlocking relay logic, or LAT1/2 on terminals 47 and 48. See 4.3.4 Using pushbuttons for simple STOP / START. See 4.3.5 Using pushbuttons for STOP / START (With ramp to stop, jog and slack take up). The Start and Jog inputs provide the following operating features a) Normal running b) Jogging with 2 selectable jog speeds and programmable contactor drop out delay c) Crawling. The crawl speed is a programmable parameter d) Slack take up with 2 selectable take up speeds With start high and jog low, then jog going high acts as a slack take up. With start low the jog input is a jog control. The jog/slack speed 2 select input is on T19 (Jog mode select). With jog low and mode select high, then start going high acts as the crawl control. See 6.3.5 JOG CRAWL SLACK / Jog mode select PIN 42 The crawl uses the run mode ramp times to accelerate, and the Stop mode ramp times to stop. Coast stop main contactor control Digital input CSTOP T34 With a high input, the controller operates normally. When the Coast Stop is at zero volts or open circuit, the main contactor is open and the drive no longer operates. If this input drops low during running then the main contactor will de-energise within 100mS and the motor will coast to rest under the influence of external factors e.g. friction and inertia, or by using an external dynamic braking resistor to dissipate the rotational energy. Note. The CSTOP must be high for at least 50mS prior to START going high. Note. When the digital outputs are shorted the 24V output will continue to operate with a current capability of 50mA. This is so that the CSTOP line does not go low and shut down the drive. If it is important that the drive continues running with a shorted digital output then a digital output set permanently high may be used as an auxiliary 24V power output for other tasks, allowing the main 24V output to be devoted entirely to the CSTOP function. +24V Supply (22V to 32V) Output +24V T35 +24V output for external logic. Short circuit protected with fault annunciation. Overvoltage protection to +50V. See 3.4.2 Digital inputs and outputs. Warning. If powering an external encoder then load T35 with a 390R 5W resistor to 0V T36. This will to prevent the 24V output rising above the encoder voltage rating. OV terminal 0V T36 Control terminals on lower power board numbers 41 to 53. Not programmable. Remote AVF positive input from motor armature RA+ T41 RA+ RA- used for remote armature volts sensing. (Automatic internal disconnection) If a DC contactor is used with field weakening, it allows the field control circuit to continue to sense the back emf of the motor after the contactor has opened and hence prevent a sudden dangerous strengthening of the field current. (Note, the AVF is increased by 3.3% when using remote sensing, this causes a -3.3% speed scale change). Unconnected terminal. Leave this terminal free of connections. NC T42 Introduction and Technical Data 31 Remote AVF negative input from motor armature See T41 Unconnected terminal. Leave this terminal free of connections. RANC T43 T44 Volt free contact for main contactor coil. CON1 CON2 LAT1 LAT2 T45 T46 T47 T48 Rating up to 240V 500VA. Volt free contact for latching contactor push button. Rating up to 240V 500VA. See 4.3.4 Using pushbuttons for simple STOP / START (Coast to stop) EARTH on 51 is a dirty earth connection to the control supply L and N is for control power 100-240V 50/60Hz +/-10% 50VA EARTH T51 N T52 L T53 If the voltage falls below 80V AC the unit will commence an orderly shutdown sequence. See 3.6 Supply loss shutdown. 3.5.2 Summary of default terminal functions OV terminal Aux Speed Reference Speed Reference/Current Demand Ramped Speed Reference Lower Current Clamp (-ve) Main Cur Limit/ Upper Current Clamp (+ve) Motorised pot simulator, preset enable Motorised pot simulator, Increase Motorised pot simulator, Decrease Speed feedback Total speed reference Total current demand OV terminal. Protective clean earth connected Spare input Marker input Encoder (B train or sign) Encoder (A train) Zero reference interlock Jog mode select Ramp hold Dual current clamp enable Zero speed Ramping flag Drive healthy OV terminal. DC Tachogenerator input User +10V reference User -10V reference Armature current output Motor thermistor input Run Jog Start/stop contactor control Coast stop contactor control +24V Supply OV terminal Analogue Input Analogue Input Analogue Input Analogue Input Analogue Input Digital Input Digital Input Digital Input Analogue Output Analogue Output Analogue Output 0V UIP2 UIP3 UIP4 UIP5 UIP6 UIP7 UIP8 UIP9 AOP1 AOP2 AOP3 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 here. Digital Input Digital Input Digital Input Digital Input Digital Input Digital Input Digital Input Digital Input Digital Output Digital Output Digital Output 0V DIP1 DIP2 DIP3 DIP4 DIO1 DIO2 DIO3 DIO4 DOP1 DOP2 DOP3 T13 T14 T15 T16 T17 T18 T19 T20 T21 T22 T23 T24 0V TACH +10V -10V IARM THM RUN JOG START CSTOP +24V 0V T25 T26 T27 T28 T29 T30 T31 T32 T33 T34 T35 T36 Digital Input Digital Input Digital Input Digital Input Output 32 Introduction and Technical Data 3.6 Supply loss shutdown There are 3 supply ports to the unit. Port 1) Control supply. 1ph. Provides power for the internal control electronics. Port 2) EL1/2/3 Auxiliary supply 3ph. Provides power for the field and is used for synchronisation. Port 3) L1/2/3 Main supply 3ph. Provides power for the armature bridge. A loss of any line on port 3, will be recognised by the missing pulse detector. A loss of any line on port 2, will be recognised by either field loss (EL3), phase loss (EL1/2), or synchronisation loss (EL1/2) detectors. (Note. Ports 2 and 3 are ultimately fed from the same supply, although via different fuses, or step up/down transformers). Hence a supply loss may simultaneously be recognised by port 2 and port 3. A total supply loss to the installation will occur on all 3 ports simultaneously. See 8.1.11 MOTOR DRIVE ALARMS / DRIVE TRIP MESSAGE. A loss on port 1 will be recognised below approx. 80V AC. See also 9.1.10 SELF TEST MESSAGE / Internal error code, for details of dips on port 1. Effects of supply loss or dips. The armature and field current will phase back to zero, the contactor control will de-energise. Any valid trip message is permanently saved. See also 5.1.2 PARAMETER SAVE. In the case of a supply dip, the message INTERNAL ERROR CODE / SUPPLY PHASE LOSS will appear on the display to indicate that a supply DIP has occurred. Press the left key to reset. This message may be briefly visible at normal control supply turn off. See 8.1.11.11 DRIVE TRIP MESSAGE / Supply phase loss, for details on ride through times. 3.7 PILOT+ The PL/X series of DC Drives has been designed to operate with the Driveweb Ethernet based distributed control system hardware and software. Driveweb is a sophisticated product which can be very economically implemented using off the shelf ethernet hubs and connection cables. Multiple drives can be inter-connected allowing the system to be ethernet enabled. Virtual connections between all of the drive parameters within all the drives in a system can be easily made. This makes it very easy to build a typical system of say 4 or 5 drives in a cubicle suite and save a lot of time as well. Each drive will need its standard power wiring (incoming supply, contactor, reactor, fuses etc) and normally there will be signal wiring between the drives which is application dependant and requires input from a systems engineer. It is these interconnections which are the time consuming ones because they involve an understanding of the target machine and the required process. Using driveweb makes this easier. The cubicle building can commence straightaway with the drives connected to an ethernet hub, because the control connections are defined later within the virtual world using the configuration tool. They can even be easily changed on site to accomodate an unforseen control problem without further hardware changes because all connections are virtual via the ethernet hub. The diagram of the control system is created by the software tool. The package includes a graphical configuration tool for the PL/X which can also be upgraded to produce a Signal Flow diagram of the multi-drive system. This is called PILOT+ Please refer to the PILOT+ manual for details of how to use PILOT+. Basic application 33 4 Basic application 4 Basic application ................................................................................... 33 4.1 Basic speed or torque control ........................................................................................... 34 4.2 Main Contactor operation................................................................................................ 35 4.2.1 Contactor control questions and answers .......................................................................... 35 4.3 Main contactor wiring options .......................................................................................... 37 4.3.1 Main contactor isolating AC stack supply........................................................................... 37 4.3.2 Main contactor isolating AC stack and auxiliary supplies........................................................ 37 4.3.3 Main contactor isolating DC armature .............................................................................. 38 4.3.4 Using pushbuttons for simple STOP / START (Coast to stop) ................................................... 39 4.3.5 Using pushbuttons for STOP / START (With ramp to stop, jog and slack take up).......................... 40 4.4 ESSENTIAL pre-start checks.............................................................................................. 41 4.4.1 POWER ENGINEERING .................................................................................................. 41 4.4.2 MECHANICAL ENGINEERING ........................................................................................... 41 4.5 CONTROL ENGINEERING COMMISSIONING PROCEDURES............................................................. 42 4.5.1 Quick start calibration................................................................................................. 42 4.5.2 Quick start calibration step by step................................................................................. 43 4.5.3 Quick start current loop AUTOTUNE................................................................................. 43 4.5.4 PASSIVE MOTOR defaults / Using passive motor menu for small test motors ................................ 44 Overview of initial commissioning procedure Always check safety systems thoroughly and observe local safety codes. The suggested strategy is to start in the safest possible mode of operation and progressively exercise each element of the system until full functionality has been achieved. This chapter is a step by step approach up to 4 in this list. 1) Check installation and supplies. (L1/2/3, EL1/2/3 and control supply) and all safety systems. 2) Calibrate PL/X to match motor. (Use Armature voltage feedback below base speed for first run). (Save calibration parameters) 3) Insert firebar (electric heating element, high wattage resistor, e.g. 4 Ohms 1Kw) in series with armature and check operation of contactor and field. 4) Remove firebar, perform AUTOTUNE and run motor up to base speed. Check operation of feedback transducers and mechanical components. 5) Introduce tacho or encoder feedback and proceed to field weakening if required. 6) Start implementing more complex applications blocks. 7) Check safety systems thoroughly and observe local safety codes. INCORRECT CONTROL OF THE MAIN CONTACTOR IS THE MOST COMMON FORM OF PROBLEM. PLEASE SEE SECTIONS 4.2 and 4.2.1 FOR FURTHER HELP. 34 Basic application 4.1 Basic speed or torque control This section shows the essential requirements for a very basic speed or torque control application. Note that the arrangement of the contactor shown here allows continuous phase sensing on EL1/2/3. VERY IMPORTANT see 4.2 Main Contactor operation, 4.3 Main contactor wiring options, 14 Installation. Note. B1, B2 Fan supply is 110V AC 50VA for PL/X185-265 and 240V AC 100VA for PL/X 275-980. L3 L2 L1 c ir c u it b reak er WARNING The phase order of EL1/2/3 must be the same as L1/2/3 3 phase m otor b lo w e r AC1 rated m a in contactor c o il m a in contactor a u x ilia r y s e m i-c o n d u c t o r fuses C o n t r o l s u p p ly U s e D C s e m ic o n d u c t o r d ir t y e a r t h fuse for reg en a p p lic a t io n s lin e reac tor A C C o n t ro l S u p p ly In p u t s (1 1 0 -2 4 0 V ) A- L1 L2 L3 EL3 A+ EL 2 N L EA R T H RA NC CON1 CON2 LA T 1 LA T 2 RA + NC f ie ld arm at ure 4 1 4 2 4 3 4 4 4 5 4 6 4 7 4 8 5 1 5 2 5 3 B1 B2 110V FA N A C IP EL1 contactor c o il s u p p ly 110V AC F+ WARNING. Do not allow coil supply to be externally interrupted. Retro- fit relay logic is often the main culprit. m a in s e m i-c o n d u c t o r fuses F- Is o la t o r T e r m in a ls s h o w n o n t h e t o p e d g e a r e lo c a t e d o n t h e lo w e r le v e l p o w e r b o a r d . ( B 1 / B 2 o n t o p e d g e o f 1 8 5 / 2 2 5 / 2 6 5 m o d e ls ) S y m b o l ic c o n n e c t io n b lo c k . CSTOP + 24V 0V 0V TA CH + 10 -1 0 IA R M THM RU N JOG ST A RT Ra m p in g f lag D r iv e H e a lt h y Z e ro S p e e d R a m p H o ld C u r r e n t C la m p S e le c t J o g S p e e d S e le c t Fe e d b a c k e n c o d e r Z e ro r e f e r e n c e in t e r lo c k Fe e d b a c k e n c o d e r S p a re in p u t S p are in p u t T e r m in a ls 2 -1 2 , 1 4 - 2 4 , a n d 3 1 a r e p r o g r a m m a b le . T h e ir d e f a u lt f u n c t io n is s h o w n h e r e . 0V D IP 1 D IP2 D IP 3 D IP 4 D IO 1 D IO 2 D IO 3 D IO 4 D O P1 D O P2 D O P3 T o t a l C u rre n t D e m a n d T o t al S p e e d Re f eren c e S p eed Fee d b ac k M o t o r is e d P o t d e c r e a s e M o t o r is e d P o t P r e s e t M o t o ris e d P o t In c r e a s e L o w e r C u rre n t C la m p M a in / U p p e r C u rre n t C la m p R a m p e d S p e e d S e t p o in t S p e ed r e f /C u rr e n t re f 0 V T e r m in a l S p eed Ref eren c e b o t t om ed ge o f t h e u p p er c on t ro l b o a r d a r r a n g e d a s 3 b lo c k s o f 1 2 . 0V U IP 2 U IP 3 U IP 4 U IP 5 U IP 6 U IP 7 U IP 8 U IP 9 A O P1 A O P2 A O P3 0 V T e rm in a l T E R M IN A L S 1 3 - 2 4 F U N C T IO N T e r m in a ls 1 - 3 6 a r e lo c a t e d o n t h e T E R M IN A L S 1 - 1 2 F U N C T I O N 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 1 2 3 4 5 6 7 8 acw cw 10K speed pot For Torque control enter Torque ref into T6. (0 - 10V). For speed control link T6 to +10V on T27. P r o t e c t iv e c le a n e a r t h . + T t h e r m is t o r run S u b s t an t ial c h a s s is eart h jo g s t a r t em erg en c y s t o p r e la y Basic application 35 4.2 Main Contactor operation The control of the main contactor is very important. Incorrect implemention is the main cause of failures. See also 6.5 CHANGE PARAMETERS / STOP MODE RAMP and 6.5.1.1 Block diagram of contactor control. The essential elements of controlling the contactor are as follows. 1) It must be possible to release the contactor without relying on electronics. 2) The contactor must not break current. To obey this rule the following applies:a) The PL/X must not attempt to deliver armature current until after the contactor has closed. b) The armature current must be brought to zero before the contactor has opened. 3) The contactor control circuit must be compatible with all likely application requirements. The PL/X has been designed to control all of the above requirements in the use of the main contactor. The purpose of the main contactor is to provide mechanical isolation of the motor armature from the power supply. In the event of an emergency it must be possible for the supply to be removed electromechanically (without the aid of semiconductor electronics). This requirement is usually mandated by safety codes. Under normal operation the contactor is controlled by the PL/X according to the programmed requirements of the user. See 6.5 CHANGE PARAMETERS / STOP MODE RAMP. The CSTOP (coast stop) terminal T34 goes directly to the 24V coil of the internal contactor control relay. (Relay contact is on T45 and T46). If this terminal is provided with 24V then the relay (and hence the main contactor) is ready to be controlled by the PL/X. If the CSTOP terminal is opened then the relay will either not energise, or de-energise and release the main contactor. There is a capacitor across the relay coil which causes it to have a defined drop out time of approx. 100mS. This ensures that the PL/X has time to commutate the armature current to zero before the contacts open. It may be necessary for installations to have over-riding external independent systems for de-energising the main contactor. In this case it is recommended that the CSTOP terminal be opened 100mS in advance of the main contacts opening. Failure to achieve this may result in damage to the unit. Note. If the users main contactor has a closing time delay of greater than 75mS, then it is essential that steps are taken to delay the release of armature current until the main contact has closed. 1) Insert an auxiliary normally open contact on the main contactor in series with the RUN input on T31. 2) Alternatively use contactor wiring method shown in 4.3.2. Contactor coils usually have a high inductance. When the contactor is de-energised it can produce high energy arcing on the internal PL/X control relay. This may degrade the life of the relay and/or produce excessive EMC emissions. Ensure that the contactor coil is snubbered. 4.2.1 Contactor control questions and answers Question. Why is it so important to prevent the contactor 1) Breaking current or 2) Making current? Answer. 1) Breaking current. The motor armature is an inductive load. This helps to smooth the current by storing electrical energy during a charging period and releasing it during a discharging period. However if the circuit is suddenly broken then the stored energy has nowhere to go. This results in a rapid rise in voltage as the inductor (motor armature) seeks to find a discharge path. This rapid transient may cause thyristors in the armature bridge to avalanche on and become conductive. If this happens to a pair of thyristors then an effective short circuit may be formed across the armature. Then a second effect occurs. If the motor is rotating and is suddenly shorted then the mechanical energy stored in the rotation of the motor and load is then generated into the short circuit. This could be a destructive amount of energy. The thyristors then become permanently shorted, and the next time that the contactor closes, the supply fuses will blow. Solution. Always let the PL/X control the contactor. It has been designed to hold the contactor in while it safely quenches the armature current. Use the CSTOP for emergency opening of the contactor via the PL/X. This terminal is electromechanical but also lets the PL/X quench the current in time. If safety codes prevent the PL/X from being used in the emergency stop sequence, ensure that the CSTOP is opened 100mS prior to the main contactor opening. Answer. 2) Making current. If the PL/X has been instructed to start making current, but the main contactor has not yet closed, then the motor will not be able to rotate. This will cause the PL/X to phase further forward in an attempt to produced the desired speed. If the contactor then closes it will present a stationary motor armature 36 Basic application on a fully phased forward stack, straight on to the supply, producing destructive current. All this will occur in a few cycles of current which is far too fast for the speed loss alarms to operate. Solution. 1) Insert an auxiliary normally open contact on the main contactor in series with the RUN input on T31. 2) Alternatively use contactor wiring method shown in 4.3.2. Question. Plenty of systems do not appear to suffer from failures due to opening the contactor incorrectly so why is it so important? Answer. If the armature current is discontinuous, which is very common, then there is much less stored inductive energy and the current also goes to zero every current cycle. This makes it highly unlikely that a destructive situation occurs. The high risk situations are regenerative applications and continuous current modes. Even in these cases it does not always result in a destructive sequence. Question. Even if the contactor operates according to the recommendations how is protection afforded if the contactor coil supply is lost. Answer. This is a difficult problem to solve using electronics. The only reliable insurance is to insert a DC semiconductur fuse in the armature circuit. This fuse should open before the thyristor junction fails. Question. What if the grid system fails totally? Answer. This is not as bad as losing the contactor coil supply. Most installations naturally have other loads that provide a safe discharge path before the contactor opens. Question. What if the grid system fails for a few cycles? (Brown outs) Answer. The PL/X is designed to ride through these kinds of supply dips. As soon as it loses synchronisation the armature current is quenched. The armature voltage is then monitored so that when the supply returns the PL/X picks up into the rotating load at the correct speed. Question. What other sorts of problems occur? Answer. Most problems occur when users are retro-fitting the PL/X into an existing system. Sometimes these systems have previously controlled the contactor via a PLC or Drive healthy relay. These control systems may not be interfaced correctly with PL/X and situations occur that drop out the contactor too quickly, or bring it in too late. Another common problem is that the contactor is controlled correctly for normal running but incorrectly during jogging or emergency stopping. Another instance is the installation is designed correctly but the commissioning engineer uses a local op station to get each PL/X going, that has an in built control problem. Summary. Use the PL/X to control the main contactor for STOP, START, jogging and emergency stop. All sequencing occurs automatically. Fit semiconductor fuses in the AC supply and armature circuits. The cost of a fuse is marginal compared to the cost of repairing a damaged drive and suffering machine downtime and engineer call out costs. Basic application 37 4.3 Main contactor wiring options There are various ways of implementing contactor control. Each method has advantages and disadvantages. Please study the rest of this section carefully before choosing the control method. See also 14.9.1 Wiring diagram for AC supply to L1/2/3 different to EL1/2/3. (E.g. Low voltage field) 4.3.1 Main contactor isolating AC stack supply Main Fuses EL1/2/3 are wired after the main fuses to ensure the phase loss function works if a main fuse blows Main Contactor Auxiliary Fuses Motor Arm Motor Field DC Semiconductor fuse for regenerative applications Line reactor A+ A- L1 L2 L3 EL1 EL2 EL3 F- F+ Advantages The auxiliary supplies are permanently energised. This allows the synchronisation circuits to lock onto the supply prior to the application of power to the motor. This results in a fast release of current to the armature because it avoids the synchronisation delay. Also the field can remain energised after contactor drop out, allowing dynamic braking and/or condensation prevention in standby field mode. Disadvantages The field winding is not electromechanically isolated by the main contactor, which may contravene safety codes without additional measures. The field standby level may not be set to a low enough level by the user and could cause overheating of the field winding. Phase forward may occur before contactor has closed causing fault current. (Time delay from START command to phase forward is 75mS.) 4.3.2 Main contactor isolating AC stack and auxiliary supplies Main Fuses Main Contactor Motor Field Motor Arm Auxiliary Fuses DC Semiconductor fuse for regenerative applications Line reactor A+ A- L1 L2 L3 EL1 EL2 EL3 F- F+ Advantages The field winding is electromechanically isolated by the main contactor. Some retro fit installations are only able to provide the 3 main phases because the main contactor is remotely located to the drive panel, in which case this wiring method may be preferred. The PL/X cannot phase forward until the contactor has closed because EL1/2/3 take time to synchronise. 38 Basic application Disadvantages The auxiliary supplies are de-energised by the main contactor. This causes a turn on delay of approximately 0.75 secs while the synchronisation circuits establish a lock onto the supply prior to the application of power to the motor. Also the field cannot remain energised after contactor drop out which prohibits dynamic braking and/or condensation prevention in standby field mode. 4.3.3 Main contactor isolating DC armature Main Contactor With aux contact Motor Arm Main Fuses Motor Field Line reactor Auxiliary Fuses T41 + T43 AV sensing inputs only used with DC side contactors DC Semiconductor fuse for regenerative applications A+ A- L1 L2 L3 EL1 EL2 EL3 F- F+ Wire the auxiliary N/O contact in series with RUN (T31) and +24V (T35) Advantages The auxiliary supplies are permanently energised. This allows the synchronisation circuits to lock onto the supply prior to the application of power to the motor. This results in a fast release of current to the armature because it avoids the synchronisation delay. Also the field can remain energised after contactor drop out allowing dynamic braking and/or condensation prevention in standby field mode. Disadvantages The field winding is not electromechanically isolated by the main contactor, which may contravene safety codes without additional measures. The field standby level may not be set to a low enough level by the user and could cause overheating of the field winding. The AC supply is permanently connected to the PL/X unless further provision is made to isolate the supplies. Note. The armature must be connected to the remote sense terminals T41 and T43. This ensures that the PL/X can measure the armature voltage even when the contactor is open. It is dangerous to utilise a DC contactor when field weakening is employed without also connecting T41 and T43 to the motor armature. See also 6.5 CHANGE PARAMETERS / STOP MODE RAMP and 6.5.1.1 Block diagram of contactor control. Basic application 39 4.3.4 Using pushbuttons for simple STOP / START (Coast to stop) Internal contacts +24V coil energised by (START or JOG) AND CSTOP Stop mode ramp delay. INTERNAL CONTACTS Terminated by RUN going LOW T45 CON1 T46 CON2 T47 LAT1 T48 LAT2 T31 T32 T33 T34 RUN JOG START CSTOP T35 +24V T36 0V 0V CONTACTOR COIL SUPPLY RC SNUBBER across contactor coil.. Typical values are 100 Ohms 1W and 0.1uF both rated for the coil supply volts. COAST STOP. Must be high prior to START. START STOP MAIN CONTACTOR Auxiliary contact on main contactor in series with RUN for contactors with ON delay > 75mS. Note. This circuit will cause the contactor to drop out as soon as the STOP button contact is opened because the START input is opened together with the RUN input, which over-rides the STOP MODE RAMP function. When the STOP button opens during running, the main contactor will de-energise within 100mS, and the motor will coast to rest under the influence of external factors e.g. friction and inertia, or by using an external dynamic braking resistor to dissipate the rotational energy. Note. The CSTOP must be high for at least 50mS prior to START going high. In order to allow regeneration during the stopping sequence an external latching circuit must be employed to control the STOP / START contacts (T47 / 48 cannot be used), and the RUN input is not controlled from the START terminal. See 4.3.5 Using pushbuttons for STOP / START (With ramp to stop, jog and slack take up). See 6.5 CHANGE PARAMETERS / STOP MODE RAMP. 40 Basic application 4.3.5 Using pushbuttons for STOP / START (With ramp to stop, jog and slack take up) INTERNAL CONTACTS Internal contacts +24V coil energised by (START or JOG) AND CSTOP Stop mode ramp delay. Terminated by RUN going LOW T45 CON1 T46 CON2 T47 LAT1 T48 LAT2 T31 T32 T33 T34 RUN JOG START CSTOP T35 +24V T36 0V 0V Contactor COIL SUPPLY COAST STOP. RC SNUBBER across contactor coil.. Typical values are 100 Ohms 1W and 0.1uF both rated for the coil supply volts. Must be high prior to START. JOG Or Slack MAIN CONTACTOR STOP 24V relay Auxiliary contact on main contactor in series with RUN for contactors with ON delay > 75mS. (RUN must be at +24V to enable current) Relay COIL START Note. This circuit will cause the STOP MODE RAMP to operate when the STOP button opens during running. Then the speed will ramp down under control of the STOP MODE RAMP. The main contactor will de-energise after the STOP MODE RAMP parameters have been satisfied. See 6.5.1.3 Contactor drop out. Note. The CSTOP must be high for at least 50mS prior to START going high. The PLX, or PL models that have the regenerative stopping facility, will regenerate to maintain the ramp rate. The JOG button operates as a JOG function when the drive is stopped (START open), and as the SLACK 1 take-up function when the drive is running (START closed). With the STOP button held open, no running button is operative. (JOG / SLACK or START) Basic application 41 4.4 ESSENTIAL pre-start checks This is a summary of the essential parameters that should be checked prior to allowing power to the motor. You must be able to put a tick against every section. Failure to comply with these requirements may cause incorrect functioning or damage to the drive and/or installation and will invalidate any warranty. 4.4.1 POWER ENGINEERING You must be able to put a tick against every section. 1) All external fuses must be of the correct rating and type. The I2t rating must be less than the rating specified in the rating tables. This includes main and auxiliary fuses. See 14.3 Semiconductor fuse ratings. 2) Check that the motor armature resistance is about 2 Ohms +/-1 over 360 deg rotation. Check that the field resistance in Ohms = (field dataplate volts) / (field dataplate current). Look inside the motor terminal box to verify correct wiring. 3) Check the 3 phase auxiliary supply phasing on ELl /2/3 equates to the phasing of the main stack supply on Ll/2/3, and the 1 ph control supply on T52/53 is correct. 4) The drive and 3 phase supply current and voltage ratings, should be compatible with the motor and load requirements. (Both armature and field, current and voltage). 5) The cables and termination should be rated to carry the rated current with no more than a 25C temperature rise, and all terminations should be tightened to the correct torque. See 14.10 Terminal tightening torques. 6) The main contactor must be operated by the CON1/2 contact on terminals 45 and 46 checked checked checked checked checked checked 7) The wiring should be checked for short circuit faults. AC power to ground, signal and control. DC power to ground, signal and control. Signal to control and ground. Disconnect the drive for wiring tests using a megger. (Control terminals are plug in type). checked 8) The engineering standards employed must comply with any local, national or international codes in force. Safety requirements take priority. checked 9) If the load regenerates or regenerative braking is employed, then a DC rated armature fuse with the correct I2t rating in series with the motor armature is highly recommended. See 14.3.3 Proprietary DC semi-conductor fuses. 10) A substantial protective chassis earth connection in accordance with relevant codes should be made to the terminal bar provided at the bottom edge of the unit. checked 11) A protective clean earth connection must be made to the control 0V on T13 to ensure that the installation complies with protective class1 requirements. 4.4.2 MECHANICAL ENGINEERING 1) The motor, and load if fitted, must be free to rotate without causing damage or injury, even in the event of incorrect rotation direction, or loss of control. checked checked checked 2) Blow over the commutator using clean dry air to clear it of extraneous matter. Check that the brushes are correctly seated and that the brush tensions are correct. checked 3) Check that the motor vent blower is free to rotate, and remember to re-check the airflow when the blower is operating. checked 4) The emergency stopping and safety procedure, including local and remote actuators must be checked prior to applying power to the motor. checked 5) The installation must be clean and free of debris, swarf, clippings, tools etc. The enclosure must be adequately ventilated with clean dry cool filtered air. When the motor is running, check the PL/X heatsink fans are operating, and the flow of heatsink air is unobstructed. See 14.1 Product rating table , for cooling airflow data. checked 42 Basic application 4.5 CONTROL ENGINEERING COMMISSIONING PROCEDURES Before applying power to the L1/2/3 terminals for the first time, it is recommended that a high wattage resistor of between 4 and 40 Ohms (E.g. a 1 Kw fire bar) is inserted in series with the armature. This will limit any potentially destructive current and prevent possible thyristor damage. (A typical example of the cause of fault current is the incorrect phasing of the EL/1/2/3 terminals with respect to L1/2/3. Without the correct semi-conductor fuses this may result in thyristor damage on the application of the start command). (Note. The fire bar will be removed prior to performing the AUTOTUNE procedure as described later). 1) For systems using field weakening, start with the unit calibrated for armature voltage feedback first in order to verify normal operation up to base speed. Then introduce field weakening only after careful calibration, and switching to either tacho or encoder feedback. 2) For systems employing torque control it is recommended to set up in basic speed mode first in order to establish correct speed loop functioning and calibration. 4.5.1 Quick start calibration Assuming that the drive unit is correctly installed and the motor and load are safe and ready to be rotated, then the next task is to calibrate the drive to suit the supply and the motor. The PL/X series has a method of calibration which avoids the need to solder resistors and set switches. All the fundamental drive scaling parameters can be programmed via the on board display and menu keys. Once the initial calibration menu is completed the chosen limits may be saved and will remain unaltered unless you wish to re-calibrate. There is also the choice of using a password to prevent unauthorised re-calibration. The unit automatically knows the model armature current ratings and will prevent setting of armature current in excess of the model rating. See 13.14.4 DRIVE PERSONALITY / Armature current burden resistance PIN 680. The parameters that will be selected for quick start calibration are as follows See 6.1 CHANGE PARAMETERS / CALIBRATION for a full explanation of these parameters Parameter 2)RATED ARMATURE AMPS 3)CURRENT LIMIT% 4)RATED FIELD AMPS 5)BASE RATED RPM Range 33 –100% of unit rating 0 –150% of unit rating 0.1A – 100% of unit rating 0 - 6000 Factory default 33% 150% 25% 1500 6)DESIRED MAX RPM 0 - 6000 1500 9)SPEED FEEDBACK TYPE Armature voltage (select this one) plus 4 other choices 0 – 1000.0 VOLTS DC 0 to 1000.0 Armature voltage 460 415V 18)RATED ARM VOLTS 19)EL1/2/3 RATED AC Entered Units Amps % Amps Revs per minute of motor at maximum armature volts Max revs per minute of motor at your desired max speed Armature voltage Volts Volts AC By selecting Armature Voltage a quick start is more easily achieved. 1) The speed feedback is always present, and in the correct polarity. 2) The motor and/or load can be seen to be rotating correctly and at approximately the correct speed. 3) If a tachogenerator or encoder is fitted then it can be checked for the correct polarity and output levels prior to including it in the feedback loop. 4) Other parameters such as ramp rates and stopping modes can be checked and or set before proceeding to final accurate calibration. 5) The system may need pre-test prior to shipping and no tachogenerator is available. For this quick start procedure it is only necessary to set the above parameters. Basic application 43 4.5.2 Quick start calibration step by step 1) Turn on the control supply and press the right key to exit diagnostics for the ENTRY MENU. 2) Press the right key to enter the ENTRY MENU / CHANGE PARAMETERS window. Press the right key again to enter the CHANGE PARAMETERS / RUN MODE RAMPS menu. Then press the up key for the CHANGE PARAMETERS / CALIBRATION menu. Enter the CALIBRATION menu by pressing the right key. Once there, use the up or down key to travel round the circular menu.) 3) Only 8 of the available parameters need to be adjusted for QUICK START. (PINs 2, 3, 4, 5, 6, 9, 18, 19). Skip the other windows. PRESS RIGHT KEY FOR ENTRY MENU LEVEL 1 ENTRY MENU LEVEL 1 CHANGE PARAMETERS 2 CHANGE PARAMETERS RUN MODE RAMPS 2 3 CHANGE PARAMETERS CALIBRATION 2 3 4) Select the quick start parameters by using the up / down keys. Press the right key to enter the parameter adjustment window for each in turn. Modify each one to suit your system using the up/down keys. Use the left key to back out of each parameter adjustment window and return to the circular CALIBRATION menu. When you have finished modifying the 8 quick start parameters, it is time to save the changes you have made. Use the left key to return to the ENTRY MENU / CHANGE PARAMETERS menu. Use the up key to arrive at ENTRY MENU / PARAMETER SAVE. Use the right key to enter the PARAMETER SAVE window. Use the up key to save the parameters. While the save is taking place the bottom line will read SAVING. When the save is complete the bottom line will read FINISHED. You can now return by holding down the left key. This will take you to the default diagnostics, and then one tap right to the ENTRY MENU. Note. For a description of the default diagnostics see 5.1.6 Default % DIAGNOSTIC summary windows. Now the PL/X is calibrated to match your motor it is time to apply 3 phase power for the first time to establish correct functioning of the main contactor and that the field current is correct. Remember that there should be a fire-bar inserted in the armature circuit to protect against fault currents. See 4.2 Main Contactor operation and 7.3 DIAGNOSTICS / FLD I LOOP MONITOR. Once you have established correct functioning of the main contactor and that the armature and field are receiving power as expected, then you must remove the fire bar in readiness for the quick start procedure. 4.5.3 Quick start current loop AUTOTUNE 5) The next step is to set up the armature current loop response. The unit is provided with an autotune facility that will perform this function automatically. Using the keys go to CHANGE PARAMETERS / CURRENT CONTROL, and then to CURRENT CONTROL / AUTOTUNE ENABLE. CURRENT CONTROL 92)AUTOTUNE ENABLE 3 Enables the autotune function to start. It turns itself off. 92)AUTOTUNE ENABLE DISABLED PARAMETER AUTOTUNE ENABLE RANGE ENABLED OR DISABLED DEFAULT DISABLED PIN 92 Note. The autotune function makes adjustments to the current loop error amplifier PID terms to achieve optimum performance. When ENABLED it will wait until the main contactor is energised, and the drive run, before starting its autotune routine. It may take from a few seconds up to about 1 minute typically. When it has finished it drops out the main contactor, sets the required parameters and then automatically DISABLES itself. You can check that it has finished by looking in the display window and waiting for the DISABLED comment to reappear on the bottom line. This is a stationary test. There is no need to remove the load. 44 Basic application If the routine is interrupted by a power loss or alarm then the routine is aborted and the old parameter values are left intact. This also occurs after a time out of 2 minutes, which indicates that the load inductance/supply relationship was outside its range of safe operation. In this case you must enter the current loop terms manually. See 6.8.9 CURRENT CONTROL / Autotune enable PIN 92. 6) With the RUN terminal T31 low, activate the Start control and check the operation of the main contactor. If there are any drive problems that are detectable by the on board alarms they will be annunciated. Any alarm conditions must be resolved prior to running. Now take the RUN terminal high to commence AUTOTUNE. Note if a contactor drop out occurs, then the AUTOTUNE will have to be re-enabled before commencing. 7) When you have successfully performed a current loop autotune it is time to save these changes. 8) Provided you correctly adjusted the CALIBRATION parameters, the unit is now calibrated to run in armature voltage feedback mode with the motor ratings you entered and the current loop tuned. 9) Activate the Start controls. Slowly increase the speed control potentiometer whilst observing the shaft rotation. If there are any drive problems that are detectable by the on board alarms they will be annunciated. Any alarm conditions must be resolved prior to running. Note it may be necessary to reduce the speed loop gain for smooth running. See 6.7.4 SPEED CONTROL / Speed proportional gain PIN 71. 10) Make use of this quick start mode to check as much of the system as possible prior to further configuration. 4.5.4 PASSIVE MOTOR defaults / Using passive motor menu for small test motors The PL/X has the facility to be used with 2 different motors. See 6.1.17 CALIBRATION / Motor 1 or 2 select PIN 20. The default values for the passive motor (this is motor 2 from the factory) are set at a level to suit very small motors. Making these values the active set during a system test with a small motor, will save time altering and then re-setting the control terms on motor 1. The dynamic performance of the test motor, (by making the default passive motor settings the active set), will not be as good as a correctly calibrated motor, but should be sufficient for most purposes. The parameters that have been set at a different default level for the passive motor are as follows. Paragraph 6.1.4 6.7.4 6.8.2 6.8.10 6.8.11 6.8.12 PARAMETER CALIBRATION / Rated field amps PIN 4 QUICK START SPEED CONTROL / Speed proportional gain PIN 71 CURRENT CONTROL / Current clamp scaler PIN 81 CURRENT CONTROL / Current amp proportional gain PIN 93 CURRENT CONTROL / Current amp integral gain PIN 94 CURRENT CONTROL / Discontinuous current point PIN 95 Range 0.1 –100% A 0 – 200.00 0 - 150.00% 0 – 200.00 0 – 200.00 0 – 200.00% Motor 1 25% Amps 15.00 150.00% 30.00 3.00 13.00% Motor 2 1 amp 5.00 10.00% 5.00 1.00 0.00% PIN 4 71 81 93 94 95 Note. When using very small unloaded motors on high rated PL/X units the missing pulse alarm may be activated. This is because the armature current is below the missing pulse detection threshold. To prevent the alarm from tripping, set 8.1.5 MOTOR DRIVE ALARMS / Missing pulse trip enable PIN 175 to DISABLED. See also 13.14.4.1 50% / 100% rating select, for details of the burden jumper, which allows selection of a high value burden resistor for an alternative method of testing the PL/X on small motors. The passive motor set parameters are the ones used in the REDUCED Menu. The PASSIVE MOTOR SET is also useful for a rapid review of the alterable parameters in the CHANGE PARAMETERS reduced menu, or setting these parameters for a second system. See 11.1 DISPLAY FUNCTIONS / Reduced menu enable Menu tree stucture 45 5 Menu tree structure 5 Menu tree structure ............................................................................... 45 5.1 Key functions............................................................................................................... 46 5.1.1 Incrementing and decrementing parameter values. ............................................................. 47 5.1.2 PARAMETER SAVE ....................................................................................................... 47 5.1.3 Restoring the drive parameters to the default condition ....................................................... 47 5.1.4 Branch hopping between monitor windows ........................................................................ 47 5.1.5 Power up windows...................................................................................................... 47 5.1.6 Default % DIAGNOSTIC summary windows.......................................................................... 48 5.1.7 Finding the software version number of the unit. ................................................................ 48 5.2 ENTRY MENU................................................................................................................ 48 5.2.1 Full menu diagram (Change parameters)........................................................................... 49 5.2.2 Full menu diagram (Change parameters continued) ............................................................. 50 5.2.3 Full menu diagram (Diagnostics)..................................................................................... 51 5.2.4 Full menu diagram (Motor drive alarms, serial links and display functions) ................................. 52 5.2.5 Full menu diagram (Application blocks and configuration) ..................................................... 53 5.2.6 Full menu diagram (Configuration continued)..................................................................... 54 5.2.7 Full menu diagram (Block OP and Fieldbus configs, Drive personality and Conflict Help) ................ 55 5.3 Archiving PL/X recipes ................................................................................................... 56 46 Menu tree structure 5.1 Key functions The user display has been designed to make programming as simple as possible. 4 keys arranged as up/down and left/right are used to step through the tree structure in their nominated direction. UP (increase) PRESS RIGHT KEY FOR ENTRY MENU LEVEL 1 LEFT (exit to previous menu level) keystrokes not needed Level 1 DOWN (decrease) Level 2 RIGHT (enter next menu level) Level 3 Notice that tapping the left key allows you to exit from any location back to the start point on the previous menu level. The selected menu is displayed on the upper line of characters. If you hold the left key down you will quickly arrive back at the default % diagnostic windows. The level number is displayed at the right hand end of the top line. Level 4 Parameters are sited at ends of branches Automatic default % diagnostic summary windows Parameters may be changed with up/down keys As well as travelling around the tree structure the keys perform other functions. These are as follows. Menu tree stucture 47 5.1.1 Incrementing and decrementing parameter values. This is achieved using the up/down keys. All the parameters that may need changing have been placed at the end of a branch where the up/down keys change the parameter value instead of travelling. After the value has been changed it will be retained simply by backing out of that menu location using the left key. Note. Values that are very large can be changed quickly by holding the key down which will introduce an accelerated change rate. Releasing the key returns it to a one-shot mode. When running, most windows will allow a parameter change to occur as the value is changing, as if a potentiometer was being adjusted. Some windows will request STOP DRIVE TO ADJUST if an immediate change is preferable at standstill. 5.1.2 PARAMETER SAVE Storing the altered values in the drive so that they are retained when the control supply is removed. This is achieved by travelling to the PARAMETER SAVE location in the main menu. Press the right key to enter the PARAMETER SAVE window. Once there, using the UP key saves all the presently prevailing parameter values. The bottom line of the display will read SAVING and then FINISHED. If you wish to abandon changes made since the last save, simply remove the control supply WITHOUT having performed parameter save. See 13.14.2 DRIVE PERSONALITY / Recipe page PIN 677. Note. If the control supply dips below 80V AC without going totally off then an automatic save of the last DRIVE TRIP MESSAGE occurs. Any other parameters with the power loss memory facility are also saved. (E.g. MOTORISED POT output). There is a hidden PIN 681 Power.SAVED ONCE MON. which is set high to indicate this has occurred. This flag is reset to zero if the internal supplies go totally off and back on again. See also 8.1.11.11 DRIVE TRIP MESSAGE / Supply phase loss. 5.1.3 Restoring the drive parameters to the default condition Sometimes it is useful to return a unit to its default setup condition. E.g. a trial configuration may prove to be unworkable and it is easier to start again. If all 4 keys are held down during the application of the control supply, then the drive will automatically display the default parameters and connections. (EXCEPT those in the CALIBRATION menu, and 100)FIELD VOLTS OP % for MOTOR 1 and MOTOR 2, and 680)Iarm BURDEN OHMS. These parameters remain as previously calibrated to prevent accidental de-calibration when restoring defaults). The defaults will only be permanently retained however if they are saved using the PARAMETER SAVE menu. To revert to the last saved set, turn the control supply off, without doing a PARAMETER SAVE. Also the PASSWORD is reset to 0000. See 11.2 DISPLAY FUNCTIONS / PASSWORD CONTROL. See also 13.14.2 DRIVE PERSONALITY / Recipe page PIN 677, for details of 2 and 3 key reset operation and power up messages. 5.1.4 Branch hopping between monitor windows One large class of menu is the DIAGNOSTICS. This provides a very comprehensive monitoring facility of analogue linear input signals, control logic levels, alarms and internal parameters. Each parameter to be monitored is sighted at the end of a branch. Here the up/down keys allow hopping to the adjacent branch. This removes the need to travel back to the previous level and allows rapid observation of multiple parameters. Branch hopping also occurs anywhere there are two or more adjacent monitoring windows. 5.1.5 Power up windows A few seconds after the control supply is applied, the ENTRY MENU window is shown, after a further brief pause with no keystokes, two default % DIAGNOSTIC summary windows are activated. See 5.1.6. The control card interrogates the power chassis during power up to find out the model type. This allows the transference of the control card to a different power chassis. See 13.14.4 DRIVE PERSONALITY / Armature current burden resistance PIN 680. See also 13.14.2 DRIVE PERSONALITY / Recipe page PIN 677. By tapping the right key you will enter the first of the menu levels of the menu tree. PRESS RIGHT KEY FOR ENTRY MENU LEVEL 1 Tap the left key to return to the previous menu level ENTRY MENU LEVEL 1 CHANGE PARAMETERS 2 Tap right key to proceed to next menu level This number shows the next menu level you will proceed to This number shows which menu level you are in 48 Menu tree structure 5.1.6 Default % DIAGNOSTIC summary windows R SPD% 0 Iarm 0 R Sref 0 Ilim 150 Ifld 0 Two default % DIAGNOSTIC windows toggle every 5 seconds. The linear parameters are integer %. If toggling stops and mode = CONF, then ENABLE GOTO GETFROM must be DISABLED. See 13.3.7. -Ilim mode -150 0000 Displayed mneumonic Source PIN number Manual section SPD% 131 7.1.10 PRESS RIGHT KEY FOR ENTRY MENU LEVEL 1 R RJSC 0000 Iarm 134 7.2.2 Ifld 144 7.3.2 RJSC 164 7.5.3 Sref 123 7.1.1 Ilim 138 7.2.6 -Ilim 139 7.2.6 mode 167 (STOP/RUN) 7.5.6 5.1.7 Finding the software version number of the unit. To find the version number of the software loaded on the drive, see 11.4 DISPLAY FUNCTIONS / Software version. This is a version 6 manual. Version 6.10 and above software has all the functions described. 5.2 ENTRY MENU When you enter the first vertical menu level (level 1) you will find 8 headings as you scroll up and down. R PRESS RIGHT KEY FOR ENTRY MENU LEVEL 1 After tapping the right key to proceed to the next level, you can travel up and down the level using the up and down keys. The menus are circular so you can travel up or down to reach your desired destination. The menus are designed so that the most frequently used windows are closest to the entry points. There are 2 styles of menu that can be selected using DISPLAY FUNCTIONS. REDUCED and FULL The reduced menu shows only the commonly used selections and enables more rapid travel around the tree structure If the display is shown in this manual with next to it then this indicates that it is in both the reduced AND the full menu. R ENTRY MENU LEVEL 1 PARAMETER SAVE 2 R ENTRY MENU LEVEL 1 CHANGE PARAMETERS 2 R ENTRY MENU DIAGNOSTICS R ENTRY MENU LEVEL 1 MOTOR DRIVE ALARMS 2 R ENTRY MENU SERIAL LINKS R ENTRY MENU LEVEL 1 DISPLAY FUNCTIONS 2 R Note. There are about 50 adjustable parameters in the reduced menu. There is also a facility for storing a second set of reduced menu parameters which can be called into use using a digital input. See 6.1.17 CALIBRATION / Motor 1 or 2 select PIN 20 See also 11.5 Remotely mounted display unit. LEVEL 1 2 LEVEL 1 2 ENTRY MENU LEVEL 1 APPLICATION BLOCKS 2 ENTRY MENU CONFIGURATION LEVEL 1 2 Menu tree stucture 49 5.2.1 Full menu diagram (Change parameters) ENTRY MENU Section 5 Change parameters CHANGE PARAMETERS Section 6 Run mode ramps Jog crawl slack Motorised pot ramp Stop mode ramp RUN MODE RAMPS Ramp output monitor Forward up time Forward down time Reverse up time Reverse down time Ramp input Forward minimum speed Reverse minimum speed Ramp auto preset Ramp external preset Ramp preset value Ramp S-profile % Ramp hold Ramping threshold Ramping flag JOG CRAWL SLACK Jog speed 1 Jog speed 2 Slack speed 1 Slack speed 2 Crawl speed Jog mode select Jog/slack ramp MOTORISED POT RAMP Output monitor Up time Down time Up command Down command Maximum clamp Minimum clamp Preset Preset value Memory boot up STOP MODE RAMP Stop ramp time Stop time limit Live delay mode Drop-out speed Speed reference summer SPEED REFERENCE SUMMER Internal speed reference 1 Speed reference 2 Speed/current ref 3 mon Ramped speed reference 4 Speed/current reference 3 sign Speed/current reference 3 ratio Speed control SPEED CONTROL Maximum positive speed reference Maximum negative speed reference Speed proportional gain Speed integral time constant Speed integral reset Speed PI adaption SPEED PI ADAPTION Low breakpoint High breakpoint Low breakpoint proportional gain Low breakpoint integral time constant Integral % during ramp Speed adaption enable Continued on next page….. 50 Menu tree structure 5.2.2 Full menu diagram (Change parameters continued) Continued from previous page….. Current control CURRENT CONTROL Current clamp scaler Current overload CURRENT OVERLOAD Overload % target Overload ramp time I dynamic profile I DYNAMIC PROFILE I Profile enable Spd brpnt at HI I Spd brpnt at LO I Cur limit at LO I Dual current clamp enable Upper current clamp Lower current clamp Extra current reference Autotune enable Current proportional gain Current integral gain Current discontinuity 4 Quadrant mode Speed bypass current enable Field control FIELD CONTROL Field enable Field volts output % Field proportional gain Field integral gain Field weakening menu Standby field enable Standby field current Field quench delay Field reference FIELD WEAKENING MENU Field weakening enable Field weakening proportional gain Field weakening integral time constant Field weakening derivative time constant Field weakening feedback derivative Field weakening feedback integral time constant Spillover armature volts % Minimum field current Zero interlocks ZERO INTERLOCKS Standstill enable Zero ref start Zero interlock speed % Zero interlock current % At zero ref flag At zero spd flag At standstill Spindle orientate Calibration CALIBRATION Rated armature amps Current limit % Rated field amps Base rated RPM Desired max RPM Zero speed offset Max tacho volts Speed feedback type Encoder scaling IR compensation Field current fb trim Arm volts trim Analog tacho trim Rated arm volts EL1/2/3 rated a.c. Motor 1,2 select Continued on next page….. SPINDLE ORIENTATE Zero speed lock Marker enable Marker offset Position reference Marker frequency monitor In position flag ENCODER SCALING Quadrature enable Encoder lines Motor/encoder speed ratio Encoder sign Menu tree stucture 51 5.2.3 Full menu diagram (Diagnostics) Continued from previous page….. Diagnostics DIAGNOSTICS Section 7 Speed loop monitor SPEED LOOP MONITOR Total speed ref monitor Speed demand monitor Speed error monitor Armature volts monitor Armature volts % monitor Back EMF % monitor Tacho volts monitor Motor RPM monitor Encoder RPM monitor Speed feedback monitor Armature current loop monitor Field current loop monitor ARM I LOOP MONITOR Armature current demand monitor Armature current % monitor Armature current amps monitor Upper current limit monitor Lower current limit monitor Actual upper limit Actual lower limit Overload limit monitor At current limit flag FIELD CURRENT LOOP MONITOR Field demand monitor Field current % monitor Field current amps monitor Field angle of advance Field active monitor Analog IO monitor ANALOG IO MONITOR UIP2 analog monitor UIP3 analog monitor UIP4 analog monitor UIP5 analog monitor UIP6 analog monitor UIP7 analog monitor UIP8 analog monitor UIP9 analog monitor AOP1 analog monitor AOP2 analog monitor AOP3 analog monitor Digital IO monitor DIGITAL IO MONITOR UIP 23456789 DIP 1234 1234 DIO DOP 123TRJSC CIP + armature bridge flag Drive start flag Drive run flag Running mode monitor Block OP monitor EL1/2/3 RMS monitor DC KILOWATTS monitor Continued on next page….. BLOCK OUTPUT MONITOR Ramp output monitor Motorised pot output monitor Reference exchange output monitor Summer 1 output monitor Summer 2 output monitor PID 1 output monitor PID 2 output monitor 52 Menu tree structure 5.2.4 Full menu diagram (Motor drive alarms, serial links and display functions) Continued from previous page….. Motor drive alarms MOTOR DRIVE ALARMS Section 8 Speed trip enable Speed trip tolerance Field loss trip enable DOP short circuit trip enable Missing pulse enable Reference exchange trip enable Overspeed delay Stall trip menu STALL TRIP MENU Stall trip enable Stall current level Stall delay time Active trip monitor Stored trip monitor External trip reset Drive trip message Serial links SERIAL LINKS Section 10 RS232 port 1 RS232 PORT 1 Port 1 baud rate Port 1 function Parameter exchange PARAMETER EXCHANGE Drive transmit Drive receive Menu list to host Reference exchange Display functions REFERENCE EXCHANGE Ref exch slave ratio Ref exch slave sign Ref exch slave monitor Ref exch master monitor Get from Port 1 comms link DISPLAY FUNCTIONS Section 11 Reduced menu enable Password control PASSWORD CONTROL Enter password Alter password Language select Software version Continued on next page….. PORT 1 COMMS LINK Port 1 unit ID Port 1 group ID Port 1 error code display Port 1 DOP3 RTS mode Menu tree stucture 53 5.2.5 Full menu diagram (Application blocks and configuration) Continued from previous page….. Application blocks APPLICATION BLOCKS Section 12 Summer 1 Summer 2 PID 1 PID 2 Parameter profile Reel diameter calculator Taper tension calculator Torque compensator Preset speed Multi-function 1 Multi-function 2 Multi-function 3 Multi-function 4 Multi-function 5 Multi-function 6 Multi-function 7 Multi-function 8 Latch Filter 1 Filter 2 Batch counter Interval timer Comparator 1 Comparator 2 Comparator 3 Comparator 4 C/O Switch 1 C/O Switch 2 C/O Switch 3 C/O Switch 4 16-bit demultiplex Configuration CONFIGURATION Section 13 Enable goto, getfrom Universal inputs UNIVERSAL INPUTS UIP2 setup UIP3 setup UIP4 setup UIP5 setup UIP6 setup UIP7 setup UIP8 setup UIP9 setup Continued on next page….. UIP SETUP (2 - 9) UIP input range UIP input offset UIP calibration ratio UIP maximum clamp UIP minimum clamp UIP analog goto UIP digital output 1 goto UIP digital output 2 goto UIP high value output 1 UIP low value output 1 UIP high value output 2 UIP low value output 2 UIP threshold 54 Menu tree structure Continued from previous page….. 5.2.6 Full menu diagram (Configuration continued) Analog outputs ANALOGUE OUTPUTS Armature current output rectify AOP1 setup AOP2 setup AOP3 setup AOP SETUP (1 - 3) AOP divider AOP offset AOP rectify enable Get from Scope output select Digital inputs DIGITAL INPUTS DIP1 setup DIP2 setup DIP3 setup DIP4 setup DIP SETUP (1 - 4) DIP input high value DIP input low value Goto Run input setup RUN INPUT SETUP Run input high value Run input low value Goto Digital in/outputs DIGITAL IN/OUTPUTS DIO1 Setup DIO2 Setup DIO3 Setup DIO4 Setup DIO SETUP (1 - 4) DIO output mode DIO rectify enable DIO threshold DIO invert mode Get from Goto DIO input high value DIO input low value Digital outputs DIGITAL OUTPUTS DOP1 setup DOP2 setup DOP3 setup DOP SETUP (1 - 3) DOP rectify enable DOP threshold DOP invert mode Get from Staging posts STAGING POSTS Digital post 1 Digital post 2 Digital post 3 Digital post 4 Analog post 1 Analog post 2 Analog post 3 Analog post 4 Software terminals SOFTWARE TERMINALS Anded run Anded jog Anded start Internal run input Jumper connections Continued on next page….. JUMPER CONNECTIONS Jumper 1 Jumper Jumper Jumper Jumper Jumper Jumper Jumper Jumper 16 JUMPER (1 - 16) Get from Goto Menu tree stucture 55 Continued from previous page….. 5.2.7 Full menu diagram (Block OP and Fieldbus configs, Drive personality and Conflict Help) Configuration Block output config BLOCK OP CONFIG Run mode ramps goto Motorised pot goto Reference exch slave goto Application block GOTO connections. Fieldbus Config FIELDBUS CONFIG Jumper 1 to 8 GETFROM Bit-Packed GETFROM Jumper 9 to 16 GOTO Bit-Packed GETFROM Jumper 1 to 8 GETFROM Bit-Packed GOTO Fieldbus data control Drive personality DRIVE PERSONALITY Passive motor set Recipe page Max current response ID monitor (Unit Identity) Armature current burden ohms Conflict help menu CONFLICT HELP MENU Number of conflicts Multiple GOTO on PIN Parameter save Bit-Packed GOTO Jumper 1 to 8 GOTO PASSIVE MOTOR SET Rated armature amps Current limit % Rated field amps Base rated RPM Desired maximum RPM Zero speed offset Max tacho volts Speed feedback type Quadrature enable Encoder lines Motor/encoder speed ratio Encoder sign IR compensation Field current feedback trim Armature volts trim Analog tacho trim Rated armature volts Forward up time Forward down time Reverse up time Reverse down time Jog speed 1 Jog speed 2 Slack speed 1 Slack speed 2 Crawl speed Jog mode select Jog/slack ramp Stop ramp time Drop-out speed Internal speed reference 1 Speed reference 2 Speed/current ref 3 mon Ramped speed reference 4 Speed/current reference 3 sign Speed/current reference 3 ratio Maximum positive speed reference Maximum negative speed reference Speed proportional gain Speed integral time constant Current clamp scaler Current proportional gain Current integral gain Current discontinuity 4 Quadrant mode Field enable Field volts output Standstill enable Zero interlock speed % Zero interlock current % 56 Menu tree structure 5.3 Archiving PL/X recipes After a working set of parameters and configuration connections has been created, it is recommended that an archive of the recipe be made for back up purposes. There are tools available for creating an archive. For the PILOT+ online configuration tool please refer to the PILOT+ Manual. See also 13.14.2 DRIVE PERSONALITY / Recipe page PIN 677. PC running PILOT+ Contains recipes. DRIVE BLOCK DIAGRAM AND POWER CONTROL RS232 PORT1 ASCII COMMS to PILOT+ VOLATILE MEMORY. This holds the working set of drive parameters and internal connections SAVE SAVE SAVE Recipe Page NORMAL RESET Recipe Page 2-KEY RESET Recipe Page 3-KEY RESET Recipe Page 4-KEY ROM RESET Non-volatile memory Non-volatile memory Non-volatile memory With LOCK facility (+USER CALIBRATION) RS232 PORT1 / PARAMETER EXCHANGE to/from host computer Archived configuration file in PILOT+. Contains recipe source Factory defaults CHANGE PARAMETERS 57 6 CHANGE PARAMETERS 6 CHANGE PARAMETERS ............................................................................. 57 6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9 6.10 CHANGE PARAMETERS / CALIBRATION ................................................................................. 59 CHANGE PARAMETERS / RUN MODE RAMPS ........................................................................... 71 CHANGE PARAMETERS / JOG CRAWL SLACK .......................................................................... 77 CHANGE PARAMETERS / MOTORISED POT RAMP...................................................................... 81 CHANGE PARAMETERS / STOP MODE RAMP ........................................................................... 85 CHANGE PARAMETERS / SPEED REF SUMMER ......................................................................... 90 CHANGE PARAMETERS / SPEED CONTROL ............................................................................. 92 CHANGE PARAMETERS / CURRENT CONTROL ......................................................................... 97 CHANGE PARAMETERS / FIELD CONTROL ............................................................................ 106 CHANGE PARAMETERS / ZERO INTERLOCKS ........................................................................ 113 58 CHANGE PARAMETERS CHANGE PARAMETERS menu ENTRY MENU LEVEL 1 CHANGE PARAMETERS 2 There are a very large number of parameters that can be altered by the user. All the alterable parameters have a factory default setting that in most cases will provide a perfectly workable solution and will not need altering. R CHANGE PARAMETERS CALIBRATION 2 3 R CHANGE PARAMETERS RUN MODE RAMPS 2 3 R CHANGE PARAMETERS JOG CRAWL SLACK 2 3 CHANGE PARAMETERS MOTORISED POT RAMP 2 3 R CHANGE PARAMETERS STOP MODE RAMPS 2 3 R CHANGE PARAMETERS SPEED REF SUMMER 2 3 R CHANGE PARAMETERS SPEED CONTROL 2 3 R CHANGE PARAMETERS CURRENT CONTROL 2 3 R CHANGE PARAMETERS FIELD CONTROL 2 3 R CHANGE PARAMETERS ZERO INTERLOCKS 2 3 One class of parameters that will need setting however is the CALIBRATION values. These are special because they are used to set the maximum ratings for the motor and drive. The absolute maximum available armature current of any particular model will not normally exceed the CALIBRATION menu setting. If the control card is transferred to a different power chassis it will automatically interrogate the chassis to determine the frame size. The user must make sure that if the armature burden resistor value is different, then the new value is entered into the unit. See 13.14.4 DRIVE PERSONALITY / Armature current burden resistance PIN 680. This allows owners of large numbers of drives to hold minimal spares. Sometimes it is useful to return a unit to its default parameter condition. E.g. a trial configuration may prove to be unworkable and it is easier to start again. If all 4 keys are held down during the application of the control supply, then the drive will automatically refer to the default parameters and internal connections. However parameters that are used to match the motor to the drive are not affected by restoring the defaults. This includes all those in the CALIBRATION menu and 100)FIELD VOLTS OP %, (for MOTOR 1 and MOTOR 2) and 680)Iarm BURDEN OHMS. These parameters remain as previously calibrated to prevent accidental de-calibration when restoring defaults. See 5.1.3 Restoring the drive parameters to the default condition See also 13.14.2 DRIVE PERSONALITY / Recipe page PIN 677, for details of 2 and 3 key reset operation. This feature allows for 3 total instrument recipes to be stored and retrieved. WARNING. Recipe page 2 and 3 each have their own set of calibration parameters, so be careful to check them all prior to running. CHANGE PARAMETERS 59 6.1 CHANGE PARAMETERS / CALIBRATION Calibration PIN numbers range 2 to 20 R CHANGE PARAMETERS CALIBRATION 2 3 (Bold windows are used for QUICK START) Note. The parameter on the lower line is preceded by a number and bracket e.g. 3)CURRENT LIMIT (%) R CALIBRATION 20)MOTOR 1,2 SELECT R CALIBRATION 2)RATED ARM AMPS 3 R CALIBRATION 3)CURRENT LIMIT (%) 3 R CALIBRATION 4)RATED FIELD AMPS 3 R CALIBRATION 5)BASE RATED RPM 3 R CALIBRATION 6)DESIRED MAX RPM 3 R CALIBRATION 7)ZERO SPEED OFFSET 3 R CALIBRATION 8)MAX TACHO VOLTS 3 R CALIBRATION 9)SPEED FBK TYPE R CALIBRATION ENCODER SCALING 3 4 PIN = 3 This number is important. It is called the PIN (Parameter Identification Number) Each parameter has a unique PIN that is used in the process of configuration. There are up to 720 PIN numbers within the system. They are used to identify connection points when a schematic is being configured and can also hold the result of an operation or logic output. CONNECTIONS. It is possible to construct complex functional blocks by making connections between parameter PINs. When a parameter is given a value by the programming procedure, or is using its default value, it is important to understand how it is affected by a connection to another source. In this case the value is solely determined by the source, and by looking at the parameter you can use it as a diagnostic monitor of that source. The parameter value may only be reentered if the connection from the source is first removed. Note. Bold windows are used for QUICK START. 3 3 R CALIBRATION 3 17)ANALOG TACHO TRIM R CALIBRATION 14)IR COMPENSATION 3 R CALIBRATION 18)RATED ARM VOLTS 3 R CALIBRATION 15)FIELD CUR FB TRIM 3 R CALIBRATION 19)EL1/2/3 RATED AC 3 R CALIBRATION 16)ARM VOLTS TRIM 3 60 CHANGE PARAMETERS 6.1.1 CALIBRATION / Block diagram Encoder pulses DC shunt wound motor Tachogenerator And/or encoder Internal isolated sensors for field current F+/F- Data Plate Tacho voltage Rated field Amps PIN 4 Type:Bipolar/Rectified/AC/DC ENCODER DATAPLATE Lines per revolution MOTOR DATAPLATE Max rated arm amps Max rated arm volts Max rated field amps Max rated field volts Base rated RPM Field Amps Feedback PIN 126 AV mon Isolated sensors for arm current and PL/X A+ / Aterminal V Av | IA PIN 127 AV % mon PIN 128 Bemf % Rated Armature Amps CALIBRATION PIN 2 IR comp PIN 14 T41 T43 AV sensing inputs only used with DC side contactors Max Tacho Volts PIN 8 Field Amps % Feedback PIN 144 A+/A-_ TACHO DATAPLATE Volts / 1000 RPM PIN 143 X Arm Cur fb mon AMPS PIN 135 % PIN 134 Unfiltered % PIN 719 DC Kwatts PIN 170 PIN 129 Tacho Volts. Unfiltered % Tacho mon PIN 716 T 26 X Input pulse sign detector and freq measurement T17 A T16 B Quadrature enable PIN 10 Encoder lines PIN 11 PIN 131 +/- Speed Fb Monitor. Unfiltered PIN 715 (RPM Pins 130/717) X and X Mot/Enc Speed Ratio PIN 12 Encoder sign PIN 13 Speed Fb Type PIN 9 Base rated RPM PIN 5 Desired MAX RPM PIN 6 Zero speed offset PIN 7 PIN 132 Encoder Rpm Monitor. Unfiltered 6.1.2 CALIBRATION / Rated armature amps PIN 2 QUICK START Note the presence of a PIN number on the bottom line shows that one more step right takes us to the end of a branch. Then we reach the end of a branch of the tree and this has resulted in a parameter value on the lower line which can be modified by use of the up/down keys. R CALIBRATION 2)RATED ARM AMPS 3 The desired 100% continuous rated motor current in amps R PARAMETER RATED ARM AMPS 2)RATED ARM AMPS XXX.X AMPS RANGE 33 -100% of PL/X rating DEFAULT (33%)XXX.X A This current may be less than the value on the motor data-plate, but must not normally be higher. (However, see also 6.8.3.1.2 How to get overloads greater than 150% using 82)O/LOAD % TARGET). See 13.14.4 DRIVE PERSONALITY / Armature current burden resistance PIN 680 PIN 2 CHANGE PARAMETERS 61 6.1.3 CALIBRATION / Current limit (%) PIN 3 QUICK START R CALIBRATION 3)CURRENT LIMIT(%) 3 R This is the desired current limit % of 2)RATED ARM AMPS PARAMETER CURRENT LIMIT(%) 3)CURRENT LIMIT(%) 150.00% RANGE 0 to150% of rated motor amps DEFAULT 150.00% PIN 3 This parameter may be adjusted whilst the PL/X is running. If a 150% overload limit is too low for your application then it is possible to cater for larger overload percentages on motors smaller than the PL/X model armature current rating. See 6.8.3.1 CURRENT OVERLOAD / Overload % target PIN 82. If the current exceeds the level set by the overload target, then after an appropriate dwell time, it is progressively reduced to the overload target level. Table showing maximum overloads according to:- Full load motor current, as a % of 2)RATED ARM AMPS. Full load motor current Maximum available Maximum overload % available. (82)O/LOAD % TARGET) as (With respect to full load motor current) a % of 2)RATED ARM AMPS 100% 150% 150 / 100 = 150% 90% 150% 150 / 90 = 166% 80% 150% 150 / 80 = 187% 75% 150% 150 / 75 = 200% 60% 150% 150 / 60 = 250% 50% 150% 150 / 50 = 300% 37.5% 150% 150 / 37.5 = 400% 30% 150% 150 / 30 = 500% If 3)CURRENT LIMIT(%) or if 82)O/LOAD % TARGET level is set to 0% then no permanent current will flow. See 6.8.3.1 CURRENT OVERLOAD / Overload % target PIN 82. 6.1.4 CALIBRATION / Rated field amps PIN 4 QUICK START R CALIBRATION 4)RATED FIELD AMPS This is the desired 100% DC output field current in amps 3 R PARAMETER RATED FIELD AMPS 4)RATED FIELD AMPS XX.XX AMPS RANGE 0.1A -100% of model rating DEFAULT 25% AMPS PIN 4 If the field amps is not given on the motor dataplate, you can deduce it by measuring the resistance of the field winding after allowing it to reach full working temperature, then using the following equation Field current = Field dataplate volts / Resistance in Ohms Alternatively if you know the rated field voltage, you can go to the CHANGE PARAMETERS / FIELD CONTROL menu, and select the 100)FIELD VOLTS OP % clamp parameter. Adjust the field output voltage to the dataplate value, as a % of the applied AC supply. Please ensure that 4)RATED FIELD AMPS is sufficiently high to force the 100)FIELD VOLTS OP % clamp into operation at the desired voltage under all conditions. 4)RATED FIELD AMPS scaled by 114)FIELD REFERENCE sets the demand for the field current control loop. and 100)FIELD VOLTS OP % operates as a clamp on the field bridge firing angle. The one that results in the lower output, has priority. Hence it is possible to operate with the field current control prevailing and the voltage % as a higher safety clamp, or the voltage % clamp prevailing and the field current control as a higher safety level. 62 CHANGE PARAMETERS 6.1.5 CALIBRATION / Base rated motor rpm PIN 5 QUICK START R CALIBRATION 5)BASE RATED RPM 3 Revs per minute of the motor at full field and armature volts. R PARAMETER BASE RATED RPM 5)BASE RATED RPM 1500 RPM RANGE 0 – 6000 RPM DEFAULT 1500 PIN 5 DEFAULT 1500 PIN 6 This value is usually found on the motor dataplate. 6.1.6 CALIBRATION / Desired max rpm PIN 6 QUICK START R CALIBRATION 6)DESIRED MAX RPM 3 Revs per minute of the motor at your desired maximum speed R PARAMETER DESIRED MAX RPM 6)DESIRED MAX RPM 1500 RPM RANGE 0 – 6000 RPM This represents 100% speed. If your DESIRED MAXIMUM RPM is higher than the BASE RATED RPM then you will need to implement field weakening in the CHANGE PARAMETERS / FIELD CONTROL menu. You must however verify that your motor and load are rated for rotation above base speed. Failure to do so may result in mechanical failure with disastrous consequences. If however your desired maximum rpm is low compared to the base rpm then you need to be aware of the heat dissipation in the motor at full torque. Use force venting of the motor if necessary. 6.1.7 CALIBRATION / Zero speed offset PIN 7 R CALIBRATION 7)ZERO SPEED OFFSET 3 Used to correct any offset from the speed feedback source. R PARAMETER ZERO SPEED OFFSET 7)ZERO SPEED OFFSET 0.00% RANGE +/-5.00% DEFAULT 0.00% PIN 7 This is useful if your speed feedback is derived from an external amplifier which may have a small offset. If this parameter is adjusted un-necessarily then it will appear as an offset on the speed feedback. See 7.1.10 SPEED LOOP MONITOR / Speed feedback % monitor PIN 131. CHANGE PARAMETERS 63 6.1.8 CALIBRATION / Max tacho volts PIN 8 R CALIBRATION 8)MAX TACHO VOLTS 3 Scales the tacho input for full feedback volts at 100% speed . R 8)MAX TACHO VOLTS 60.00V PARAMETER MAX TACHO VOLTS RANGE +/-200.00 volts DEFAULT 60.00V PIN 8 Multiply the output volts per rev value for the tacho by the full speed rpm of the tacho e. g. 1 tacho rating = 0.06 V per rev, 100% speed of tacho = 500 rpm, then tacho scaling = 30.00V e. g. 2 tacho rating = 0.09 V per rev, 100% speed of tacho = 2000 rpm, then tacho scaling = 180.00V Alternatively, for systems NOT employing field weakening, run the system in AVF at desired full speed and monitor the tacho volts. See 7.1.7 SPEED LOOP MONITOR / Tachogenerator volts monitor PIN 129, then after entering the observed full speed tacho volts, convert to tacho feedback. See 3.4.4 Analogue tachogenerator input, also 6.1.9 CALIBRATION / Speed feedback type PIN 9 QUICK START. The sign of the parameter should correspond to the sign of the tacho volts for positive speed demand. For tacho volts which exceed 200V full scale, it is necessary to provide an external resistor dropper network as follows. Tacho signal Resistor 10K 5W Terminal 26 TACHO Resistor 10K 5W Terminal 25 0V The network shown will allow full scale voltages up to 400 Volts. The number scrolled in the window should be set to half the full scale tacho volts. Appropriate measures must be taken to dissipate the heat from the dropper resistors. The total power in watts dissipated will be (Tacho signal volts)2 / 20,000. There is a tacho failure detection system that may be configured to either trip the drive, or automatically switch to AVF. See 8.1.1 MOTOR DRIVE ALARMS / Speed feedback mismatch trip enable PIN 171. See also 3.4.4 Analogue tachogenerator input. 64 CHANGE PARAMETERS 6.1.9 CALIBRATION / Speed feedback type PIN 9 QUICK START R CALIBRATION 9)SPEED FBK TYPE Selects the source of speed feedback from 1 of 5 types. 3 R PARAMETER SPEED FBK TYPE 9)SPEED FBK TYPE ARMATURE VOLTS RANGE 1 of 5 TYPES (0 to 4) DEFAULT (AVF) PIN 9 The speed feedback can be derived from 1 of 3 fundamental sources or a combination of them. All 3 sources may be independently monitored. See 7.1 DIAGNOSTICS / SPEED LOOP MONITOR. 0) ARMATURE VOLTS (AVF). Internal isolated signal always available. The 100% speed feedback volts must be calculated and entered into PIN 18 RATED ARM VOLTS. Note. 130)MOTOR RPM MON will only be accurate when 18)RATED ARM VOLTS corresponds to 6)DESIRED MAX RPM, for 100% speed. WARNING. Do not use this feedback mode with field weakening systems. See 6.9.6 FIELD CONTROL / FLD WEAKENING MENU for a note about AVF / field weakening trip. AVF feedback contains more ripple than tacho feedback. It may be necessary for smooth operation to reduce the SPEED CONTROL loop gain with AVF. See 6.7.4 SPEED CONTROL / Speed proportional gain PIN 71. The accuracy of AVF is about 2% of full speed, it can be improved in 2 ways. a) By applying IR compensation to the feedback. This IR drop is an element within the AVF that is created by the armature current flowing through the armature resistance. This element is not part of the back EMF of the motor and therefore if it is removed from the AVF signal, the feedback is more accurate. See 6.1.11 CALIBRATION / IR compensation PIN 14. b) By running the field control in CURRENT mode. This forces the field current (and hence flux) to remain constant which in turn makes the relationship between speed and AVF more accurate. See also 8.1.1 MOTOR DRIVE ALARMS / Speed feedback mismatch trip enable PIN 171. When the drive is first being commissioned it is recommended that the AVF mode be used initially. This allows any other speed feedback transducers to be examined for correct outputs prior to relying on them for control safety. For systems employing a DC contactor you must use T41 and T43 for remote AVF. 1) ANALOG TACHO. This transducer provides a DC voltage proportional to speed. The 100% speed feedback volts must be calculated and entered into 8)MAX TACHO VOLTS. Note. 130)MOTOR RPM MON will only be accurate when 8)MAX TACHO VOLTS corresponds to 6)DESIRED MAX RPM, for 100% speed. See also 3.4.4 Analogue tachogenerator input. Note. With an additional bi-directional shaft mounted encoder it is possible to lock and/or orientate the shaft at zero speed. See 6.10.9 ZERO INTERLOCKS / SPINDLE ORIENTATE. There is a tacho failure detection system that may be configured to either trip the drive, or automatically switch to AVF. See 8.1.1 MOTOR DRIVE ALARMS / Speed feedback mismatch trip enable PIN 171. 2) ENCODER. This shaft-mounted transducer provides a stream of pulses with a frequency proportional to speed. The pulses can be a single stream with a separate direction logic output. (Low for reverse, high for forward), or a dual stream of pulses in phase quadrature. The quadrature information is decoded by the PL/X to determine the rotation direction. Either type may be selected for use in the ENCODER sub menu. Note. Low frequencies give poor performance. The lower limit for reasonable performance is a 100% input frequency (ie. at full speed of encoder) of 15Khz (450 lines at 2000 rpm single pulse train or 225 lines at 2000 rpm for quadrature type). With more lines performance improves, with less, dynamic stability degrades. The 100% speed feedback RPM is determined from 6)DESIRED MAX RPM. For lower full scale frequencies see type 3 or 4 feedback modes below. Note. With bi-directional encoder feedback it is possible to lock and/or orientate the shaft at zero speed. See 6.10.9 ZERO INTERLOCKS / SPINDLE ORIENTATE. Note. DIP3 (T16) and DIP4 (T17) are designed to accept bi-directional encoder pulse trains. The encoder outputs must be able to provide a logic low below 2V, a logic high above 4V, may range up to 50V max and up to 100KHz. These 2 inputs are single ended and non-isolated. For other types of encoder electrical output, the user must provide some external conditioning circuitry. The output format may be pulse only for single direction, pulse with sign, or phase quadrature. See 6.1.10 CALIBRATION / ENCODER SCALING. CHANGE PARAMETERS 65 There is an encoder failure detection system that may be configured to either trip the drive, or automatically switch to AVF. See 8.1.1 MOTOR DRIVE ALARMS / Speed feedback mismatch trip enable PIN 171. 3) ENCODER + ARM VOLTS. In this mode the AVF provides the main dynamic feedback, and the encoder feedback is used to trim the accuracy to an extremely high level. Note. Low frequencies give poor performance. The lower frequency limit of reasonable performance with encoder + AV feedback is a 100% input frequency of 2Khz ( e. g. 60 lines at 2000 rpm single pulse train or 30 lines at 2000 rpm for a quadrature encoder). With more lines the performance improves, with less the dynamic stability degrades, particularly at low speeds. In this mode, when using a non quadrature single line encoder, the feedback sign is automatically provided by the AVF and T16 digital input is made free for other uses. (Unless zero speed lock is required. See 6.10.9 ZERO INTERLOCKS / SPINDLE ORIENTATE. In this case T16 is still required for the encoder direction). The final steady state 100% speed feedback RPM is determined from 6)DESIRED MAX RPM. The dynamic scaling is derived from 18)RATED ARM VOLTS. These 2 full scale settings must correspond with each other for optimum performance. AVF feedback usually contains ripple, hence it is advisable to reduce the SPEED CONTROL loop gains with AVF feedback selected. See 6.7.4 SPEED CONTROL / Speed proportional gain PIN 71. There is an encoder failure detection system that may be configured to either trip the drive, or automatically switch to AVF. See 8.1.1 MOTOR DRIVE ALARMS / Speed feedback mismatch trip enable PIN 171. 4) ENCODER + TACHO. In this mode the tachogenerator provides the main dynamic feedback, and the encoder trims the accuracy to an extremely high level. Note. Low frequencies give poor performance. The limit of reasonable performance with encoder + tacho feedback is provided with a full speed input frequency of 2Khz (60 lines at 2000 rpm single pulse train or 30 lines at 2000 rpm for quadrature encoder). With more lines the performance improves, with less the dynamic stability degrades, particularly at low speeds. In this mode, when using a non quadrature single line encoder, the feedback sign is automatically provided by the tacho and T16 digital input is made free for other uses. (Unless zero speed lock is required. See 6.10.9 ZERO INTERLOCKS / SPINDLE ORIENTATE In this case T16 is still required for direction.) An encoder and/or tacho failure detection system may be configured to either trip the drive, or automatically switch to AVF. See 8.1.1 MOTOR DRIVE ALARMS / Speed feedback mismatch trip enable PIN 171. The final steady state 100% speed feedback RPM is determined from 6)DESIRED MAX RPM. The dynamic scaling is derived from 8)MAX TACHO VOLTS. These 2 full scale settings must correspond. 6.1.10CALIBRATION / ENCODER SCALING The ENCODER SCALING screen is the entry point to a further sub-menu which performs the process of setting the encoder parameters. R CALIBRATION ENCODER SCALING 3 4 Note. See 7.1.9 SPEED LOOP MONITOR / Encoder RPM monitor PIN 132 which shows the encoder RPM irrespective of whether the encoder is being used for feedback or not. Note. With no encoder fitted you may ignore this sub-menu. R ENCODER SCALING 13)ENCODER SIGN 4 R ENCODER SCALING 4 10)QUADRATURE ENABLE R ENCODER SCALING 11)ENCODER LINES R ENCODER SCALING 4 12)MOT/ENC SPD RATIO 4 66 CHANGE PARAMETERS 6.1.10.1 ENCODER SCALING / Quadrature enable PIN 10 R ENCODER SCALING 4 10)QUADRATURE ENABLE Programmes the encoder inputs T16 and T17. R PARAMETER QUADRATURE ENABLE 10)QUADRATURE ENABLE ENABLED RANGE ENABLED / DISABLED DEFAULT ENABLED PIN 10 The encoder inputs on T16 and T17 can be programmed to accept 2 types of encoder pulse trains. 0) Pulse with sign. QUADRATURE (DISABLED). A single train of pulses on T17 with a rotation direction logic signal on T16 (low for reverse, high for forward). The logic level may be inverted using the 13)ENCODER SIGN parameter. Note. When this type of encoder is used in conjunction with AVF or tacho, the feedback sign is automatically provided by the analog feedback and T16 digital input is made free for other uses. (Unless zero speed lock is required. See 6.10.9 ZERO INTERLOCKS / SPINDLE ORIENTATE. In this case T16 is still required for the encoder direction.). See 6.1.9 CALIBRATION / Speed feedback type PIN 9 QUICK START. 1) 2 pulse trains in phase quadrature. QUADRATURE (ENABLED). The encoder provides 2 pulse trains phase shifted by 90 degrees. They are nominated the A train (on T17) and the B train (on T16). The A train should lead the B train for forward rotation, (positive demand) and B leads A for reverse. The drive automatically decodes the quadrature information to produce a rotation direction sign. This may be inverted using the 13)ENCODER SIGN parameter. Note. When using encoders with quadrature outputs it is very important that the phase difference between the 2 pulse trains remains as close to 90 degrees as possible. If the encoder is not mounted and centered accurately on the shaft, it can cause skewing of the internal optics as the shaft rotates. This produces a severe degradation of the phase relationship on a cyclical basis. If the encoder appears to gyrate as the shaft rotates you must rectify the problem before trying to proceed with commissioning. The best way of checking the output is to use a high quality oscilloscope and observe both pulse trains for good phase holding and no interference. Do this with the drive rotating to +/- 100% speed using AVF as the feedback source. Low frequency feedback may give poor results at low speed. Hence for encoders or other types of pick up providing less than 15KHz at full speed it is recommended that mode 3 or mode 4 combined feedback type is utilised. See 6.1.9 CALIBRATION / Speed feedback type PIN 9 QUICK START. The encoder inputs have to be able to deal with and recognise very short pulses. This means that it is not possible to provide heavy noise filtering on these inputs. Therefore it is very important that the signals input on terminals 16 and 17 are clean and noise free. One of the prime causes of unwanted noise on encoder signals is ground loops. If the encoder electronics is earthed at the motor end then this may cause problems. Make sure the encoder electronics 0V is separately wired back to D0V on terminal 13, with no other earth connections at the motor end. The encoder casing will probably be earthed by virtue of its mechanical connection to the motor or machine. This is usually acceptable as long as the internal electronics 0V has a separate connection. Some encoder manufacturers provide a by-pass capacitor inside the encoder between the electronics 0V and the casing. Unfortunately the capacitor makes a very effective high frequency ground loop and may have to be removed to prevent ground loop noise on the encoder signals. (Consult encoder supplier). Ultimately it may be necessary to install an isolation link in the encoder loop. Make sure the encoder cables are routed away from heavy current or other noise generating cables. Use insulated screened cable with a separate screen for each encoder signal connected at the drive terminal T13. The encoder 0V and +24V should also be screened within the cable. CHANGE PARAMETERS 67 6.1.10.2 ENCODER SCALING / Encoder lines PIN 11 R ENCODER SCALING 11) ENCODER LINES 4 Inputs the encoder resolution in pulses per rev . R 11)ENCODER LINES 1000 PARAMETER ENCODER LINES RANGE 1 to 6000 DEFAULT 1000 PIN 11 The number of lines on the encoder dataplate should be entered. Alternatively enter the number of cycles of high/low for one pulse train during one revolution. E. G. for a toothed gear wheel with 60 teeth and a magnetic pick up, enter the number 60. Note that there is an upper frequency limit of 100 kHz. 6.1.10.3 ENCODER SCALING / Motor / encoder speed ratio PIN 12 ENCODER SCALING 4 12)MOT/ENC SPD RATIO R Sets the motor revs as a ratio of the encoder revs. R PARAMETER MOT/ENC SPD RATIO 12)MOT/ENC SPD RATIO 1.0000 RANGE 0.0000 to 3.0000 DEFAULT 1.0000 PIN 12 Note. The encoder is sometimes not fixed to the motor shaft, and may rotate at an RPM that is a non unity ratio of the motor RPM. Some systems have the encoder geared up to obtain a higher feedback frequency. MOT/ENC SPD RATIO = Motor RPM / Encoder RPM (true for all speeds) When using encoders it is advisable to initially run the system in AVF mode to verify the integrity of the encoder feedback signals using an oscilloscope. Then after setting the QUADRATURE ENABLE and ENCODER LINES parameters, run the system in AVF feedback mode, and monitor 132)ENCODER RPM in the DIAGNOSTICS menu. This will verify the encoder operates as expected prior to using it as a feedback source. Note. An encoder may be input and used for other tasks instead of feedback. On hidden PIN 709)MOTOR RPM %, is the encoder feedback %, scaled to 100% = 6)DESIRED MAX RPM. It is also scaled by 12)MOT/ENC SPD RATIO which acts as a pure multiplying factor. Both 132)ENCODER RPM and PIN 709)MOTOR RPM %, are purely encoder signals, that work independently of the type of feedback selected. They both read zero with no pulses on the encoder inputs. 6.1.10.4 ENCODER SCALING / Encoder sign PIN 13 R ENCODER SCALING 13)ENCODER SIGN 4 Modifies the encoder rotation sign. R PARAMETER ENCODER SIGN 13)ENCODER SIGN NON-INVERT RANGE NON-INVERT or INVERT DEFAULT NON-INVERT PIN 13 Use this to invert the encoder feedback sign if needed. Note, in combined feedback modes type 3 and 4, with single line encoders, the feedback sign is automatically taken from the AVF or tacho if SPINDLE ORIENTATE is not employed. (T16 digital input is made free for other uses). 68 CHANGE PARAMETERS 6.1.11CALIBRATION / IR compensation PIN 14 R CALIBRATION 14)IR COMPENSATION 3 Sets % compensation of the AVF signal due to IR drop R PARAMETER IR COMPENSATION 14)IR COMPENSATION 0.00% RANGE 0.00 to 100.00% DEFAULT 0.00% PIN 14 This parameter is used when armature voltage speed feedback type is selected or in field weakening mode. Note. Speed is proportional to the back EMF of the motor. Back EMF = AVF – IR drop. Hence when the armature current is high the IR drop is high. At zero armature current the IR drop is zero. To set this parameter with AVF feedback, arrange if possible to apply a significant load change to the system. Slowly increment the parameter until the load change has minimum effect on the speed holding. Alternatively calculate the parameter using the formula below and initially enter this value. IR COMPENSATION (%) = RATED MOTOR AMPS X Armature resistance X 100 / RATED ARM VOLTS. Note. Excessive compensation may lead to instability. See also 6.9.6 FIELD CONTROL / FLD WEAKENING MENU for field weakening systems. 6.1.12CALIBRATION / Field current feedback trim PIN 15 R CALIBRATION 15)FIELD CUR FB TRIM 3 Sets a positive trim factor for the field current feedback R PARAMETER FIELD CUR FB TRIM 15)FIELD CUR FB TRIM 1.0000 RANGE 1.0000 to 1.1000 DEFAULT 1.0000 PIN 15 This trim factor may be applied during drive running. The factor is always greater than unity hence can only increase the strength of the feedback. The closed loop system then receives feedback that is too high and causes a reduction of the controlled field current. (This trim is useful if the precise 4)RATED FIELD AMPS calibration parameter is not exactly known and must be discovered during running by starting with a higher than expected value. Once the correct level of feedback has been determined using this trim (the DIAGNOSTICS menu can be used to monitor actual levels of feedback), it can then be entered in the 4)RATED FIELD AMPS calibration parameter. This trim may then be returned to 1.000). 6.1.13CALIBRATION / Armature volts trim PIN 16 R CALIBRATION 16)ARM VOLTS TRIM 3 Sets a positive trim factor for the armature volts feedback R PARAMETER ARM VOLTS TRIM 16)ARM VOLTS TRIM 1.0000 RANGE 1.0000 to 1.1000 DEFAULT 1.0000 PIN 16 This trim factor may be applied during drive running. The factor is always greater than unity hence can only increase the strength of the feedback. The closed loop system then receives feedback that is too high and causes a reduction of the armature voltage feedback and hence a reduction in speed. (This trim is useful if the precise 18)RATED ARM VOLTS calibration parameter is not exactly known and must be discovered during running by starting with a higher than expected value. Once the correct level of feedback has been determined using this trim, (the DIAGNOSTICS menu can be used to monitor actual levels of feedback), it can then be entered in the 18)RATED ARM VOLTS calibration parameter. This trim may then be returned to 1.000). CHANGE PARAMETERS 69 6.1.14CALIBRATION / Analog tacho trim PIN 17 R CALIBRATION 3 17)ANALOG TACHO TRIM Sets a positive trim factor for the analog tacho feedback R 17)ANALOG TACHO TRIM 1.0000 PARAMETER ANALOG TACHO TRIM RANGE 1.0000 to 1.1000 DEFAULT 1.0000 PIN 17 This trim factor may be applied during drive running. The factor is always greater than unity hence can only increase the strength of the feedback. The closed loop system then receives feedback that is too high and causes a reduction of the tacho voltage feedback and hence a reduction in speed. (This trim is useful if the precise 8)MAX TACHO VOLTS calibration parameter is not exactly known and must be discovered during running by starting with a higher than expected value. Once the correct level of feedback has been determined using this trim, (monitor actual levels of feedback in the DIAGNOSTICS menu) it can then be entered in the 8)MAX TACHO VOLTS calibration parameter and this trim returned to 1.000). 6.1.15CALIBRATION / Rated armature volts PIN 18 QUICK START R CALIBRATION 18)RATED ARM VOLTS 3 Sets the desired max armature voltage at 100% speed R PARAMETER RATED ARM VOLTS 18)RATED ARM VOLTS 460.0 V DC RANGE 0.0 to 1000.0 VOLTS DEFAULT 460.0 V DC PIN 18 Note. This must not exceed the maximum rated armature volts defined on the motor dataplate. The armature volts is approximately proportional to the motor speed. Example. A motor rated at 400 volts, 2000 rpm, is required to run at a maximum speed of 1000 rpm. Therefore 200 volts will be the rated armature volts at 1000 rpm. This represents 100% speed. Note. At low speeds be aware of heat dissipation in the motor at full torque. Use force venting of the motor if necessary. If desired maximum rpm is higher than the base rpm then implement field weakening in the CHANGE PARAMETERS / FIELD CONTROL menu. You must however verify that your motor and load are rated for rotation above base speed. Failure to do so may result in mechanical failure with disastrous consequences. In this mode the rated armature volts is usually set to the dataplate value in order to fully exploit the motor ratings. Further speed increase is provided by field weakening and hence the armature voltage remains clamped at the max rated value. This is referred to in the Field weakening menu as the spillover voltage. 6.1.16CALIBRATION / EL1/2/3 rated AC volts PIN 19 QUICK START R CALIBRATION 19)EL1/2/3 RATED AC 3 Enter the 3 phase AC supply volts connected to EL1/2/3. R PARAMETER EL1/2/3 RATED AC 19)EL1/2/3 RATED AC 415.0 VOLTS RANGE 0 to 1000.0 VOLTS Note the actual AC volts may be monitored. See 7.7 DIAGNOSTICS / EL1/2/3 RMS MON DEFAULT 415.0 VOLTS PIN 19 PIN 169. The SUPPLY PHASE LOSS alarm uses this parameter to determine the alarm threshold. The loss detection threshold is set at approximately 75% of the voltage entered here. By entering a voltage higher or lower than the rated voltage it is possible to accomodate systems requiring detection at higher or lower thresholds. Eg. With 19)EL1/2/3 RATED AC set to 415V the alarm will detect at 311 volts on EL1/2/3. (75% of 415 = 311) With 19)EL1/2/3 RATED AC set to 500V the alarm will detect at 375 volts on EL1/2/3. (75% of 500 = 375) See 8.1.11.11 DRIVE TRIP MESSAGE / Supply phase loss, also see 3.6 Supply loss shutdown. 70 CHANGE PARAMETERS 6.1.17CALIBRATION / Motor 1 or 2 select PIN 20 R CALIBRATION 20)MOTOR 1,2 SELECT Selects motor 1 or motor 2 reduced menu as active. 3 R PARAMETER MOTOR 1, 2 SELECT 20)MOTOR 1,2 SELECT MOTOR 1 RANGE MOTOR 1 or MOTOR 2 DEFAULT MOTOR 1 PIN 20 All the alterable parameters contained in the CHANGE PARAMETERS reduced menu may have 2 value settings. (MOTOR 1 and MOTOR 2). This window selects the active set. The active set is always the one available in the CHANGE PARAMETERS menu display. The passive set can be viewed and modified in the configuration menu. See 13.14.1 DRIVE PERSONALITY / PASSIVE MOTOR SET. See 11.1 DISPLAY FUNCTIONS / Reduced menu enable. The passive motor set of parameters is the same as the REDUCED MENU. This PIN can of course be configured to be set by a digital input for external set selection. It may also be used as a diagnostic to show which set is active, and may be connected to a digital output if desired. Rules of operation. 1) Motor 1 and 2 calibration parameters are NOT overwritten if the factory default parameters are restored. 2) The MOTOR 1, 2 SELECT parameter is NOT overwritten if the factory default parameters are restored. This means that the PL/X default power up (4-KEY RESET) will not affect the prevailing calibration parameters. PINs 2 – 20, 100)FIELD VOLTS OP % and 680)Iarm BURDEN OHMS, in both the active set and the passive set. All other parameters are restored to the factory defaults. See 5.1.3 Restoring the drive parameters to the default condition. See 4.5.4 PASSIVE MOTOR defaults / Using passive motor menu for small test motors. See 13.14.2 DRIVE PERSONALITY / Recipe page PIN 677. There is a class of parameters that are prevented from being altered by the keys during motor running. These are indicated in the PIN number tables at the back of the manual by a letter S (STOP DRIVE TO ADJUST) in the ‘Property’ column. See 15 PIN number tables. If 20)MOTOR 1,2 SELECT is altered during running, then any class ‘S’ parameters in the DRIVE PERSONALITY / PASSIVE MOTOR SET that differ from their counterparts in the ACTIVE set will not become active until the next STOP sequence. This functionality gives an extra level of safety but still allows dynamic alteration of most of the important parameters, during running, by one digital input. CHANGE PARAMETERS 71 6.2 CHANGE PARAMETERS / RUN MODE RAMPS CHANGE PARAMETERS RUN MODE RAMPS 2 3 RUN MODE RAMPS R 35)RAMPING FLAG 3 R RUN MODE RAMPS 21)RAMP OP MONITOR 3 PIN numbers range 21 to 35. A different down ramp time is settable for stopping modes. See 6.5.2 STOP MODE RAMP / Stop ramp time PIN 56. R RUN MODE RAMPS 22)FORWARD UP TIME 3 A different up/down ramp time is settable for JOG control. See 6.3.6 JOG CRAWL SLACK / Jog/Slack ramp PIN 43. R RUN MODE RAMPS 3 23)FORWARD DOWN TIME R RUN MODE RAMPS 24)REVERSE UP TIME R RUN MODE RAMPS 3 25)REVERSE DOWN TIME R Summary of available functions. This block sets the rate of acceleration and deceleration of the motor independantly of the incoming reference. There are 4 independent up/down forward/reverse ramp times, and an output indicates that ramping is taking place. The output can be held, or preset to any value with preset commands from various sources for a wide number of applications. The ramp shape can be profiled to a classic S shape for smooth control. See 6.2.13 RUN MODE RAMPS / Ramp S-profile % PIN 32. See 6.3 CHANGE PARAMETERS / JOG CRAWL SLACK and 6.5 CHANGE PARAMETERS / STOP MODE RAMP. These have their own ramp rate times which overide the run mode ramps. The incoming reference can have a minimum speed imposed in either direction. The ramp preset function is momentary in jog mode. Note that the RUN MODE RAMP may be programmed to be active when the unit is in stop mode. See 6.2.1 RUN MODE RAMPS / Block diagram including JOG. This function is useful in cascaded systems. RUN MODE RAMPS 26)RAMP INPUT 3 3 RUN MODE RAMPS 3 27)FORWARD MIN SPEED RUN MODE RAMPS 3 28)REVERSE MIN SPEED RUN MODE RAMPS 3 29)RAMP AUTO PRESET RUN MODE RAMPS 30)RAMP EXT PRESET RUN MODE RAMPS 3 34)RAMPING THRESHOLD RUN MODE RAMPS 33)RAMP HOLD 3 4 3 RUN MODE RAMPS 3 31)RAMP PRESET VALUE RUN MODE RAMPS 32)RAMP S-PROFILE % 3 72 CHANGE PARAMETERS 6.2.1 RUN MODE RAMPS / Block diagram including JOG Fwd up Fwd down Rev up Rev down Ramp hold S shape ramp PIN 22 PIN 23 PIN 24 PIN 25 PIN 33 PIN 32 PIN 27 Fwd min speed Fwd min T4 Default Ramp +0.5% -0.5% Input PIN 26 Rev min PIN 28 Run mode ramp Rev min speed GO TO Run mode ramp OP Monitor PIN 37 PIN 21 JOG speed 1 Run / slack PIN 38 Jog speed1 PIN 34 Ramping Flag Threshold Jog IP JOG speed 2 Jog speed2 Crawl PIN 39 PIN 35 Slack off SLACK speed1 Ramping Flag output Slack speed1 Slack on Slack speed2 PIN 40 PIN 31 Ramp Preset Value gate Ramp Preset Value input SLACK speed2 PIN 30 Ramp Ext Preset. PIN 41 Permanent action in run mode, momentary action at commencement of Jog. Crawl speed T 32 JOG T 33 START Operating function Stopped Stopped Running Slack 1 takeup Slack 2 takeup Jog speed 1 Jog speed 2 Crawl JOG MODE SELECT T19 low high low low high low high high RAMP AUTO PRESET DISABLED RAMP EXT PRESET DISABLED 2 DISABLED ENABLED 3 ENABLED DISABLED ENABLED ENABLED START T33 IP level low low high high high low low high JOG T32 IP level low low low high high high high low Ramp Auto Preset System Reset Pulse PIN 720 JOG CRAWL SLACK Mode 1 4 PIN 29 RUN MODE RAMP And T19 Default Jog Mode Select PIN 42 Ramp input Total value reference reference reference ref + slack1 ref + slack2 Jog speed 1 Jog speed 2 Crawl speed Applied ramp time Stop ramp time Stop ramp time Run mode ramp Jog/slack ramp Jog/slack ramp Jog/slack ramp Jog/slack ramp Run mode ramp Contactor state OFF OFF ON ON ON ON ON ON PIN 43 Jog/Slack Ramp PIN 689 In Jog flag PIN 714 In Slack flag Stop Ramp Time (Also in Speed Control) PIN 65 RUN MODE RAMP action Held at zero when stopped. JOG MODE RAMP action Held at zero when stopped. Starts from zero. Starts from zero. Held at PRESET VALUE permanently. Held at PRESET VALUE when stopped. Ramp continues to follow input reference when stopped. Ramp continues to follow input reference when stopped. Starts from PRESET VALUE Starts from PRESET VALUE Held at PRESET VALUE permanently. Held at PRESET VALUE when stopped. Starts from PRESET VALUE Starts from PRESET VALUE Mode 1 ensures that the ramp output is reset to 0.00% during all stopping modes. Modes 2/3/4 have an active ramp output during all stopping modes which is useful in cascaded systems. The action of starting, momentarily presets the ramps. (Default value 0.00%). Note. 30)RAMP EXT PRESET has permanent action on the RUN MODE RAMP and, if already high, has a momentary action at the commencement of a JOG request. The 29)RAMP AUTO PRESET input is ANDED with 720)SYSTEM RESET pulse, which is simultaneous with the release of the current loop. CHANGE PARAMETERS 73 6.2.2 RUN MODE RAMPS / Ramp output monitor PIN 21 R RUN MODE RAMPS 21)RAMP OP MONITOR 3 R Allows the output level of the ramp block to be monitored. 21)RAMP OP MONITOR 0.00% PARAMETER RAMP OP MONITOR RANGE +/-100.00% PIN 21 This monitoring window is able to branch hop to 6.2.16 RUN MODE RAMPS / Ramping flag PIN 35. Note that the RUN MODE RAMP may be active when the unit is in stop mode. See 6.2.1 RUN MODE RAMPS / Block diagram including JOG. 6.2.3 RUN MODE RAMPS / Forward up time PIN 22 R RUN MODE RAMPS 22)FORWARD UP TIME 3 Sets the ramp time for 0-100% of the forward +ve reference. R PARAMETER FORWARD UP TIME 22)FORWARD UP TIME 10.0 SECS RANGE 0.1 to 600.0 seconds DEFAULT 10.0 secs PIN 22 DEFAULT 10.0 secs PIN 23 DEFAULT 10.0 secs PIN 24 DEFAULT 10.0 secs PIN 25 6.2.4 RUN MODE RAMPS / Forward down time PIN 23 R RUN MODE RAMPS 3 23)FORWARD DOWN TIME Sets the ramp time for 100-0% of the forward +ve reference. R PARAMETER FORWARD DOWN TIME 23)FORWARD DOWN TIME 10.0 SECS RANGE 0.1 to 600.0 seconds 6.2.5 RUN MODE RAMPS / Reverse up time PIN 24 R RUN MODE RAMPS 24)REVERSE UP TIME 3 Sets the ramp time for 0-100% of the reverse -ve reference. R PARAMETER REVERSE UP TIME 24)REVERSE UP TIME 10.0 SECS RANGE 0.1 to 600.0 seconds 6.2.6 RUN MODE RAMPS / Reverse down time PIN 25 R RUN MODE RAMPS 3 25)REVERSE DOWN TIME Sets the ramp time for 100-0% of the reverse -ve reference. R PARAMETER REVERSE DOWN TIME 25)REVERSE DOWN TIME 10.0 SECS RANGE 0.1 to 600.0 seconds 74 CHANGE PARAMETERS 6.2.7 RUN MODE RAMPS / Ramp input PIN 26 RUN MODE RAMPS 26)RAMP INPUT 3 Sets the run mode ramp input value. 26)RAMP INPUT 0.00% PARAMETER RAMP INPUT RANGE +/-105.00% DEFAULT 0.00% PIN 26 The factory default connects T4 to PIN 26. This allows an external analogue reference to enter the ramp input value, and then this parameter behaves as a monitor of the ramp input value. 6.2.8 RUN MODE RAMPS / Forward minimum speed PIN 27 RUN MODE RAMPS 3 27)FORWARD MIN SPEED Supports the forward +ve ramp output at a minimum level 27)FORWARD MIN SPEED 0.00% PARAMETER FWD MIN SPEED RANGE 0.00 to +105.00% DEFAULT 0.00% PIN 27 Note that when this parameter is set between 0 and +0.5%, then the ramp output follows the input at the desired ramp rates through zero, i.e. there are no min speeds operating and there is no hysterisis around zero. Note also that another mode of operation exists when the 27)FORWARD MIN SPEED is greater than 0.5%, AND, 28)REVERSE MIN SPEED is between 0 and -0.5%. (See below). In this case the 27)FORWARD MIN SPEED is operative and the ramp output will not go negative. This facility may be used to prevent accidental negative rotation. With 27)FORWARD MIN SPEED and 28)REVERSE MIN SPEED outside a band of +/-0.5%, then both minimum speeds will be active with 0.5% hysterisis around zero. 6.2.9 RUN MODE RAMPS / Reverse minimum speed PIN 28 RUN MODE RAMPS 28)REVERSE MIN SPEED 3 Supports the reverse -ve ramp output at a minimum level. 28)REVERSE MIN SPEED 0.00% PARAMETER REV MIN SPEED RANGE 0 to -105.00% DEFAULT 0.00% PIN 28 Note that when the FORWARD MIN SPEED parameter (see above) is set between 0 and +0.5%, then the ramp output follows the input at the desired ramp rates through zero, i.e. there are no min speeds operating and there is no hysterisis around zero. Note also that another mode of operation exists when 28)REVERSE MIN SPEED is between 0 and -0.5%, AND, 27)FORWARD MIN SPEED is greater than 0.5%. In this case 27)FORWARD MIN SPEED is operative and the ramp output will not go negative. This facility may be used to prevent accidental negative rotation. With 27)FORWARD MIN SPEED and 28)REVERSE MIN SPEED outside a band of +/-0.5%, then both minimum speeds will be active with 0.5% hysterisis around zero. CHANGE PARAMETERS 75 6.2.10 RUN MODE RAMPS / Ramp automatic preset PIN 29 RUN MODE RAMPS 29)RAMP AUTO PRESET 3 When enabled, the system reset also presets the ramp. 29)RAMP AUTO PRESET ENABLED PARAMETER RAMP AUTO PRESET RANGE ENABLED or DISABLED DEFAULT ENABLED PIN 29 DEFAULT DISABLED PIN 30 DEFAULT 0.00% PIN 31 DEFAULT 2.50% PIN 32 The SYSTEM RESET produces a logic pulse (5mS) each time the MAIN CONTACTOR is energised. See 6.2.1 RUN MODE RAMPS / Block diagram including JOG. 6.2.11RUN MODE RAMPS / Ramp external preset PIN 30 RUN MODE RAMPS 30)RAMP EXT PRESET 3 When enabled the ramp is held in preset mode. 30)RAMP EXT PRESET DISABLED PARAMETER RAMP EXT PRESET RANGE ENABLED or DISABLED A logic high enables the preset. It is also OR’d with 29)RAMP AUTO PRESET if this is enabled. See 6.2.1 RUN MODE RAMPS / Block diagram including JOG. 6.2.12RUN MODE RAMPS / Ramp preset value PIN 31 RUN MODE RAMPS 3 31)RAMP PRESET VALUE When the ramp is preset this is the value it goes to. 31)RAMP PRESET VALUE 0.00% PARAMETER RAMP PRESET VALUE RANGE +/-300.00% 6.2.13RUN MODE RAMPS / Ramp S-profile % PIN 32 RUN MODE RAMPS 32)RAMP S-PROFILE % 3 This value sets the % of the S ramp shape at each end 32)RAMP S-PROFILE % 2.50% PARAMETER RAMP S-PROFILE % RANGE 0.00 to 100.00% Note. A value of 0.00% will produce a linear ramp. The ramp time will be become longer when the S shape % is increased. This is because the rate of change in the remaining linear portion is maintained. 6.2.14RUN MODE RAMPS / Ramp hold enable PIN 33 RUN MODE RAMPS 33)RAMP HOLD 3 When ENABLED the ramp is held at the present value. 33)RAMP HOLD DISABLED PARAMETER RAMP HOLD RANGE ENABLED or DISABLED Note the 30)RAMP EXT PRESET function will overide the 33)RAMP HOLD function. DEFAULT DISABLED PIN 33 76 CHANGE PARAMETERS 6.2.15 RUN MODE RAMPS / Ramping threshold PIN 34 RUN MODE RAMPS 3 34)RAMPING THRESHOLD Sets the operating threshold for 35)RAMPING FLAG output. 34)RAMPING THRESHOLD 2.50% PARAMETER RAMPING THRESHOLD RANGE 0.00 to 100.00% DEFAULT 2.50 % PIN 34 Until the output of the ramp is within this % tolerance of its target value then 35)RAMPING FLAG is high. This is also true if the ramp is being held at a value that differs from the input by more than the threshold. See 6.2.16 RUN MODE RAMPS / Ramping flag PIN 35. 6.2.16 RUN MODE RAMPS / Ramping flag PIN 35 R RUN MODE RAMPS 35)RAMPING FLAG 3 Allows the output status of the ramping flag to be monitored. (HIGH = RAMPING) R 35)RAMPING FLAG LOW PARAMETER RAMPING FLAG RANGE HIGH or LOW PIN 35 The ramping flag may be used to modify the speed loop integrator during ramping. See 6.7.7.5 SPEED PI ADAPTION / Integral % during ramp PIN 78. Note. 78)INT % DURING RAMP does not reset the integrator, it merely alters the % of integration. For very precise performance at the ramp end points, e. g. stopping, it is useful to be able to RESET the SPEED LOOP integrator during the ramping process. By holding it in RESET during the ramping process there is no undesirable integral history to intefere with the loop at the end of the ramp. This RESET can be achieved by connecting a JUMPER from 35)RAMPING FLAG to 73)SPEED INT RESET. See 13.3.4 JUMPER connections. This monitoring window is able to branch hop to 6.2.2 RUN MODE RAMPS / Ramp output monitor PIN 21. Digital output DOP2 on terminal 23 is connected by default to the 35)RAMPING FLAG. CHANGE PARAMETERS 77 6.3 CHANGE PARAMETERS / JOG CRAWL SLACK JOG / CRAWL / SLACK PIN numbers range 37 to 43. R CHANGE PARAMETERS JOG CRAWL SLACK 2 3 This menu provides adjustment for parameters associated with jogging, slack take up and crawling. See 6.3.5 JOG CRAWL SLACK / Jog mode select PIN 42. This gives a table showing the 8 modes of operation available. R JOG CRAWL SLACK 43)JOG/SLACK RAMP 3 R JOG CRAWL SLACK 37)JOG SPEED 1 3 R JOG CRAWL SLACK 38)JOG SPEED 2 3 R JOG CRAWL SLACK 39)SLACK SPEED 1 3 R JOG CRAWL SLACK 40)SLACK SPEED 2 3 R JOG CRAWL SLACK 41)CRAWL SPEED 3 R JOG CRAWL SLACK 42)JOG MODE SELECT 3 Their are 2 hidden PINs that provide output flags as follows 689)IN JOG FLAG. This is high during the jogging process, it goes low after the ramp has returned to the prevailing run level. 714)IN SLACK FLAG. This is high during the slack take up process, it goes low after the ramp has returned to the prevailing run level. This flag is useful in centre winding applications for controlling the tension enable. See APPLICATIONS MANUAL. 78 CHANGE PARAMETERS 6.3.1 JOG CRAWL SLACK / Block diagram including RUN MODE RAMPS Fwd up Fwd down Rev up Rev down Ramp hold S shape ramp PIN 22 PIN 23 PIN 24 PIN 25 PIN 33 PIN 32 PIN 27 Fwd min speed Fwd min T4 Default Ramp +0.5% -0.5% Input PIN 26 Rev min PIN 28 Run mode ramp Rev min speed GO TO Run mode ramp OP Monitor PIN 37 PIN 21 JOG speed 1 Run / slack PIN 38 Jog speed1 PIN 34 Ramping Flag Threshold Jog IP JOG speed 2 Jog speed2 Crawl PIN 39 PIN 35 Slack off SLACK speed1 Ramping Flag output Slack speed1 Slack on Slack speed2 PIN 40 PIN 31 Ramp Preset Value gate Ramp Preset Value input SLACK speed2 PIN 30 Ramp Ext Preset. PIN 41 Permanent action in run mode, momentary action at commencement of Jog. Crawl speed T 32 JOG T 33 START Operating function Stopped Stopped Running Slack 1 takeup Slack 2 takeup Jog speed 1 Jog speed 2 Crawl JOG MODE SELECT T19 low high low low high low high high RAMP AUTO PRESET DISABLED RAMP EXT PRESET DISABLED 2 DISABLED ENABLED 3 ENABLED DISABLED ENABLED System Reset Pulse PIN 720 JOG CRAWL SLACK M0de 1 4 PIN 29 RUN MODE RAMP And T19 Default Jog Mode Select PIN 42 ENABLED START T33 IP level low low high high high low low high JOG T32 IP level low low low high high high high low Ramp input Total value reference reference reference ref + slack1 ref + slack2 Jog speed 1 Jog speed 2 Crawl speed Applied ramp time Stop ramp time Stop ramp time Run mode ramp Jog/slack ramp Jog/slack ramp Jog/slack ramp Jog/slack ramp Run mode ramp Contactor state OFF OFF ON ON ON ON ON ON Ramp Auto Preset PIN 43 Jog/Slack Ramp PIN 689 In Jog flag PIN 714 In Slack flag Stop Ramp Time (Also in Speed Control) PIN 65 RUN MODE RAMP action Held at zero when stopped. JOG MODE RAMP action Held at zero when stopped. Starts from zero. Starts from zero. Held at PRESET VALUE permanently. Held at PRESET VALUE when stopped. Ramp continues to follow input reference when stopped. Ramp continues to follow input reference when stopped. Starts from PRESET VALUE Starts from PRESET VALUE Held at PRESET VALUE permanently. Held at PRESET VALUE when stopped. Starts from PRESET VALUE Starts from PRESET VALUE Mode 1 ensures that the ramp output is reset to 0.00% during all stopping modes. Modes 2/3/4 have an active ramp output during all stopping modes which is useful in cascaded systems. The action of starting momentarily presets the ramps. (Default value 0.00%). Note. 30)RAMP EXT PRESET has permanent action on the RUN MODE RAMP and, if already high, has a momentary action at the commencement of a JOG request. The 29)RAMP AUTO PRESET input is ANDED with 720)SYSTEM RESET pulse, which is simultaneous with the release of the current loop. CHANGE PARAMETERS 79 6.3.2 JOG CRAWL SLACK / Jog speed 1 / 2 PINs 37 / 38 R JOG CRAWL SLACK 37)JOG SPEED 1 3 Sets the value of jog speed 1 Usually used for forward jog. R JOG CRAWL SLACK 38)JOG SPEED 2 R PARAMETER JOG SPEED 1 3 Sets the value of jog speed 2 Usually used for reverse jog. 37)JOG SPEED 1 5.00% RANGE +/-100.00% R PARAMETER JOG SPEED 2 DEFAULT 5.00% PIN 37 DEFAULT -5.00% PIN 38 DEFAULT 5.00% PIN 39 DEFAULT -5.00% PIN 40 DEFAULT 10.00% PIN 41 38)JOG SPEED 2 -5.00% RANGE +/-100.00% 6.3.3 JOG CRAWL SLACK / Slack speed 1 / 2 PINs 39 / 40 R JOG CRAWL SLACK 39)SLACK SPEED 1 3 Sets the value of slack speed 1 Usually used for forward slack. R JOG CRAWL SLACK 40)SLACK SPEED 2 R PARAMETER SLACK SPEED 1 3 Sets the value of slack speed 2 Usually used for reverse slack. 39)SLACK SPEED 1 5.00% RANGE +/-100.00% R PARAMETER SLACK SPEED 2 40)SLACK SPEED 2 -5.00% RANGE +/-100.00% 6.3.4 JOG CRAWL SLACK / Crawl speed PIN 41 R JOG CRAWL SLACK 41)CRAWL SPEED 3 Sets the value of crawl speed. R PARAMETER CRAWL SPEED 41)CRAWL SPEED 10.00% RANGE +/-100.00% 80 CHANGE PARAMETERS 6.3.5 JOG CRAWL SLACK / Jog mode select PIN 42 R JOG CRAWL SLACK 42)JOG MODE SELECT 3 Combines with the JOG/START inputs for jog/crawl/slack mode R 42)JOG MODE SELECT LOW PARAMETER JOG MODE SELECT RANGE LOW or HIGH DEFAULT LOW PIN 42 The factory default for JOG MODE SELECT is an external connection to T19. Operating function Stopped Stopped Running Slack 1 takeup Slack 2 takeup Jog speed 1 Jog speed 2 Crawl JOG MODE SELECT T19 IP level low high low low high low high high START T33 IP level JOG T32 IP level Ramp input Total value Applied ramp time Contactor state low low high high high low low high low low low high high high high low reference reference reference ref + slack 1 ref + slack 2 Jog speed 1 Jog speed 2 Crawl speed Stop ramp Stop ramp Run mode ramp Jog/slack ramp Jog/slack ramp Jog/slack ramp Jog/slack ramp Run mode ramp OFF OFF ON ON ON ON ON ON 6.3.6 JOG CRAWL SLACK / Jog/Slack ramp PIN 43 R JOG CRAWL SLACK 43)JOG/SLACK RAMP 3 Jog/slack mode has this ramp time which overides any others R PARAMETER JOG/SLACK RAMP 43)JOG/SLACK RAMP 1.0 SECS RANGE 0.1 to 600 seconds DEFAULT 1.00 secs PIN 43 Note. The ramp time is the same for up/down and forward/reverse. It is the time taken to reach 100% speed. CHANGE PARAMETERS 81 6.4 CHANGE PARAMETERS / MOTORISED POT RAMP PIN number range 45 to 54 MOTORISED POT RAMP 3 54)MP MEMORY BOOT-UP CHANGE PARAMETERS MOTORISED POT RAMPS 32 MOTORISED 3 52)UP TIME POT RAMP 4 This menu controls the parameters for the motorised pot (MP) function. This is the default terminal function for terminals T7, T8, T9. The motorised pot is a ramp facility in addition to the normal reference ramp. It may also be used to ramp a parameter other than the speed reference by re-configuring its output connection. MOTORISED POT RAMP 3 45)MP OP MONITOR MOTORISED POT RAMP 3 46)MP UP TIME MOTORISED POT RAMP 3 47)MP DOWN TIME MOTORISED POT RAMP 3 48)MP UP COMMAND MOTORISED POT RAMP 3 49)MP DOWN COMMAND MOTORISED POT RAMP 3 50)MP MAX CLAMP MOTORISED POT RAMP 3 51)MP MIN CLAMP MOTORISED POT RAMP 3 52)MP PRESET MOTORISED POT RAMP 3 53)MP PRESET VALUE 82 CHANGE PARAMETERS 6.4.1 MOTORISED POT RAMP / Block diagram PIN 53 Memory boot up 1) Preset (disabled) 2) Retain (enabled) Preset Value PIN 52 Up time MOTORISED POT RAMP Down time PIN 46 PIN 47 PIN 54 Motorised Pot Motorised Preset Enable Default T 7 potentiometer Output GO TO PIN 45 +300% PIN 48 Up Command Default T 8 PIN 50 PIN 51 PIN 49 Down Command Default T 9 -300% Min clamp Max clamp PIN 51 PIN 50 6.4.2 MOTORISED POT RAMP / MP output monitor PIN 45 MOTORISED POT RAMP 3 45)MP OP MONITOR Allows the output value of the motorized pot to be monitored. 45)MP OP MONITOR 0.00% PARAMETER MP OP MONITOR RANGE PIN 45 +/-300.00% Default connection to speed reference summer. See 6.6.2 SPEED REF SUMMER / Internal speed reference 1 PIN 62. 6.4.3 MOTORISED POT RAMP / MP Up / Down time PINs 46 / 47 R MOTORISED POT RAMP 3 46)MP UP TIME Sets the ramp time for 100% clockwise (+ve) rotation. R R PARAMETER MP UP TIME MOTORISED POT RAMP 3 47)MP DOWN TIME Sets the ramp time for -100% anticlockwise (-ve) rotation. RANGE 0.1 to 600.0 seconds R PARAMETER MP DOWN TIME 46)MP UP TIME 10.0 SECS DEFAULT 10.0 secs PIN 46 DEFAULT 10.0 secs PIN 47 47)MP DOWN TIME 10.0 SECS RANGE 0.1 to 600.0 seconds CHANGE PARAMETERS 83 6.4.4 MOTORISED POT RAMP / MP Up / Down command PINs 48 / 49 R MOTORISED POT RAMP 3 48)MP UP COMMAND Enables the motorised pot to rotate toward the positive limit R R PARAMETER MP UP COMMAND MOTORISED POT RAMP 3 49)MP DOWN COMMAND Enables the motorised pot to rotate toward the negative limit 48)MP UP COMMAND DISABLED RANGE ENABLED or DISABLED R DEFAULT DISABLED PIN 48 DEFAULT DISABLED PIN 49 DEFAULT 100.00% PIN 50 49)MP DOWN COMMAND DISABLED PARAMETER MP DOWN COMMAND RANGE ENABLED or DISABLED Default connections to terminal 8 (Up) and terminal 9 (Down). Note. There is no ramping with Up and Down enabled together. 6.4.5 MOTORISED POT RAMP / MP Maximum / minimum clamps PINs 50 / 51 MOTORISED POT RAMP 3 50)MP MAX CLAMP Sets the limit of positive (cw) rotation of the motorised pot. 50)MP MAX CLAMP 100.00% PARAMETER MP MAX CLAMP MOTORISED POT RAMP 3 51)MP MIN CLAMP Sets the limit of negative (acw) rotation of the motorised pot. RANGE +/-300.00% 51)MP MIN CLAMP -100.00% PARAMETER MP MIN CLAMP RANGE +/-300.00% DEFAULT -100.00% PIN 51 Note. Clockwise rotation is towards the +ve limit, anticlockwise rotation is towards the –ve limit. Always ensure the clamps allow some movement between them, do not let the clamps cross each other. 6.4.6 MOTORISED POT RAMP / MP preset PIN 52 MOTORISED POT RAMP 3 52)MP PRESET When enabled, the output is set to the MP PRESET VALUE. 52)MP PRESET DISABLED PARAMETER MP PRESET RANGE ENABLED or DISABLED DEFAULT DISABLED PIN 52 Default connection from terminal 7, UIP7. If a momentary preset at start of running is required, connect a jumper from 720)SYSTEM RESET to 376)UIP7 LO VAL OP1). This causes the system reset pulse to be OR’d with terminal 7. See 13.3.4 JUMPER connections. 84 CHANGE PARAMETERS 6.4.7 MOTORISED POT RAMP / MP Preset value PIN 53 MOTORISED POT RAMP 3 53)MP PRESET VALUE The output assumes this value if MP PRESET is high. 53)MP PRESET VALUE 0.00% PARAMETER MP PRESET VALUE RANGE +/-300.00% DEFAULT 0.00% PIN 53 Note. 50)MP MAX CLAMP and 51)MP MIN CLAMP will overide the output value if it lies outside the clamps. 6.4.8 MOTORISED POT RAMP / MP memory boot up PIN 54 MOTORISED POT RAMP 3 54)MP MEMORY BOOT-UP Selects the preset output value on control supply application. 54)MP MEMORY BOOT-UP DISABLED PARAMETER MP MEMORY BOOT-UP RANGE ENABLED or DISABLED DEFAULT DISABLED PIN 54 A motorised pot is a device that may be used to remember its setting in the event of a power loss. DISABLED. Used to set the value of the output on control supply power up to 53)MP PRESET VALUE. ENABLED. Used to memorise the value of the output during loss of the control supply, and preset the output with this value on power up of the control supply. CHANGE PARAMETERS 85 6.5 CHANGE PARAMETERS / STOP MODE RAMP PIN numbers range 56 to 60 This menu allows setting of the contactor drop out behaviour. R CHANGE PARAMETERS STOP MODE RAMP 2 3 R STOP MODE RAMP 60)DROP-OUT DELAY 3 STOP MODE RAMP 56)STOP RAMP TIME 3 STOP MODE RAMP 57)STOP TIME LIMIT 3 STOP MODE RAMP 58)LIVE DELAY MODE 3 STOP MODE RAMP 59)DROP-OUT SPEED 3 See 6.7.1 SPEED CONTROL / Block diagram. R 6.5.1 STOP MODE RAMP / Block diagram Operating function JOG MODE START T33 IP JOG T32 SELECT T19 level IP level IP level Stopped low low low Stopped high low low Running low high low Slack 1 takeup low high high Slack 2 takeup high high high Jog speed 1 low low high Jog speed 2 high low high Crawl high high low This table shows when the STOP MODE RAMP is applied. Contactor drop Out TIMER Control logic PIN 131 PIN 59 Drop out Speed Applied ramp time Contactor state reference reference reference ref + slack 1 ref + slack 2 Jog speed 1 Jog speed 2 Crawl speed Stop ramp Stop ramp Run mode ramp Jog/slack ramp Jog/slack ramp Jog/slack ramp Jog/slack ramp Run mode ramp OFF OFF ON ON ON ON ON ON Contactor Control STOP MODE RAMP Speed Feedback Ramp input Total value Rect Stop mode Ramp time PIN 56 Internal enable PIN 60 PIN 57 PIN 58 Drop out Delay Stop time limit Live delay mode Stop mode Ramp time. To speed control block Enable Control logic 86 6.5.1.1 CHANGE PARAMETERS Block diagram of contactor control Total speed Ref + ref prior to the Run Mode Ramp PIN 120 PIN 116 Zero speed flag Zero ref Start enable Rect Zero ref start control logic To current control logic PIN 131 Speed Feedback ZERO Interlock Rect PIN 118 ZI current level PIN 123 Total Speed Reference Standstill and position lock control logic Rect PIN 119 PIN 117 PIN 115 PIN 122 Standstill enable Zero ref flag Zero interlocks Speed level PIN 121 At S’still flag To firing ccts Zero speed lock CONTACTOR CONTROL Enable From zero interlock INTERNAL RUN PIN 308 T 31 RUN ANDED RUN PIN 305 START/JOG T 32 JOG ANDED JOG PIN 306 T 33 START T 34 CSTOP ANDED START PIN 307 T45 CON1 The contactor control relay has a 24V coil with a 100mS hardware off delay. The coil is only energised with CSTOP at 24V AND the 0V switch on (HIGH) T46 CON2 T 47 LAT1 2 second off delay T 48 LAT2 Alarms are reset by a high to low transition HIGH = ON LOW = OFF 0V SWITCH Drive start PIN 166 Drive run PIN 167 High for Supply synchronisation Hidden PIN 720 System reset pulse T 35 +24V ALARMS All Healthy when high PIN 698 READY flag PIN 699 JOG flag PIN 689 A low RUN input sets drop out delay to zero Drop out delay IP Contactor Control STOP MODE RAMP Contactor drop Out TIMER Control logic PIN 131 Speed Feedback PIN 59 Drop out Speed Rect Stop mode Ramp time PIN 56 Internal enable PIN 60 PIN 57 PIN 58 Drop out Delay Stop time limit Live delay mode Stop mode Ramp time. To speed control block Enable Control logic CHANGE PARAMETERS 87 The following conditions must be true for the main contactor to be energised. 1) All alarms AND supply synchronisation healthy. ( 699)READY FLAG ). 2) CSTOP at 24V. Note. The CSTOP must be high for at least 50mS prior to START going high. 3) Start OR Jog high. When the contactor has energised, the drive will run if RUN input is high AND if enabled, the ZERO INTERLOCK is satisfied. The contactor will de-energise after approximately 100 milliseconds if 699)READY FLAG goes low OR CSTOP goes low If the zero interlock is enabled and requests a non-run action, then the contactor will energise for approximately 2 seconds but no current will flow. The contactor will drop out if the zero reference interlock condition is not satisfied within approximately 2 seconds. The display will show CONTACTOR LOCK OUT. The contactor will de-energise if START and JOG are both low. In this case the time taken for the contactor to de-energise depends on the STOP MODE RAMP when stopping from a running mode, or JOG/SLACK RAMP when stopping from a jog mode. Note flags on hidden PINs, 6.5.1.2 689)IN JOG FLAG, 714)IN SLACK FLAG, 698)HEALTHY FLAG, 720)SYSTEM RESET pulse. 699)READY FLAG, Speed profile when stopping Start goes low Motor speed follows down ramp providing current demand does not limit Speed reference Motor speed if drive is not able to regenerate, or if either the CSTOP or RUN line go LOW Motor speed if current demand stays at limit SPEED DEMAND Stop ramp time is set by PIN 56 TIME AXIS 6.5.1.3 Contactor drop out Start goes low SPEED DEMAND Stop ramp time is set by PIN 56 Delay timer starts now MOTOR SPEED following ramp Drop out speed set by PIN 59 Stop time limit PIN 57 Motor will coast if live delay mode PIN 58 is DISABLED Drop out Delay time PIN 60 Speed reference Contactor drops out at this time providing the speed follows the down ramp Contactor drops out at this time if it has not already dropped out. E. g Motor unable to slow down fast enough. TIME AXIS If START or JOG goes high during the 60)DROP-OUT DELAY time, then the contactor stays energised and the drive will restart immediately. The 60)DROP-OUT DELAY timer will be reset to time zero. This allows jogging without the contactor dropping in and out. 88 CHANGE PARAMETERS The configuration of the PL/X power terminals using L1/2/3 for stack and EL1/2/3 for field and synchronisation is very versatile. This allows the main contactor to be arranged in numerous ways. 1) EL1/2/3 permanently energised with contactor on L1/2/3 gives very fast starting and allows the field to remain energised. (Required for dynamic braking or to prevent condensation in cold climates). 2) EL1/2/3 and L1/2/3 energised with main contactor allows total electrical isolation of the motor. 3) Main contactor on armature terminals for dynamic braking/isolation of motor. 4) L1/2/3 may be used at a very low voltage. E. g. using drive as battery charger. See 4.3 Main contactor wiring options. 6.5.1.4 Precise stopping For very precise performance at the ramp end points, e. g. stopping, it is useful to be able to RESET the SPEED LOOP integrator during the ramping process. By holding it in RESET during the ramping process there is no undesirable integral term history to intefere with the loop at the end of the ramp. This RESET can be achieved by connecting a JUMPER from 35)RAMPING FLAG to 73)SPEED INT RESET. See 13.3.4 JUMPER connections. In addition, ensure that there are no small demand signals entering the speed loop by disconnecting unwanted inputs to the SPEED REFERENCE SUMMER and setting 6.6.7 SPEED REF SUMMER / Speed/Current Reference 3 ratio PIN 67 to zero. Also it may be useful to have 6.7.7.1 SPEED PI ADAPTION / Low break point PIN 74 set to 0.2% and 6.7.7.3 SPEED PI ADAPTION / Low breakpoint proportional gain PIN 76 set low (e. g. 5.00) to minimise the effects of tacho noise at the stopping point. See also 6.10.8.1 Low speed performance. 6.5.2 STOP MODE RAMP / Stop ramp time PIN 56 R STOP MODE RAMP 56)STOP RAMP TIME 3 Sets the 100 - 0% down ramp time in normal stop mode R PARAMETER STOP RAMP TIME 56)STOP RAMP TIME 10.0 SECS RANGE 0.1 to 600.0 secs DEFAULT 10.0 secs PIN 56 A standard 4 quadrant drive can motor and brake in both forward and reverse. It can also stop very quickly by returning mechanical rotational energy to the supply. It does this by effectively using the motor as a generator and the supply as a load to dump the energy in. A standard 2 quadrant drive can only motor in the forward direction, and cannot regenerate when stopping. Selected models in the PL 2 quadrant range have a special feature which allows them to regenerate when stopping. This feature not only saves considerable amounts of energy but also eliminates the requirement for dynamic braking resistor systems. See 3.3.1 Regenerative stopping with PL models. 6.5.3 STOP MODE RAMP / Stop time limit PIN 57 STOP MODE RAMP 57)STOP TIME LIMIT 3 Sets the max time limit before contactor drop out in stop mode 57)STOP TIME LIMIT 60.0 SECS PARAMETER STOP TIME LIMIT This is initiated by the start input going low. RANGE 0.0 to 600.0 secs DEFAULT 60.0 secs PIN 57 CHANGE PARAMETERS 89 6.5.4 STOP MODE RAMP / Live delay mode PIN 58 STOP MODE RAMP 58)LIVE DELAY MODE 3 Enables the drive during the drop out delay time 58)LIVE DELAY MODE DISABLED PARAMETER LIVE DELAY MODE RANGE ENABLED OR DISABLED DEFAULT DISABLED PIN 58 This is used when the drive must remain enabled during the period of time when the contactor drop out delay timer is running. E. g. when an external force is trying to rotate the load and this is undesirable, or a final shaft positioning routine is operating. See 6.10.9 ZERO INTERLOCKS / SPINDLE ORIENTATE. See also 6.10 CHANGE PARAMETERS / ZERO INTERLOCKS for details of other zero speed functions. A change of this parameter during the drop-out delay time is not effected until the next contactor drop-out. 6.5.5 STOP MODE RAMP / Drop-out speed PIN 59 R STOP MODE RAMP 59)DROP-OUT SPEED 3 Sets the speed level at which the drop out delay timer starts. R PARAMETER DROP-OUT SPEED 59)DROP-OUT SPEED 2.00% RANGE 0.00 to 100.00% DEFAULT 2.00% PIN 59 Note. If this parameter is set to 100% then the drop out delay timer will commence with the STOP command rather than waiting to reach a low speed. The level is symmetrical for forward and reverse rotation. 6.5.6 STOP MODE RAMP / Drop-out delay PIN 60 STOP MODE RAMP 60)DROP-OUT DELAY 3 Adds a time delay to the contactor drop out command. 60)DROP-OUT DELAY 1.0 SECS PARAMETER DROP-OUT DELAY RANGE 0.1 to 600.0 secs DEFAULT 1.0 secs PIN 60 This function is normally used to prevent frequent contactor dropouts during jogging. It works by adding a time delay to the function that tells the main contactor to de-energise. The timer is started when the motor reaches 59)DROP-OUT SPEED threshold. If the drive is restarted before the contactor finally drops out then the timer is reset, ready to start again. If the RUN input goes low at any point during the stopping process, either heading for zero speed or during the delay period, then the contactor will drop out straight away. During the timer sequence the drive loops are inhibited to prevent the motor from making small unwanted movements. This can be over-ridden using 58)LIVE DELAY MODE if the system is required to maintain power while waiting for drop out. E. g. when an external force is trying to rotate the load and this is undesirable, or a final shaft positioning routine is operating. See 6.10.9 ZERO INTERLOCKS / SPINDLE ORIENTATE. See also 6.10 CHANGE PARAMETERS / ZERO INTERLOCKS for details of other zero speed functions. 90 CHANGE PARAMETERS 6.6 CHANGE PARAMETERS / SPEED REF SUMMER PIN numbers range 62 to 67 R CHANGE PARAMETERS MOTORISED POT RAMPS 23 SPEED REF SUMMER 3 52)UP TIME 4 The block diagram below shows the signal paths for the speed loop error amplifier. There are 4 speed reference inputs. Connections. (62, 63, 65 may be re-programmed) Motorised potentiometer to 62)INT SPEED REF 1. UIP2/T2 To 63)SPEED REF 2 UIP4/T4 - Run mode ramp to 65)RAMPED SPD REF 4 UIP3/T3 Internally connected to 64)SPEED REF3 MON 64)SPEED REF 3 MON is a monitor of UIP3 only when it is being used as a speed ref with speed bypass disabled. . It may be inverted and/or scaled if desired. It is sampled rapidly to give maximum response. See 6.8.14 CURRENT CONTROL / Speed bypass current reference enable PIN 97 . Note. The STOP command overides and disables the speed bypass mode. This ensures a controlled stop to zero speed when using the speed bypass mode. R SPEED REF SUMMER 3 67)SPD/CUR RF3 RATIO R SPEED REF SUMMER 62)INT SPEED REF 1 3 R SPEED REF SUMMER 63)SPEED REF 2 3 R SPEED REF SUMMER 64)SPEED REF 3 MON 3 R SPEED REF SUMMER 65)RAMPED SPD REF 4 3 R SPEED REF SUMMER 3 66)SPD/CUR REF3 SIGN The inputs are summed and then subjected to programmable maximum +ve and –ve clamps. The output after the clamps is the final speed reference which is available to be monitored. This is selected during normal running. During a stop sequence this is reset to zero at the programmed STOP rate. See 6.2 CHANGE PARAMETERS / RUN MODE RAMPS for information about the run mode ramp resetting functions. The stop ramp is released immediately when running is resumed. The output after this selection is the speed demand and is summed with negative speed feedback to produce a speed error. This is then processed in the speed loop P + I error amplifier. The output of this block is the current reference that is sent to the current control blocks during normal running. See 6.7 CHANGE PARAMETERS / SPEED CONTROL. 6.6.1 SPEED REF SUMMER / Block diagram SPEED CONTROL PIN 62 Int Ref 1 Default Motorised pot Max - ref Max + ref PIN 70 PIN 69 PIN 63 PIN 69 Spd Ref 2 Default Terminal 2 PIN 70 PIN 64 Stop ramp time Speed Feed Back Input Pin 56 run Stop ramp and X Spd Int time Spd Int Reset PIN 72 PIN 73 PIN 71 Speed Error amplifier P+I PI adaption +/- 1 Speed Ref 3 Mon Def Terminal 3 Sp Prop Gain Current reference Ref 3 sign PIN 66 Ref 3 ratio PIN 67 PIN 713 Speed error monitor PIN 125 PIN 65 Ref 4 Default From Run mode ramp block output Speed loop PI output No display Speed bypass enable Total Speed Ref monitor Speed demand monitor PIN 97 PIN 123 PIN 124 Current reference Cur reference Internal connection to current loop CHANGE PARAMETERS 91 6.6.2 SPEED REF SUMMER / Internal speed reference 1 PIN 62 R SPEED REF SUMMER 62)INT SPEED REF 1 3 Sets internal reference 1 level. R 62)INT SPEED REF 1 0.00% PARAMETER INT SPEED REF 1 RANGE +/-105.00% DEFAULT 0.00% PIN 62 DEFAULT 0.00% PIN 63 DEFAULT 0.00% PIN 64 Default connection to the motorised potentiometer output. 6.6.3 SPEED REF SUMMER / Auxiliary speed reference 2 PIN 63 R SPEED REF SUMMER 63)SPEED REF 2 3 Sets aux speed reference 2 level. Default connection to T2. R 63)SPEED REF 2 0.00% PARAMETER SPEED REF 2 RANGE +/-105.00% 6.6.4 SPEED REF SUMMER / Speed reference 3 monitor PIN 64 SPEED REF SUMMER 64)SPEED REF 3 MON R 3 Monitors speed ref 3 level Permanent connection to T3. R 64)SPEED REF 3 MON 0.00% PARAMETER 64)SPEED REF 3 MON RANGE +/-105.00% T3 is internally connected via UIP3 to 64)SPEED REF 3 MON, so this behaves as a monitor of T3 IP value. This parameter is not adjustable from the keys. It has the fastest sample rate for rapid response applications. Note. When 97)SPD BYPASS CUR EN is ENABLED this monitor is set to zero. Use 133)ARM CUR DEM MON. 6.6.5 SPEED REF SUMMER / Ramped speed reference 4 PIN 65 R SPEED REF SUMMER 65)RAMPED SPD REF 4 3 Sets speed reference 4 level. Default via ramp block from T4 R PARAMETER RAMPED SPD REF 4 65)RAMPED SPD REF 4 0.00% RANGE +/-105.00% DEFAULT 0.00% PIN 65 The factory default is to the run mode ramp block output, so this behaves as a monitor for this value. 6.6.6 SPEED REF SUMMER / Speed/Current Reference 3 sign PIN 66 R SPEED REF SUMMER 3 66)SPD/CUR REF3 SIGN Inverts the speed/current reference 3. R PARAMETER SPD/CUR REF3 SIGN 66)SPD/CUR REF3 SIGN NON-INVERT RANGE INVERT / NON-INVERT DEFAULT NON-INVERT PIN 66 92 CHANGE PARAMETERS 6.6.7 SPEED REF SUMMER / Speed/Current Reference 3 ratio PIN 67 R SPEED REF SUMMER 3 67)SPD/CUR RF3 RATIO Sets a scaling factor for Speed/current reference 3. R PARAMETER SPD/CUR RF3 RATIO 67)SPD/CUR RF3 RATIO 1.0000 RANGE +/-3.0000 DEFAULT 1.0000 PIN 67 The internal connection from UIP3 to 64)SPEED REF 3 MON is permanent. However 64)SPEED REF 3 MON may be disconnected from the SPEED REF SUMMER by setting 67)SPD/CUR RF3 RATIO to 0.0000. 6.7 CHANGE PARAMETERS / SPEED CONTROL PIN number range 69 to 79 R CHANGE PARAMETERS MOTORISED POT RAMPS 23 SPEED TIME CONTROL 4 3 52)UP This menu allows parameter adjustment for the speed loop error amplifier. It consists of this list and a sub menu called SPEED PI ADAPTION. This menu refers to the block diagram below, starting after the second summing junction. The summed value of all the references is subject to a maximum +ve and -ve clamp. It then enters the stop mode ramp block. This superimposes a ramp to zero at a programmed rate on the prevailing input signal during a stop command. When a run command is received the output immediately assumes the level then prevailing at the input. This level will normally also be zero providing the run mode ramp block has also been reset. The signal is then compared with the speed feedback and processed by the speed loop error amplifier. SPEED CONTROL SPEED PI ADAPTION 3 4 R SPEED CONTROL 3 69)MAX POS SPEED REF R SPEED CONTROL 3 70)MAX NEG SPEED REF R SPEED CONTROL 71)SPEED PROP GAIN 3 R SPEED CONTROL 72)SPEED INT T.C. 3 SPEED CONTROL 73)SPEED INT RESET 3 The basic PI gain and time constants are adjustable in this list, and with further sophistication in the sub list SPEED PI ADAPTION. After being output from the error amplifier the signal now represents current reference. This current reference signal is then selected for output by the speed bypass change over switch. If the speed bypass mode is enabled then input reference 3 is selected. Note. The default values in this menu have been chosen to suit tacho or encoder feedback. AVF feedback usually contains more ripple than tacho or encoder feedback, hence it is advisable to reduce the SPEED CONTROL loop gains whenever AVF or ENCODER + ARM VOLTS feedback is selected. See 6.7.4 SPEED CONTROL / Speed proportional gain PIN 71. In the case of AVF, it is suggested that the values for the following parameters are changed as follows. 6.7.4 SPEED CONTROL / Speed proportional gain PIN 71 set to 7.00. 6.7.7.6 SPEED PI ADAPTION / Speed loop adaption enable PIN 79 set to DISABLED. These are suggested starting points for smooth responsive control, however it may be possible to make improvements with further experimentation. CHANGE PARAMETERS 93 6.7.1 SPEED CONTROL / Block diagram SPEED CONTROL PIN 62 Int Ref 1 Default Motorised pot Max - ref Max + ref PIN 70 PIN 69 Stop ramp time Pin 56 PIN 69 PIN 63 Spd Ref 2 Default Terminal 2 and X Spd Int time Spd Int Reset PIN 72 PIN 73 PIN 71 P+I PI adaption +/- 1 Speed Ref 3 Mon Def Terminal 3 Sp Prop Gain Speed Error amplifier run Stop ramp PIN 70 PIN 64 Speed Feed Back Input Current reference Ref 3 sign PIN 66 Ref 3 ratio PIN 67 PIN 713 Speed error monitor PIN 125 PIN 65 Ref 4 Default From Run mode ramp block output Speed loop PI output No display Speed bypass enable Total Speed Ref monitor Speed demand monitor PIN 97 PIN 123 PIN 124 Current reference Cur reference Internal connection to current loop 6.7.2 SPEED CONTROL / Max positive speed reference PIN 69 R SPEED CONTROL 3 69)MAX POS SPEED REF Sets positive (forward) limit level of total speed reference. Default no external connection R 69)MAX POS SPEED REF +105.00% PARAMETER MAX POS SPEED REF RANGE 0.00 to +105.00% DEFAULT 105.00% PIN 69 DEFAULT -105.00% PIN 70 DEFAULT 15.00 PIN 71 6.7.3 SPEED CONTROL / Max negative speed reference PIN 70 R SPEED CONTROL 3 70)MAX NEG SPEED REF Sets negative (reverse) limit level of total speed reference. R PARAMETER MAX NEG SPEED REF 70)MAX NEG SPEED REF -105.00% RANGE 0.00 to -105.00% 6.7.4 SPEED CONTROL / Speed proportional gain PIN 71 R SPEED CONTROL 71)SPEED PROP GAIN 3 Sets the proportional gain of the speed loop error amplifier. R PARAMETER SPEED PROP GAIN 71)SPEED PROP GAIN 15.00 RANGE 0.00 to 200.00 Increase to improve response time, excessive values may cause instability. 94 CHANGE PARAMETERS 6.7.5 SPEED CONTROL / Speed integral time constant PIN 72 R SPEED CONTROL 72)SPEED INT T.C. 3 Sets the integral time constant of the speed loop error amplifier. R PARAMETER SPEED INT T.C. 72)SPEED INT T.C. 1.000 SECS RANGE 0.001 to 30.000 secs DEFAULT 1.000 secs PIN 72 This should be matched with the mechanical time constant of the motor/load combination. Generally an increased integral time will slow the response. 6.7.6 SPEED CONTROL / Speed integral reset enable PIN 73 SPEED CONTROL 73)SPEED INT RESET 3 The integral reset can be enabled leaving prop only. 73)SPEED INT RESET DISABLED PARAMETER SPEED INT RESET 6.7.7 SPEED CONTROL / SPEED PI ADAPTION This menu allows sophisticated modification of the speed loop error amplifier. It can provide modified gains of the proportional and integral terms with the gains changing linearly as the speed error signal SPEED CONTROL SPEED PI ADAPTION 3 4 moves between 2 break points. 79)SPD ADAPT ENABLE is used to activate the function. The low break point is the starting level for gain changing and the high break point is the finishing level. Below the low break point the terms are set by 76)LOW BRPT PRP GAIN and 77)LOW BRPT INT T.C. in this sub-menu. RANGE ENABLED OR DISABLED SPEED PI ADAPTION 79)SPD ADAPT ENABLE DEFAULT DISABLED PIN 73 4 SPEED PI ADAPTION 4 74)SPD ADPT LO BRPNT SPEED PI ADAPTION 4 75)SPD ADPT HI BRPNT SPEED PI ADAPTION 4 76)LO BRPNT PRP GAIN Above the high break point the terms are set by 71)SPEED PROP GAIN and 72)SPEED INT T.C. in the previous menu. SPEED PI ADAPTION 77)LO BRPNT INT T.C. 4 The change is linear between the 2 sets of terms as the actuating signal (speed error) traverses between the chosen break points. The break points work symmetrically for each polarity of error. SPEED PI ADAPTION 4 78)INT % DURING RAMP There is also the ability to prevent the integrator from accumulating error during a long speed up ramp. This can be useful for systems involving high inertias where there is a possibility of speed error at the top of the ramp while the loop removes the integrator error. See 6.2.16 RUN MODE RAMPS / Ramping flag PIN 35. See 6.7.7.7 SPEED PI ADAPTION / Using small speed inputs. The default gives low gain for small inputs. CHANGE PARAMETERS 6.7.7.1 95 SPEED PI ADAPTION / Low break point PIN 74 SPEED PI ADAPTION 4 74)SPD ADPT LO BRPNT Sets the low break point for commencement of gain change 6.7.7.2 74)SPD ADPT LO BRPNT 1.00% PARAMETER SPD ADPT LO BRPNT Sets the high break point for end of linear gain change PARAMETER SPD ADPT HI BRPNT RANGE 0.00 to 100.00% DEFAULT 2.00% PIN 75 DEFAULT 5.00 PIN 76 DEFAULT 1.000 secs PIN 77 SPEED PI ADAPTION / Low breakpoint proportional gain PIN 76 Sets the prop gain of the error amp below the low break point. 76)LO BRPNT PRP GAIN 5.00 PARAMETER LO BRPNT PRP GAIN RANGE 0.00 to 200.00 SPEED PI ADAPTION / Low breakpoint integral time constant PIN 77 SPEED PI ADAPTION 77)LO BRPNT INT T.C. 4 Sets the integral time constant below the low break point. 6.7.7.5 PIN 74 75)SPD ADPT HI BRPNT 2.00% SPEED PI ADAPTION 4 76)LO BRPNT PRP GAIN 6.7.7.4 DEFAULT 1.00% SPEED PI ADAPTION / High break point PIN 75 SPEED PI ADAPTION 4 75)SPD ADPT HI BRPNT 6.7.7.3 RANGE 0.00 to 100.00% 77)LO BRPNT INT T.C. 1.000 SECS PARAMETER LO BRPNT INT T.C. RANGE 0.001 to 30.000 secs SPEED PI ADAPTION / Integral % during ramp PIN 78 SPEED PI ADAPTION 4 78)INT % DURING RAMP Sets integral time constant % scaler if RAMPING flag is high 78)INT % DURING RAMP 100.00% PARAMETER INT % DURING RAMP RANGE 0.00 to 100.00% See 6.2.16 RUN MODE RAMPS / Ramping flag PIN 35. Note, a level of 100% results in the integrator being un-affected by 35)RAMPING FLAG. See also 6.2.16 RUN MODE RAMPS / Ramping flag PIN 35 and 6.5.1.4 Precise stopping. DEFAULT 100.00% PIN 78 96 CHANGE PARAMETERS 6.7.7.6 SPEED PI ADAPTION / Speed loop adaption enable PIN 79 SPEED PI ADAPTION 79)SPD ADAPT ENABLE 4 Enables the mode that varies the terms between break points 79)SPD ADAPT ENABLE ENABLED PARAMETER SPD ADAPT ENABLE RANGE ENABLED or DISABLED DEFAULT ENABLED PIN 79 The X-axis internal connection is the speed error signal. The default values in this SPEED PI ADAPTION sub-menu are chosen as a starting point. The most frequently encountered requirement is for the gain term of the speed loop error amplifier to be high for large speed errors, and low for small errors. When the function is enabled the default values of prop gain are 5 for errors below 1.00%, and 15 for errors above 2.00% with a linear change from 5 to 15 between 1.00% and 2.00%. A decreasing gain with error is also possible by choosing appropriate term values in this and the upper SPEED CONTROL menus. Graph of adaption profile for default values. Y axis is P and I terms Set in UPPER MENU. Speed Prop gain of 15 Speed Int TC of 1.000 LOW BREAK POINT of 1.00% HIGH BREAK POINT of 2.00% X axis is speed error Set in THIS MENU. LO prop gain of 5 LO Int TC of 1.000 Note. The default settings are designed to give lower gain with low error. This provides smooth steady state performance. Applications that require precise control at very low speeds may function better with the adaption disabled. See also 6.10.8.1 Low speed performance 6.7.7.7 SPEED PI ADAPTION / Using small speed inputs Some applications utilise very small speed inputs e. g. positioning. In this case the default settings for the SPEED PI ADAPTION may be unsuitable. This is because they are designed to give low gain for low errors which provides smooth running at speed. For small inputs it may be necessary to either DISABLE the function, or modify the parameters to provide higher gain for small errors. See 6.10.8.1 Low speed performance. CHANGE PARAMETERS 97 CURRENT CONTROL 97)SPD BYPASS CUR EN 3 CURRENT CONTROL 81)CUR CLAMP SCALER 3 CURRENT CONTROL CURRENT OVERLOAD 3 4 CURRENT CONTROL I DYNAMIC PROFILE 3 4 CURRENT CONTROL 88)DUAL I CLAMP ENBL 3 CURRENT CONTROL 89)UPPER CUR CLAMP 3 CURRENT CONTROL 90)LOWER CUR CLAMP 3 CURRENT CONTROL 91)EXTRA CUR REF 3 CURRENT CONTROL 92)AUTOTUNE ENABLE 3 R CURRENT CONTROL 93)CUR PROP GAIN 3 R CURRENT CONTROL 94)CUR INT GAIN 3 R CURRENT CONTROL 95)CUR DISCONTINUITY 3 R CURRENT CONTROL 96)4-QUADRANT MODE 3 6.8 CHANGE PARAMETERS / CURRENT CONTROL R CHANGE PARAMETERS CURRENT CONTROL 2 3 R PIN number range 81 to 97. The current control menu looks fairly complex initially, but is not too difficult to understand when considered in separate blocks. See 6.8.1 CURRENT CONTROL / Block diagram. The current control loop gets its current reference from the output of the speed loop error amplifier. The reference enters the current control section and is subjected to a series of 4 clamps. i3)CURRENT LIMIT(%). This provides the absolute limits of overload. (See CALIBRATION menu). ii) CURRENT OVERLOAD. This allows the drive to actively modify the current overload as it occurs. The reduction rate of the overload is adjustable. After an overload, the load must return below the target level for an equivalent time, to re-enable the overload capability. iii) I DYNAMIC PROFILE. This clamp is used to protect motor commutators that have problems commutating current at high speed or in field weakening mode of operation. This function allows the setting of break points that profile the current according to the speed. iv) 89)UPPER CUR CLAMP and 90)LOWER CUR CLAMP. These clamps allow the current limits to be adjusted from external signals. They can accept a single positive input and produce a scaled bi-polar clamp, or separate positive and negative inputs for the upper clamp and lower clamp. Scaling is achieved by a master current scaler. The 4 clamps operate such that the lowest has priority. The actual prevailing clamp level is available as a diagnostic for +ve and –ve current. The output of the clamping stage is referred to as the current demand, and is compared with the current feedback in a P + I error amplifier. The control terms and a non-linear adaptive algorithm are available for programming. There is also the facility to activate a super fast current response. See 13.14.3 DRIVE PERSONALITY / Maximum current response PIN 678. The output becomes the phase angle demand for the thyristor stack. 98 CHANGE PARAMETERS 6.8.1 CURRENT CONTROL / Block diagram CURRENT CONTROL (Clamps) PIN 3 PIN 91 Extra Current reference Current Limit % Calibration Menu PIN 82 Overload % target PIN 84 PIN 87 Dynamic profile Enable Dynamic profile Low I% PIN 89 Upper cur clamp Scaled user +ve Clamp PIN 136 Scaler PIN 81 Inverter -1 Prevailing +ve Clamp PIN 138 I limit% To current Error amp +/- clamps Scaled user -ve Clamp PIN 137 Current reference Input Connected from speed control PIN 83 PIN 140 PIN 86 PIN 85 PIN 90 Overload Ramp time Overload Limit monitor Dyn profile Low I spd break point Dyn profile High I spd break point Lower current clamp PIN 96 4Q mode (Regen only if model allows) Current Demand Input from current control clamps Current demand PIN PIN 718 133 Unfiltered Q2 -v Q4 PIN 93 PIN 94 PIN 678 Integral Gain Max curr Response Current error amp Q3 P+I Prevailing -ve Clamp PIN 139 Dual cur Clamp Enable Scaler PIN 81 Prop Gain +I Q1 +v -I PIN 88 At limit flag PIN 141 Current Loop off Warning Hidden PIN 704 Armature Stack Firing Angle output Arm mon CURRENT CONTROL ( P + I) Amps % PIN PIN 135 134 Armature Current Feedback PIN 92 PIN 95 Autotune enable Discontinuous Current point + Armature Bridge Flag PIN 165 6.8.2 CURRENT CONTROL / Current clamp scaler PIN 81 R CURRENT CONTROL 81)CUR CLAMP SCALER 3 Sets the clamp scaling value for the upper/lower clamps. R PARAMETER CUR CLAMP SCALER 81)CUR CLAMP SCALER 150.00% RANGE 0.00 to 150.00% DEFAULT 150.00% 6.8.3 CURRENT CONTROL / CURRENT OVERLOAD CURRENT CONTROL CURRENT OVERLOAD 3 4 CURRENT OVERLOAD 82)O/LOAD % TARGET 4 CURRENT OVERLOAD 83)O/LOAD RAMP TIME 4 PIN 81 CHANGE PARAMETERS 6.8.3.1 99 CURRENT OVERLOAD / Overload % target PIN 82 CURRENT OVERLOAD 82)O/LOAD % TARGET 4 Sets the current limit target level after excessive overload. 82)O/LOAD % TARGET 105.00 % PARAMETER O/LOAD % TARGET RANGE 0.00 TO 105.00 % DEFAULT 105.00% PIN 82 This CURRENT OVERLOAD menu allows the final current % target limit to be set by this parameter. This would normally be the full load current of the motor. Having the facility to set this parameter independantly of 2)RATED ARM AMPS allows further flexibility. This block allows the load current to span up to 150% of 2)RATED ARM AMPS. (If any other lower limits are prevailing they will of course determine the current limit). See 6.8.1 CURRENT CONTROL / Block diagram. An internal integrator, with a finite capacity, fills up when the armature current exceeds PIN 82, it empties for armature current less than PIN 82. The unused capacity of the integrator determines the time remaining, before automatic reduction of the current limit commences. A 150% limit is available until the integrator becomes full. Then the current limit is linearly reduced in this block from 150% towards PIN 82. Note. The limit reduction always starts from 150% and ramps down towards 82)O/LOAD % TARGET. See 6.8.3.2 CURRENT OVERLOAD / Overload ramp time PIN 83. If the load continues to require current in excess of PIN 82 level then it will remain limited to PIN 82 level. (NOTE this implies the speed loop is not getting the current it demands and hence there will be speed error). If the load subsequently falls beneath PIN 82 level, then the internal integrator starts to de-integrate back to its empty state. (Ready for next overload). The overload available will start increasing. However full de-integration is required before the full overload capacity is once more available. Note. For small overloads the time prior to limit reduction can be very long, but the integrator is still filling up. Hence after a long small overload, any excursion to the 150% limit will very quickly precipitate a reduction. 6.8.3.1.1 Diagram showing O/LOAD % TARGET set to 105% DWELL TIME = 25 secs if Iarm=150.00%. See formula If Iarm =127.50% then time to limit reduction = 50 secs If Iarm =116.25% then time to limit reduction = 100 secs 82)O/LOAD % TARGET set to 105.00% 2)RATED ARM AMPS Equivalent to 100% 150% 100% 50% 83)O/LOAD RAMP TIME Formula for calculating Dwell time for a given PIN82 Overload % target and PIN138 prevailing Current Limit% DWELL TIME = (150%-PIN82%) x 25/(I limit%-PIN82%) in seconds. (Assuming current remains at the limit). Formula for calculating Current limit setting required for a given PIN82 Overload % target and DWELL TIME. Current limit% required = PIN82% + (150% - PIN82%) x 25/DWELL TIME secs Formula for calculating PIN82 Overload % target required for a given Current limit% and DWELL TIME. PIN82 Overload % target = (DWELL TIME secs x Current limit% - 3750) / (DWELL TIME secs - 25) 100 CHANGE PARAMETERS 6.8.3.1.2 How to get overloads greater than 150% using 82)O/LOAD % TARGET Use this to provide larger overload percentages on motors smaller than the PL/X model rating. This example shows how 82)O/LOAD % TARGET provides a 200% overload for a 9 amp motor with a 12 amp PL/X5. With Iarm = 150%. The 150% limit is available for 25 secs prior to commencing reduction. Eg for PL/X5, 150% = 18 amps. (For a motor rated at 9 amps, this represents 200%). 82)O/LOAD % TARGET set to 75.00%. Eg. Limits at 9 amps with 2)RATED ARM AMPS=12 amps 150% 100% 75% 83)O/LOAD RAMP TIME 50% 2)RATED ARM AMPS. Eg for PL/X5 set to 12 amps Equivalent to PL/X 100%. (133% of full load motor current) 1) The current set on 2)RATED ARM AMPS (12 amps) represents 100% of the drive (PL/X5), but for this application must be deliberately set higher than the normal full load motor current (9 amps). 2) The parameter 82)O/LOAD % TARGET is set at a level equivalent to the normal full load motor current. (9 amps). Here this is equivalent to 75% of 2)RATED ARM AMPS (12 amps). 3) The 150% limit (18 amps) is now double the 82)O/LOAD % TARGET (75%), which represents a 200% overload capability with respect to the full load motor current. (9 amps). AUTOTUNE with 2)RATED ARM AMPS=12A. See 6.8.9 CURRENT CONTROL / Autotune enable PIN 92. Set 8.1.8.2 STALL TRIP MENU / Stall current level PIN 179, to a value less than 82)O/LOAD % TARGET. 6.8.3.1.3 Maximum overload table Table showing maximum overloads according to:- Full load motor current, as a % of 2)RATED ARM AMPS. Maximum available Maximum overload % available. Full load motor current (With respect to full load motor current) (82)O/LOAD % TARGET) as a % of 2)RATED ARM AMPS 100% 150% 150 / 100 = 150% 90% 150% 150 / 90 = 166% 80% 150% 150 / 80 = 187% 75% 150% 150 / 75 = 200% 60% 150% 150 / 60 = 250% 50% 150% 150 / 50 = 300% 37.5% 150% 150 / 37.5 = 400% 30% 150% 150 / 30 = 500% There are 2 overcurrent trip mechanisms. 1) A software threshold which is set at 300% of 2)RATED ARM AMPS. 2) A hardware threshold which activates in excess of 150% of the maximum PL/X model rating. AUTOTUNE with 2)RATED ARM AMPS set to its final value. See example above for 9 amp motor. Set 8.1.8.2 STALL TRIP MENU / Stall current level PIN 179, to a value less than 82)O/LOAD % TARGET. If 3)CURRENT LIMIT(%) or 82)O/LOAD % TARGET level is set to 0%, then no current will flow. 6.8.3.2 CURRENT OVERLOAD / Overload ramp time PIN 83 CURRENT OVERLOAD 83)O/LOAD RAMP TIME 4 Sets the time taken to reduce the current limit by 100% 83)O/LOAD RAMP TIME 20.0 SECS PARAMETER O/LOAD RAMP TIME RANGE 0.1 to 20.0 secs DEFAULT 20.0secs E.g. For Limit=150%, time=20 secs, target=105%. Then ramp time to target=9 secs (ie.45% of 20 secs). PIN 83 CHANGE PARAMETERS 101 6.8.4 CURRENT CONTROL / I DYNAMIC PROFILE This function works for both directions of rotation. CURRENT CONTROL I DYNAMIC PROFILE 3 4 I DYNAMIC PROFILE. This clamp is used to change the current limit according to speed. E.g. 1) To protect motors that have problems commutating current at high speeds in field weakening mode of operation. 2) To prevent motors overheating at low speeds. I DYNAMIC PROFILE 87)CUR LIMIT AT LO I 4 I DYNAMIC PROFILE 84)I PROFILE ENABLE 4 I DYNAMIC PROFILE 85)SPD BRPNT AT HI I 4 I DYNAMIC PROFILE 86)SPD BRPNT AT LO I 4 An upper current limit of fixed value 150% is used in the calculation. If 3)CURRENT LIMIT(%) is set lower than 150%, then 3)CURRENT LIMIT(%) will prevail. If current limits in the other current limit blocks are lower then they will prevail. Current limit SPD BRPNT AT HI I This speed and current are always associated with each other 150% CURRENT LIMIT SPD BRPNT AT LO I CUR LIMIT AT LO I This speed and current are always associated with each other The 150% CURRENT LIMIT is available until the speed demand reaches the SPD BRPNT AT HI I. The current limit then reduces linearly as the speed increases towards the SPD BRPNT AT LO I. After passing the SPD BRPNT AT LO I it remains at the level set in CUR LIMIT AT LO I. This gives a reducing current limit with speed. Speed Current limit SPD BRPNT AT HI I 150% CURRENT LIMIT This speed and current are always associated with each other SPD BRPNT AT LO I CUR LIMIT AT LO I This speed and current are always associated with each other The CUR LIMIT AT LO I prevails until the speed demand reaches the SPD BRPNT AT LO I. The current limit then increases linearly as the speed increases towards the SPD BRPNT AT HI I. After passing the SPD BRPNT AT HI I then 150% CURRENT LIMIT remains available. This gives an increasing current limit with speed. Speed Note. The SPEED breakpoints may be set so that the profile starts low and goes high if required. If you try to bring the two speed breakpoints closer than within 10% of each other, then the higher speed breakpoint is internally assumed to be equal to the lower speed breakpoint + 10%. 6.8.4.1 I DYNAMIC PROFILE / Profile enable PIN 84 I DYNAMIC PROFILE 84)PROFILE ENABLE 4 Enables or disables the dynamic profile function. 84)PROFILE ENABLE DISABLED PARAMETER PROFILE ENABLE RANGE ENABLED OR DISABLED DEFAULT DISABLED PIN 84 102 CHANGE PARAMETERS 6.8.4.2 I DYNAMIC PROFILE / Speed break point for high current limit PIN 85 I DYNAMIC PROFILE 85)SPD BRPNT AT HI I 4 85)SPD BRPNT AT HI I 75.00% Sets the speed break point for 150% CURRENT LIMIT. PARAMETER SPD BRPNT AT HI I RANGE 0.00 to 105.00% DEFAULT 75.00% PIN 85 Note. 3)CURRENT LIMIT(%) set in the CALIBRATION menu will prevail. This is the normal current limit setting. However the profile calculation starts or ends at 150%. 6.8.4.3 I DYNAMIC PROFILE / Speed break point for low current limit PIN 86 I DYNAMIC PROFILE 86)SPD BRPNT AT LO I 4 Sets the speed break point for 87)CUR LIMIT AT LO I 6.8.4.4 86)SPD BRPNT AT LO I 100.00% PARAMETER SPD BRPNT AT LO I RANGE 0.00 to 105.00% DEFAULT 100.00% PIN 86 DEFAULT 100.00% PIN 87 DEFAULT DISABLED PIN 88 I DYNAMIC PROFILE / Profile current for low current limit PIN 87 I DYNAMIC PROFILE 87)CUR LIMIT AT LO I 4 Sets the current limit prevailing at 86)SPEED BRPNT AT LO I 87)CUR LIMIT AT LO I 100.00% PARAMETER CUR LIMIT AT LO I RANGE 0.00 to 150.00% 6.8.5 CURRENT CONTROL / Dual current clamps enable PIN 88 CURRENT CONTROL 88)DUAL I CLAMP ENBL 3 Enables the upper and lower dual clamps to be independant 88)DUAL I CLAMP ENBL DISABLED PARAMETER DUAL I CLAMP ENBL RANGE ENABLED OR DISABLED If 88)DUAL I CLAMP ENBL is disabled then the clamps produce symmetric +ve and –ve current limits in conjunction with 81)CUR CLAMP SCALER. The default control terminal is T6. If 88)DUAL I CLAMP ENBL (default terminal T21) is enabled then the upper input is default T6 and the lower input is default T5. Each clamp can work in each polarity provided the upper is algebraically above the lower However: If the upper clamp is set negative and the lower clamp set positive than the result is 0.00%. If the lower clamp is more positive than the upper clamp in the positive region the upper clamp behaves as a current demand. If the upper clamp is more negative than the lower clamp in the negative region the lower clamp behaves as a current demand. CHANGE PARAMETERS 103 6.8.6 CURRENT CONTROL / Upper current clamp PIN 89 CURRENT CONTROL 89)UPPER CUR CLAMP 3 Modifies the upper current limit %. 89)UPPER CUR CLAMP +100.00% PARAMETER UPPER CUR CLAMP RANGE +/-100.00% DEFAULT +100.00% PIN 89 The product of this parameter and 81)CUR CLAMP SCALER sets the limit. If the upper clamp is set negative and the lower clamp set positive than the result is 0.00%. If the lower clamp is more +ve than the upper in the +ve region, the upper behaves as a current demand. 6.8.7 CURRENT CONTROL / Lower current clamp PIN 90 CURRENT CONTROL 90)LOWER CUR CLAMP 3 Modifies the lower current limit %. 90)LOWER CUR CLAMP -100.00% PARAMETER LOWER CUR CLAMP RANGE +/-100.00% DEFAULT -100.00% PIN 90 The product of this parameter and 81)CUR CLAMP SCALER sets the limit. If the upper clamp is set negative and the lower clamp set positive than the result is 0.00%. If the upper clamp is more -ve than the lower in the -ve region, the lower behaves as a current demand. 6.8.8 CURRENT CONTROL / Extra current reference PIN 91 CURRENT CONTROL 91)EXTRA CUR REF 3 Sets the value of an extra current reference input. 91)EXTRA CUR REF 0.00% PARAMETER EXTRA CUR REF RANGE +/-300.00% DEFAULT 0.00% PIN 91 DEFAULT DISABLED PIN 92 6.8.9 CURRENT CONTROL / Autotune enable PIN 92 CURRENT CONTROL 92)AUTOTUNE ENABLE 3 Enables the autotune function to start. It turns itself off. 92)AUTOTUNE ENABLE DISABLED PARAMETER AUTOTUNE ENABLE RANGE ENABLED OR DISABLED If you change your supply voltage, current calibration or motor type then AUTOTUNE must be repeated. This is a stationary test. There is no need to disconnect the motor from the load. The motor field is automatically disabled. If the motor rotates above 20% speed due to residual magnetism, the test is aborted. See 8.1.11.16 DRIVE TRIP MESSAGE / Cannot autotune, 8.1.11.17 DRIVE TRIP MESSAGE / Autotune quit. Note. The autotune function makes a one off adjustment to the current loop error amplifier terms to achieve optimum performance. When ENABLED it will wait until the main contactor is energised and the drive run before starting its autotune routine. It may take from a few seconds up to about 1 minute typically. Warning. If the maximum motor armature current rating is less than approximately 50% of the maximum model rating, the AUTOTUNE results may not be optimum. There are 2 possible ways of overcoming this. Either 1) Set the current loop control terms manually. See 6.8.12 CURRENT CONTROL / Discontinuous current point PIN 95. 104 CHANGE PARAMETERS Or 2) Re-burden the unit using the 50%/100% burden jumper on the power board. See 13.14.4 DRIVE PERSONALITY / Armature current burden resistance PIN 680. There are 2 stages to the autotune function. Stage 1. Stage 2. The current automatically increases positively until it becomes continuous. The current is automatically perturbated until the response is optimised. When it has finished it drops out the main contactor, sets the required parameters, and then automatically DISABLES itself. You can check that it has finished by looking in the display window and waiting for the DISABLED comment to re-appear on the bottom line. You must then save the parameters using the PARAMETER SAVE menu. If the routine is interrupted by a power loss or alarm then the routine is aborted and the old parameter values are left intact. In the case where the motor has a short time constant, the armature current may remain discontinuous, even at currents in excess of 100%. There are 2 possible outcomes. 1) The autotune will find that the current never goes continuous up to 150% in stage 1. Stage 2 is abandoned. The autotune automatically sets the following parameters. 93)CUR PROP GAIN is set to 1.00. 94)CUR INT GAIN is set to 7.00. 95)CURRENT DISCONTINUITY is set to 0.00%. 2) The autotune will find that the current goes continuous at a high level in stage 1. During stage 2 the induced perturbations cause a current overload to occur. Then the routine is aborted and the old parameter values are left intact. In this case it is suggested that the following parameters are set manually: 93)CUR PROP GAIN is set to 1.00. 94)CUR INT GAIN is set to 7.00. 95)CURRENT DISCONTINUITY is set to 0.00%. This is a good starting point although the current loop response may be slow when the armature current is high, (above the discontinuous current point). Note. There is a hidden PIN which contains 707)AUTOTUNE MONITOR flag (High for start). 6.8.10 CURRENT CONTROL / Current amp proportional gain PIN 93 CURRENT CONTROL 93)CUR PROP GAIN R 3 Sets the proportional gain of the current error amplifier. R 93)CUR PROP GAIN 30.00 PARAMETER CUR PROP GAIN RANGE 0.00 to 200.00 DEFAULT 30.00 PIN 93 This can be set by using the AUTOTUNE function. Increase to improve response, too much may cause instability. If you change your supply voltage, current calibration or motor type then re-adjust this parameter. 6.8.11 CURRENT CONTROL / Current amp integral gain PIN 94 R CURRENT CONTROL 94)CUR INT GAIN Sets the integral gain of the current error amplifier. 3 R PARAMETER CUR INT GAIN 94)CUR INT GAIN 3.00 RANGE 0.00 to 200.00 DEFAULT 3.00 PIN 94 This can be set by using the AUTOTUNE function. Generally an increased integral gain will improve the response. If you change your supply voltage, current calibration or motor type then re-adjust this parameter. CHANGE PARAMETERS 105 6.8.12 CURRENT CONTROL / Discontinuous current point PIN 95 R CURRENT CONTROL 95)CUR DISCONTINUITY 3 95)CUR DISCONTINUITY 13.00% R Set to the discontinuous current boundary level for your motor. PARAMETER CUR DISCONTINUITY RANGE 0.00 to 200.00% DEFAULT 13.00% PIN 95 This can be set by using the AUTOTUNE function. The motor/supply combination will possess a property called the discontinuous-continuous current point which is important for optimum tuning of the current loop. If you change your supply voltage, current calibration or motor type then re-adjust this parameter. 6.8.12.1 Setting the current loop control terms manually. As the current increases there comes a point when the current stops appearing in 6 discrete lumps per cycle and just starts going continuous. At this point the natural gain of the system changes dramatically. If the unit knows this point, it can automatically compensate for the gain change and produce an optimum response. The current level % of rated motor current at which it occurs is entered here. If you change your supply voltage, current calibration or motor type, the 3 values for PINs 93/94/95 must be adjusted accordingly. To observe the current signal you must use the signal test pin provided, and a quality storage oscilloscope. See 3.4.5 Signal test pins. Monitor 134)ARM CUR % MON to monitor the % value at the boundary. Use the table to determine the other current loop control terms 134)ARM CUR % MON at boundary point 10.00% 20.00% 40.00% 60.00% 80.00% 100.00% Suggested value for 93)CUR PROP GAIN 40.00 20.00 10.00 10.00 10.00 10.00 Suggested value for 94)CUR INT GAIN 4.00 2.00 1.00 1.00 1.00 1.00 6.8.13 CURRENT CONTROL / 4 quadrant mode enable PIN 96 R CURRENT CONTROL 96)4-QUADRANT MODE 3 Allows models with regenerative capability to be 2 quadrant. R PARAMETER 4-QUADRANT MODE 96)4-QUADRANT MODE ENABLED RANGE ENABLED or DISABLED DEFAULT ENABLED PIN 96 If 96)4-QUADRANT MODE is enabled then the regenerative capability will be determined by the model. See 3.3 General Technical Data. Note. PL models with regenerative stopping. This feature is also dis/enabled. 6.8.14 CURRENT CONTROL / Speed bypass current reference enable PIN 97 CURRENT CONTROL 97)SPD BYPASS CUR EN 3 Allows a current reference input which by-passes the speed loop. 97)SPD BYPASS CUR EN DISABLED PARAMETER SPD BYPASS CUR EN RANGE ENABLED OR DISABLED DEFAULT DISABLED PIN 97 There is an internal connection from T3 via UIP3 to 64)SPEED REF3 MON. This parameter determines whether T3 is a speed or current reference. If enabled, the speed loop output is automatically disconnected. Note. The summing junction for this input is shown in 6.7.1 SPEED CONTROL / Block diagram. 106 CHANGE PARAMETERS 6.9 CHANGE PARAMETERS / FIELD CONTROL PIN number range 99-114 R CHANGE PARAMETERS FIELD CONTROL 2 3 The field controller within the PL/X consists of a single phase half controlled thyristor bridge with a flywheel diode. The AC supply to the bridge is delivered through terminals EL2 and EL3, and the rectified output is on terminals F+ and F-. The supply can be anywhere in the range of 100 to 500V AC, but must, at least, be 1.1 times the maximum field output voltage you require. Note that the supply to EL2 and EL3 is also utilised to determine phase rotation of the local supply. The purpose of the field winding in a motor is to provide flux that intersects the armature windings. The flux generated is a function of the CURRENT flowing in the field coils. When considering the set up of the field output you are able to use 1 of 2 types of control strategy. 1) Voltage clamp with higher current limit protection. 2) Current control with higher voltage clamp protection. Motor field windings are normally very inductive and have a long time constant. This results in smooth current in the field. In this case the field current reading is reasonably accurate irrespective of when it is sampled. FIELD CONTROL 114)FIELD REFERENCE 3 R FIELD CONTROL 99)FIELD ENABLE 3 R FIELD CONTROL 100)FIELD VOLTS OP % 3 FIELD CONTROL 101)FIELD PROP GAIN 3 FIELD CONTROL 102)FIELD INT GAIN 3 FIELD CONTROL FLD WEAKENING MENU 3 4 FIELD CONTROL 111)STANDBY FLD ENBL 3 FIELD CONTROL 112)STANDBY FLD CUR 3 FIELD CONTROL 3 113)FLD QUENCH DELAY Some motors have shorter field winding time constants than normal resulting in up to 20% ripple. In this case the PL/X may sample the current at a non-ideal point in the cycle which will result in a slightly incorrect control level. (Usually no more than a few %) To normalise the field current back to its correct level it may be necessary to use the field current trim. See 6.1.12 CALIBRATION / Field current feedback trim PIN 15, or re-calibrate the field current to overcome the inaccuracy. Warning. Field reversal or disconnection. Due to the high inductance of motor fields it may take several seconds for the field current to decay to zero after the field output has been inhibited by the PL/X. Do not open circuit the field unless the field current has reached zero. The PL/X is unable to measure the decaying current after an inhibit, so it is not possible to use the field current monitors or field active flag to show zero current has actually been attained. It is necessary to observe the current on an external instrument and time how long it takes to decay. The interval timer block may then be utilised to implement a safety delay before opening the field circuit. Failure to observe this warning may cause flashover of the field circuit and result in damage to the system. CHANGE PARAMETERS 107 6.9.1 FIELD CONTROL / Block diagram FIELD CONTROL FROM Arm Voltage Feedback PIN 107 Fld wk Fb D SIGNAL conditioning 100% Field (from PIN 4) PIN 114 Field Ref PIN 143 field dem PIN 110 Min Field PIN 101 PIN 102 Prop Gain Integral Gain PIN 99 Field enable PIN 108 Fld wk Fb I Field weakening PIN 109 Spillover % Max Arm Voltage X PID Field Current error amp P+I Speed Field angle of advance Monitor PIN 146 Field active monitor PIN 147 Field delay and quench PIN 104 PIN 105 PIN 106 Fld wk Prop Gain Fld wk Int TC ms Fld wk deriv TC ms Weakening Enable PIN 103 %A PIN 144 PIN 100 Volts% OP Clamp AMPS PIN 145 I fld fb PIN 112 Standby current Quench Del Standby En PIN PIN 113 111 1) Voltage output clamp. This is an open loop setting of the field bridge-firing angle allowing the DC output voltage to be set between 0 to 90% of the incoming supply voltage. E. g. for an AC supply of 400V the 90% output voltage is 360V DC. Note if the AC supply varies, then the field output voltage will vary in proportion. Also if the field resistance changes then the resulting output current will change. If you know the rated field voltage, you can set 100)FIELD VOLTS OP % clamp parameter value in this menu. Adjust the field output voltage to the dataplate value, as a % of the applied AC supply. Note. Please ensure that 4)RATED FIELD AMPS is sufficiently high to force the 100)FIELD VOLTS OP % clamp into operation, at the desired voltage, under all conditions. 4)RATED FIELD AMPS, scaled by 114)FIELD REFERENCE, sets the demand for the field current control loop and 100)FIELD VOLTS OP % operates as a clamp on the field bridge firing angle. If the current demand is satisfied at a voltage output below the clamp level, then the current loop will prevail. 2) Current control. The range of output voltage is the same in this mode as in the voltage output clamp mode, however the control loop operates on the actual current flowing in the field and works to maintain this at the desired value. Providing that the output voltage is not clamped by the 90% natural limit, or by 100)FIELD VOLTS OP %, and is able to move around, then the current delivered will always be controlled irrespective of supply and resistance changes. This is the preferred control strategy. Hence it is possible to operate with the field current control prevailing and the voltage % as a higher safety clamp, or the voltage % clamp prevailing and the field current control as a higher safety level. The back emf of a motor is a good linear representation of its speed. This is significantly improved if the field current and hence flux is kept constant. Hence with the field in current control mode, AVF speed control accuracy is improved. It is good practice in control engineering to minimise the error correction requirements of any loop, hence having a current controlled field is also recommended when using a tachogenerator. Field weakening in current mode is required where the speed of the motor exceeds its base speed. The field current is held at its rated value until the armature voltage reaches its spillover value. Reducing the field current, rather than increasing the armature voltage, then satisfies any further increase in speed demand. Further consideration must be given to the field quenching modes. If dynamic braking is required then the field must be maintained after the drive armature output is halted. Without the field, the motor would not be able to act as a generator and dissipate its rotational energy into the braking resistor. When motors are standing still for extended periods it is useful to apply a reduced field current to prevent overheating, save energy and in cold climates prevent condensation or freezing. For any non running mode the field will be quenched. If the RUN input goes low at any point during the stopping process, either heading for zero speed or during the delay period, then the contactor will drop out straight away and the field quenched. The quenched condition is determined by 111)STANDBY FIELD ENBL, 112)STANDBY FLD CUR and 113)FLD QUENCH DELAY. See also 14.9.1 Wiring diagram for AC supply to L1/2/3 different to EL1/2/3. (E.g. Low voltage field) 108 CHANGE PARAMETERS 6.9.2 FIELD CONTROL / Field enable PIN 99 R FIELD CONTROL 99)FIELD ENABLE 3 This allows the field output to be enabled or disabled. R 99)FIELD ENABLE ENABLED PARAMETER FIELD ENABLE RANGE ENABLED OR DISABLED DEFAULT ENABLED PIN 99 DEFAULT 90.00% PIN 100 Note. The field fail alarm is automatically inhibited if the field control is disabled. 6.9.3 FIELD CONTROL / Voltage output % PIN 100 R FIELD CONTROL 100)FIELD VOLTS OP % 3 Sets the DC field voltage clamp as a % of the AC supply volts. R 100)FIELD VOLTS OP % 90.00% PARAMETER FIELD VOLTS OP % RANGE 0.00 to 100.00% It may be necessary to set the field voltage instead of the field current. E. g. There may only be a volts rating on the dataplate. See 7.3.4 FLD I LOOP MONITOR / Field firing angle of advance monitor PIN 146. NOTE. The value of this parameter is not restored to the default by a 4-KEY RESET. It remains as calibrated. This parameter allows voltage mode to be achieved by setting an upper clamp level to the field current loop. Note. The rated field amps current setting in the calibration menu will be a limiting value irrespective of this clamp voltage setting. This is to provide protection to the drive and the motor. Conversely this voltage clamp setting will be a limiting value irrespective of the rated field amps setting. This means that in order to ensure that the field output voltage always remains at the clamp voltage it is necessary to set the rated field amps to a level that is slightly in excess of the cold field current. Then as the field warms up, any voltage rise needed by the field current loop will be clamped to the level set. The clamp will work with the rated field amps set to maximum, however this may not afford sufficiently safe protection to the motor if a problem occurs in the field winding that results in overcurrent. See also 14.9.1 Wiring diagram for AC supply to L1/2/3 different to EL1/2/3. (E.g. Low voltage field) 6.9.4 FIELD CONTROL / Field proportional gain PIN 101 FIELD CONTROL 101)FIELD PROP GAIN 3 Sets the proportional gain of the field current control loop. 101)FIELD PROP GAIN 10 PARAMETER FIELD PROP GAIN RANGE 0 to 1000 DEFAULT 10 PIN 101 DEFAULT 100 PIN 102 Increase to improve response, too much may cause instability in the field current. 6.9.5 FIELD CONTROL / Field integral gain PIN 102 FIELD CONTROL 102)FIELD INT GAIN Sets the integral gain of the field current control loop. 3 102)FIELD INT GAIN 100 PARAMETER FIELD INTEGRAL Increase to improve response, too much may cause overshoot. RANGE 0 to 1000 CHANGE PARAMETERS 109 6.9.6 FIELD CONTROL / FLD WEAKENING MENU FLD WEAKENING MENU 110)MIN FLD CURRENT 33)RAMP HOLD FIELD CONTROL FLD WEAKENING MENU 3 4 The function must be ENABLED to control field weakening. FLD WEAKENING MENU 103)FLD WEAK ENABLE 21)FWD UP TIME 4 4 4 4 FLD WEAKENING MENU 4 104)FLD WK PROP GAIN 22)FWD DOWN TIME 4 There are 5 control terms that can be adjusted. These are 3 error terms, derivative, proportional and integral, plus 2 feedback terms, derivative and integral. All these terms are associated with the armature voltage spillover loop and they are chosen to give the best response without excessive overshoots or instability of the armature voltage. The control loop monitors the armature voltage and compares it to the desired spillover voltage. It then controls the field current to optimise the speed control of the drive in the field weakening region. When the armature voltage reaches the spillover voltage, further speed increases are achieved by field weakening, and the armature voltage is effectively clamped at the spillover voltage. In this region the output power is constant for a given armature current. See. 6.1.11 CALIBRATION / IR compensation PIN 14. Further accuracy can be achieved with IR COMP. FLD WEAKENING MENU 105)FLD WK INT TC ms 23)REV UP TIME 4 4 FLD WEAKENING MENU 4 106)FLD WK DRV TC ms 24)REV DOWN TIME 4 FLD WEAKENING MENU 4 107)FLD WK FBK DRV ms 25)REFERENCE INPUT 4 FLD WEAKENING MENU 4 108)FLD WK FBK INT ms 26)FWD MIN SPEED 4 FLD WEAKENING MENU 109)SPILLOVER AVF % 27)REV MIN SPEED 4 4 WARNING. When using field weakening and a DC side power contactor, the motor armature must be connected to the REMOTE AV sensing terminals T41 and T43. Failure to do this will cause flashover of the commutator because the AVF feedback is lost when the contactor opens. WARNING. Do not use field weakening if Armature Voltage Feedback is selected in the CALIBRATION menu. If AVF has been selected, and field weakening enabled, then if the field weakening region is entered the drive will trip. Note. The action of changing feedback mode to AVF will automatically rescale the 100% speed feedback to refer to 18)RATED ARM VOLTS. To continue running in this mode (e.g. if tacho has failed) and avoid tripping, ensure the field weakening region is avoided by remaining at a speed which gives an armature voltage below 109)SPILLOVER AVF %. 130)MOTOR RPM monitor will read incorrectly unless 6)DESIRED MAX RPM is readjusted to base RPM. If this trip occurs the DRIVE TRIP MESSAGE will be SPEED FBK MISMATCH. Note. The limit of field weakening range is 10 : 1. See 8.1.1 MOTOR DRIVE ALARMS / Speed feedback mismatch trip enable PIN 171. 110 CHANGE PARAMETERS 6.9.6.1 FLD WEAKENING MENU / Field weakening enable PIN 103 FLD WEAKENING MENU 103)FLD WEAK ENABLE 4 This allows the field weakening to be enabled or disabled. 6.9.6.2 103)FLD WEAK ENABLE DISABLED PARAMETER FLD WEAK ENABLE RANGE ENABLED OR DISABLED DEFAULT DISABLED PIN 103 DEFAULT 50 PIN 104 FLD WEAKENING MENU / Field weakening proportional gain PIN 104 FLD WEAKENING MENU 4 104)FLD WK PROP GAIN This sets the proportional gain of the field weakening loop. 104)FLD WK PROP GAIN 50 PARAMETER FLD WK PROP GAIN RANGE 0 to 1000 Generally an increased proportional value will speed up the response of the armature voltage when operating around the spillover voltage point, and a decrease will slow the response. Increasing the value too far may cause instability of the armature voltage and possible over-volting of the commutator. 6.9.6.3 FLD WEAKENING MENU / Field weakening integral time constant PIN 105 FLD WEAKENING MENU 105)FLD WK INT TC ms 4 This sets the integral time constant of the weakening loop 105)FLD WK INT TC ms 4000 PARAMETER FLD WK INT TC ms RANGE 0 to 20000 ms DEFAULT 4000 PIN 105 Generally an increased integral time constant will slow the response of the armature voltage when operating around the spillover voltage point, and a decrease will improve the response. Decreasing the value too far may cause instability of the armature voltage and possible over-volting of the commutator. 6.9.6.4 FLD WEAKENING MENU / Field weakening derivative time constant PIN 106 FLD WEAKENING MENU 4 106)FLD WK DRV TC ms This sets the derivative time constant of the weakening loop 106)FLD WK DRV TC ms 200 PARAMETER FLD WK DRV TC ms RANGE 10 to 5000 ms DEFAULT 200 In general, keep this parameter between 5 and 10% of the setting of 105)FLD WK INT TC ms. This gives good attenuation to the response of the weakening loop at high frequencies. A higher setting may cause instability of the armature voltage and possible over-volting of the commutator. PIN 106 CHANGE PARAMETERS 6.9.6.5 111 FLD WEAKENING MENU / Field weakening feedback derivative time constant PIN 107 FLD WEAKENING MENU 4 107)FLD WK FB DRV ms Sets the feedback derivative time constant in milliseconds. 107)FLD WK FB DRV ms 100 PARAMETER FLD WK FB DRV ms RANGE 10 to 5000 ms DEFAULT 100 PIN 107 This affects the armature voltage overshoot when accelerating rapidly through base speed. An increasing ratio of 107)FLD WK FB DRV ms parameter to 108)FLD WK FB INT ms parameter (D/I) tends to reduce overshoots. A ratio of unity has no affect and a ratio of 3 or more tends to instability. The absolute values of the 2 parameters have only a 2nd order effect on the response. 6.9.6.6 FLD WEAKENING MENU / Field weakening feedback integral time constant PIN 108 FLD WEAKENING MENU 4 108)FLD WK FBK INT ms Sets the feedback integral time constant in milliseconds. 108)FLD WK FBK INT ms 100 PARAMETER FLD WK FBK INT ms RANGE 10 to 5000 ms DEFAULT 100 PIN 108 This affects the armature voltage overshoot when accelerating rapidly through base speed. An increasing ratio of 107)FLD WK FB DRV ms parameter to 108)FLD WK FB INT ms parameter (D/I) tends to reduce overshoots. A ratio of unity has no affect and a ratio of 3 or more tends to instability. The absolute values of the 2 parameters have only a 2nd order effect on the response. 6.9.6.7 FLD WEAKENING MENU / Spillover armature voltage % PIN 109 FLD WEAKENING MENU 109)SPILLOVER AVF % 4 Sets armature voltage % at which field weakening begins. 109)SPILLOVER AVF % 100.00% PARAMETER SPILLOVER AVF % RANGE 0 to 100% of rated AV DEFAULT 100.00% PIN 109 DEFAULT 10.00% PIN 110 Note. The rated armature voltage is set in the CALIBRATION menu. 6.9.6.8 FLD WEAKENING MENU / Minimum field current % PIN 110 FLD WEAKENING MENU 110)MIN FLD CURRENT 4 Sets the minimum field current as a % of the rated field amps. 110)MIN FLD CURRENT 10.00% PARAMETER MIN FLD CURRENT RANGE 0 to 100% of rated IF Note. When setting the minimum % allow an extra 5% margin below the desired minimum to accommodate a response transient. If the minimum is below 10% there may be a field failure alarm caused by undershoot. WARNING. The feedback loss protection afforded in field weakening mode is limited to total feedback loss only. This is because the speed / AVF relationship is not maintained in field weakening mode. If a partial loss of feedback occurs the motor may run to excessive speed. When the field has been completely weakened and is at its minimum level, the armature overvoltage trip will come into operation. This may only occur at a dangerous speed. It is therefore recommended that a mechanical device and or back up system be utilised to protect against this possibility. Correct setting of 110)MIN FIELD CURRENT will ensure that the overvolts TRIP occurs just above the maximum operating speed. 112 CHANGE PARAMETERS 6.9.7 FIELD CONTROL / Standby field enable PIN 111 FIELD CONTROL 111)STANDBY FLD ENBL 3 Enables the standby field quench mode. 111)STANDBY FLD ENBL DISABLED PARAMETER STANDBY FIELD ENBL RANGE ENABLED OR DISABLED DEFAULT DISABLED PIN 111 Used to keep motor warm during off periods to prevent condensation in cold climates. When disabled the field quenches to zero. See 6.9.8 FIELD CONTROL / Standby field current PIN 112. A run condition is enabled by (START or JOG) and RUN. This parameter prevails for non running conditions. 6.9.8 FIELD CONTROL / Standby field current PIN 112 FIELD CONTROL 112)STANDBY FLD CUR 3 Sets the standby value of the field current. 112)STANDBY FLD CUR 25.00% PARAMETER STANDBY FLD CUR RANGE 0.00% to 100.00% DEFAULT 25.00% PIN 112 Used to keep motor warm during off periods to prevent condensation in cold climates. 100.00% represents 4)RATED FIELD AMPS as set in the CALIBRATION menu. 6.9.9 FIELD CONTROL / Quench delay PIN 113 FIELD CONTROL 3 113)FLD QUENCH DELAY Set the field quench delay time after main contactor drop out. 113)FLD QUENCH DELAY 10.0 SECS PARAMETER FLD QUENCH DELAY RANGE 0.0 to 600.0 seconds DEFAULT 10.0 secs PIN 113 Used to ensure the motor can generate into a dynamic braking resistor after the main contactor drops out. A run condition is enabled by (START or JOG) and RUN. This delay activates upon commencement of a non running condition. 6.9.10 FIELD CONTROL / Field reference input PIN 114 FIELD CONTROL 114)FIELD REFERENCE 3 Sets the value of an external field reference input 114)FIELD REFERENCE 100.00% PARAMETER FIELD REFERENCE RANGE 0.00% TO 100.00% DEFAULT 100.00% PIN 114 This parameter is a scaler of 6.1.4 CALIBRATION / Rated field amps PIN 4 QUICK START. It may be used for systems requiring an external field reference input. The minimum field clamp will operate if the reference goes below minimum field. CHANGE PARAMETERS 113 6.10 CHANGE PARAMETERS / ZERO INTERLOCKS PIN number range 115-121. ZERO INTERLOCKS SPINDLE ORIENTATE 3 4 ZERO INTERLOCKS 115)STANDSTILL ENBL 3 ZERO INTERLOCKS 116)ZERO REF START 3 R ZERO INTERLOCKS 117)ZERO INTLK SPD % 3 R ZERO INTERLOCKS 118)ZERO INTLK CUR % 3 Due to the rapid response of the above mode, it may be necessary to implement 115)STANDSTILL ENBL. Without this quench function enabled the motor may be continuously moving as the system responds to small variations, which may be undesirable. ZERO INTERLOCKS 119)AT ZERO REF FLAG 3 i) 115)STANDSTILL ENBL provides an extra level of inhibit by not only removing the firing pulses but also quenching the loops. ZERO INTERLOCKS 120)AT ZERO SPD FLAG 3 It operates after the satisfying conditions of zero speed reference, and zero speed feedback are fulfilled. 117)ZERO INTLK SPD % sets the threshold for both the zero speed ref and feedback decisions. ZERO INTERLOCKS 121)AT STANDSTILL 3 This menu is used to enable 2 interlocking functions that are associated with zero speed. R CHANGE PARAMETERS ZERO INTERLOCKS 2 3 R There normal standstill behaviour is as follows. After the satisfying conditions of ‘zero speed and current demand’, AND ‘zero speed feedback’ are fulfilled, the firing pulses are removed and all other loops remain active to enable a rapid response for a new request for speed. 117)ZERO INTLK SPD % sets the threshold for both the zero speed reference and feedback decisions. 118)ZERO INTLK CUR % sets the threshold for the zero current demand decision. If 118)ZERO INTLK CUR % is set to 0.00% then the firing pulses are not removed. ii) 116)ZERO REF START. This prevents the current control being enabled after a start command, if the total speed reference to the drive, or the input to the RUN MODE RAMPS, is not at zero. It is used if starting the motor inadvertently may be undesirable. The message CONTACTOR LOCK OUT will appear after approximately 2 seconds if this function is not satisfied. The contactor is de-energised. E. g. If an extruder is full of cold plastic, then starting it may damage the screw. By implementing this function the operator has to deliberately set the references to zero before he can commence running. For these functions to work the zero threshold levels 117)ZERO INTLK SPD % and 118)ZERO INTLK CUR % need to be defined. All the threshold levels are symmetrical for reverse rotation and have hysterisis of +/-0.5% around the chosen level. For systems employing a shaft encoder there is a sub-menu for implementing spindle orientation and/or zero speed shaft position lock. In addition to the adjustable parameters there are 4 diagnostic monitoring flags. 114 CHANGE PARAMETERS 6.10.1ZERO INTERLOCKS / Block diagram Total speed Ref + ref prior to the Run Mode Ramp PIN 120 PIN 116 Zero speed flag Zero ref Start enable Rect Zero ref start control logic To current control logic PIN 131 Speed Feedback ZERO Interlock Rect PIN 118 ZI current level PIN 123 Total Speed Reference Standstill and position lock control logic Rect PIN 117 Zero interlocks Speed level PIN 119 Zero ref flag PIN 115 Standstill enable PIN 121 At S’still flag To firing ccts PIN 122 Zero speed lock 6.10.2ZERO INTERLOCKS / Standstill enable PIN 115 R ZERO INTERLOCKS 115)STANDSTILL ENBL 3 Allows the standstill function to be enabled. R 115)STANDSTILL ENBL DISABLED PARAMETER STANDSTILL ENBL RANGE ENABLED OR DISABLED DEFAULT DISABLED PIN 115 If enabled, the standstill function will inhibit the stack firing when there is zero reference AND zero speed. This parameter must be DISABLED for 6.10.9 ZERO INTERLOCKS / SPINDLE ORIENTATE operation. 6.10.3 ZERO INTERLOCKS / Zero reference start enable PIN 116 ZERO INTERLOCKS 116)ZERO REF START 3 Allows the zero reference start function to be enabled. 116)ZERO REF START DISABLED PARAMETER ZERO REF START RANGE ENABLED OR DISABLED DEFAULT DISABLED PIN 116 DEFAULT 1.00% PIN 117 6.10.4 ZERO INTERLOCKS / Zero interlocks speed level PIN 117 R ZERO INTERLOCKS 117)ZERO INTLK SPD % 3 Sets speed level for the zero ref start and standstill blocks. R PARAMETER ZERO INTLK SPD % 117)ZERO INTLK SPD % 1.00% RANGE 0.00 to 100.00% The signals being detected are total speed reference and speed feedback. The input depends on the function (total speed reference for standstill, and total speed inputs prior to the normal ramp for zero reference start). This speed level also sets the threshold for 120)AT ZERO SPD FLAG. CHANGE PARAMETERS 115 6.10.5 ZERO INTERLOCKS / Zero interlocks current level PIN 118 R ZERO INTERLOCKS 118)ZERO INTLK CUR % 3 R Sets current % for the zero ref start and standstill blocks. PARAMETER ZERO INTLK CUR % 118)ZERO INTLK CUR % 1.50% RANGE 0.00 to 100.00% DEFAULT 1.50% PIN 118 6.10.6 ZERO INTERLOCKS / At zero reference flag PIN 119 ZERO INTERLOCKS 119)AT ZERO REF FLAG 3 119)AT ZERO REF FLAG LOW Allows the total speed reference zero status to be monitored. PARAMETER AT ZERO REF FLAG RANGE HIGH (at zero) or LOW PIN 119 Branch hopping facility to next window. 6.10.7 ZERO INTERLOCKS / At zero speed flag PIN 120 ZERO INTERLOCKS 120)AT ZERO SPD FLAG 3 Allows the zero speed status to be monitored. 120)AT ZERO SPD FLAG LOW PARAMETER AT ZERO SPD FLAG RANGE HIGH (at zero) or LOW PIN 120 Branch hopping facility to adjacent windows. 6.10.8 ZERO INTERLOCKS / At standstill flag PIN 121 ZERO INTERLOCKS 121)AT STANDSTILL 3 Allows the standstill function status to be monitored. 121)AT STANDSTILL LOW PARAMETER AT STANDSTILL RANGE HIGH (at standstill) or LOW PIN 121 This flag operates irrespective of the state of 115)STANDSTILL ENBL. 6.10.8.1 Low speed performance When running at very low speeds the SPEED PI ADAPTION may need adjustment for optimum performance. The SPEED PI ADAPTION default settings are designed to give lower gain with low error. This provides smooth steady state performance. However applications that require precise control at very low speeds may function better with the adaption disabled. If the adaption is required to be on during normal running and off at low speeds then use a MULTIFUNCTION block to connect an inversion of 120)AT ZERO SPD FLAG to 79)SPD ADAPT ENABLE. See 6.7.7.6 SPEED PI ADAPTION / Speed loop adaption enable PIN 79 See 6.7.7.7 SPEED PI ADAPTION / Using small speed inputs and 6.5.1.4 Precise stopping 116 CHANGE PARAMETERS 6.10.9 ZERO INTERLOCKS / SPINDLE ORIENTATE PINS used 122 and 240 to 244 Note. It is only possible to use this function with PLX models, and PL models with the regenerative stopping facility. See 3.3.1. ZERO INTERLOCKS SPINDLE ORIENTATE 3 4 This sub menu is used to provide spindle orientation. It requires the mechanical system to be fitted with an incremental encoder with bi-directional output to provide position feedback. If the encoder has been selected for a speed feedback option in the CALIBRATION menu then that function is not disturbed by this block being operational. The spindle orientation will function irrespective of the speed feedback type. The block utilises the encoder marker to provide the controller with the absolute position angle of the encoder. The marker is input via terminal T15. PL models with the regenerative stopping facility can drop out delay. SPINDLE ORIENTATE 244)IN POSITION FLAG 4 SPINDLE ORIENTATE 122)ZERO SPEED LOCK 4 SPINDLE ORIENTATE 240)MARKER ENABLE 4 SPINDLE ORIENTATE 241)MARKER OFFSET 4 SPINDLE ORIENTATE 242)POSITION REF 4 SPINDLE ORIENTATE 4 243)MARKER FREQ MON only orientate during the contactor To maintain position lock during a contactor drop out delay ensure 6.5.4 STOP MODE RAMP / Live delay mode PIN 58 is set to ENABLED. See also 6.5.6 STOP MODE RAMP / Drop-out delay PIN 60. The encoder pulses are input on terminals T16 and T17 (Note. Quadrature type encoders are recommended because they will usually provide more accurate counting during reversals than Pulse and direction types). Terminals T15, T16, T17 are also used as standard logic inputs. (DIP/2/3/4). This function continues to operate. However logic levels that are changing at a frequency of greater than 20 Hz will not necessarily be recognised by the standard logic input function. The standard logic input function can be useful to check logic output levels of a slowly rotated encoder during commissioning. DIPX Input terminal T15/16/17 PIN XXX GO TO High OP val Low OP val PIN XXX The encoder input type and scaling is programmed by using the CALIBRATION / ENCODER SCALING menu to select the encoder type, sign, encoder lines and rpm. The SPINDLE ORIENTATE block counts the pulses from the encoder in a bi-directional counter. It counts forward or backward depending on rotation direction. This count represents the amount of angular rotation of the encoder and hence the motor shaft. The position count is compared with the required spindle orientation position reference to develop an error signal which is employed in a negative feedback loop in the drive. Thus the motor will rotate in such a direction as to reduce the error to zero, and hence bring the encoder marker to the spindle position reference. The marker uniquely defines the absolute position of the rotating encoder to the machine. If 241)MARKER OFFSET and 242)POSITION REF are both zero, then the encoder shaft will be positioned at the marker. However it is more than likely that the marker will be in an arbitrary position. To overcome this problem, 241)MARKER OFFSET is provided to perform a one off positioning of the shaft to a known position, every time the spindle orientate is actioned. E. g. to top dead centre. 242)POSITION REF is then always referred to this known position. CHANGE PARAMETERS 117 To summarise. The orientation function is activated by dropping below the zero speed threshold. 241)MARKER OFFSET is actioned only once at the commencement of orientation, and 242)POSITION REF is then followed with respect to the 241)MARKER OFFSET position. The orientation function is de-activated by increasing the speed demand above the zero speed threshold. 242)POSITION REF may be changed as many times as required and the shaft position will track it relative to the 241)MARKER OFFSET position. Each time 242)POSITION REF is changed to a new value, the 244)IN POSTION FLAG may be used to determine when the new position has been achieved. The gain and hence response of the position control loop is set by 122)ZERO SPEED LOCK. A value of zero will turn off the position loop. The block also provides 243)MARKER FREQ MON giving marker frequency. For systems that require position locking at zero speed but the absolute position is not important, then 122)ZERO SPEED LOCK only may be used. In this case no marker is required, and the 240)MARKER ENABLE input should be set to disabled. 6.10.9.1 SPINDLE ORIENTATE / Block diagram PIN 240 Marker Enable T 15 T 16 Below Zero Interlock Speed % (PIN 117) Threshold PIN 241 MARKER OFFSET (One shot) T15 MARK PULSE Terminal 16 FB PULSE B ORIENTATE PIN 243 Marker Freq OP BIDIRECTIONAL PULSE COUNTER Output To position Control loop Shaft position feedback count T 17 SPINDLE Terminal 17 FB PULSE A PIN 244 IN Position FLAG PIN 242 PIN 122 Position Ref ZERO SPEED LOCK 6.10.9.1.1 Spindle orientate operation For all speeds above 117)ZERO INTLK SPD %, the spindle orientate control action is disabled. However the marker frequency monitor will function within its defined limits providing 240)MARKER ENABLE is enabled. Note. The marker that is used for orientation is the last one to be input prior to the speed falling below 117)ZERO INTLK SPD % threshold. ( This is normally within 1 revolution of the shaft prior to the threshold). When the speed falls below 117)ZERO INTLK SPD %, then the spindle orientate function will operate providing 122)ZERO SPEED LOCK is set to a non-zero value and 240)MARKER ENABLE is enabled. Once the block has commenced functioning, it will continue as long as the speed demand is below 117)ZERO INTLK SPD %. The actual speed may exceed 117)ZERO INTLK SPD % without turning the block off. The sequence of operation is as follows. 1) Speed demand and feedback fall and remain below 117)ZERO INTLK SPD % for 400mS. (Includes Stopping sequences using terminals T33 or T32). (*PL models can only orientate when stopping). 2) Spindle orientation block is activated. 3) The shaft position at the last marker to be input prior to the speed falling below 117)ZERO INTLK SPD % is calculated by the PL/X. 4) The shaft seeks the 241)MARKER OFFSET position. 5) As the shaft approaches the marker offset position the block checks for the 242)POSITION REF target. 6) If the position reference is non-zero, the shaft immediately seeks the position reference with respect to the marker offset without waiting to stop at the marker offset position. 7) When the shaft reaches 242)POSITION REF target, 244)IN POSTION FLAG goes high. 118 CHANGE PARAMETERS 8) If a new 242)POSITION REF is entered, the shaft immediately seeks the new 242)POSITION REF target. 9) When the shaft reaches the new 242)POSITION REF target, then 244)IN POSTION FLAG goes high again. 10) The sequence of 8 and 9 may be repeated as many times as desired as long as the speed demand remains below 117)ZERO INTLK SPD %. 11) The speed demand rises above 117)ZERO INTLK SPD % and the block is turned off. Note. Both 241)MARKER OFFSET and/or 242)POSITION REF may be positive or negative, giving a choice of clock/anti-clockwise search. This is used if the speed direction changes, and shaft reversal is undesirable. To provide smoother stopping it may be helpful to use position references that include extra complete turns. The block waits for approximately 400mS before activating to allow undisturbed speed traverse through zero. There are 2 hidden PINs which allow access to the position counter (e.g. with serial link). PIN 710 gives a running total. (4 counts per line in quadrature mode or 2 counts per line in single pulse train mode). PIN 711 Is a decimal number input in the range 1 to 30,000 which is usually sent by a host computer. This is used to divide the total position count so that the receiving host does not have to poll at a high rate. 6.10.9.2 SPINDLE ORIENTATE / Zero speed lock PIN 122 R SPINDLE ORIENTATE 122)ZERO SPEED LOCK 4 Sets the position control gain for zero speed shaft lock. R PARAMETER ZERO SPEED LOCK 122)ZERO SPEED LOCK 0.00 RANGE 0.00 to 100.00 DEFAULT 0.00 PIN 122 Note, If this value is non-zero, AND both speed demand and feedback are less than 117)ZERO INTLCK SPD% an encoder position control loop activates. The motor must have a bi-directional output shaft encoder. (Quadrature OR pulse and direction). When locked, the speed may exceed 117)ZERO INTLCK SPD% without losing the lock. Lock is only released by speed demand > 117)ZERO INTLCK SPD%. Suggested value 10.00. Increasing improves position response, excessive gain may cause position instability. See 6.1.9 CALIBRATION / Speed feedback type PIN 9 QUICK START. 6.10.9.3 SPINDLE ORIENTATE / Marker enable PIN 240 SPINDLE ORIENTATE 240)MARKER ENABLE 4 Enables the marker in order to determine spindle orientation. 240)MARKER ENABLE DISABLED PARAMETER MARKER ENABLE RANGE ENABLED or DISABLED DEFAULT DISABLED PIN 240 DISABLED turns off the spindle orientate function and the marker frequency monitor function. Note, 122)ZERO SPEED LOCK function will continue to work however stopping position is arbitary. 6.10.9.3.1 Marker specification The logic threshold levels for T15 ar 0 < 2V, 1 > 4V. The maximum input voltage is 50V. The minimum width specification for the marker is 10 uS. The precise point of reference is the rising edge of the marker. Various types of marker signal may be used with the system, but some types are less prone to noise than others. CHANGE PARAMETERS 119 1 rev Logic Threshold Type 1 Logic Threshold Type 2 Logic Threshold Type 3 Point of position measurement Point of position measurement Type 1 is the preferred marker signal. This is because for most of the time the signal is well away from the logic threshold and noise is very unlikely to cause a false marker reading. Types 2 and 3 however spend significant time near the logic threshold level, and therefore noise is more likely to produce a false marker reading. 6.10.9.4 SPINDLE ORIENTATE / Marker offset PIN 241 SPINDLE ORIENTATE 241)MARKER OFFSET 4 Used to offset an arbitrary marker to a defined position. 241)MARKER OFFSET 0 PARAMETER MARKER OFFSET RANGE +/- 15,000 Counts DEFAULT 0 PIN 241 Note. This offset is only added once at the commencement of orientation. It may be changed prior to the next orientation sequence without affecting the existing position. The sign of the offset determines the rotation direction when seeking the offset. The count value needed for any offset angle depends on the resolution of the feedback encoder and the type of encoder output. Quadrature encoders provide 4 counts per line. Single pulse and direction encoders provide 2 counts per line. E.g. Encoder has 3600 lines. Encoder type is QUADRATURE. This gives 3600 X 4 counts per rev = 14400. That is 14400/360 = 40 counts per degree of displacement. Hence if offset required is 56.8 degrees. Then enter counts of 56.8 X 40 = 2272. E.g. Encoder has 2048 lines. Encoder type is SINGLE LINE PLUS DIRECTION. This gives 2048 X 2 counts per rev = 4096. That is 4096/360 =11.378 counts per degree of displacement. Hence if offset required is 56.8 degrees. Then enter counts of 56.8 X 11.378 = 646. If the encoder is mounted on the motor shaft, but the spindle that requires orientation is connected to the motor via a gearbox such that the motor shaft and hence encoder is rotating faster than the spindle. Then the number of counts per rev of the spindle will be increased by a factor equal to the gear box ratio. E. g. Counts per degree at the motor shaft = 40. Reduction gearbox ratio = 3 : 1. Then counts per degree at the spindle =120. Note. In systems with reduction gearboxes, the motor encoder will provide more than one marker per rev of the spindle. There are 2 ways of overcoming this problem. 120 CHANGE PARAMETERS For non integer ratio and integer ratio gearing 1) Provide another marker which only occurs once per rev of the spindle. E.g. A magnetic pick up sensing a tab on the spindle. MARKER ENABLE OR For integer ratio gearing only 2) Use 240)MARKER ENABLE parameter to select the required marker at the appropriate position. This may be achieved by using a microswitch that operates while the required marker is present but not with the other markers. Desired marker 6.10.9.5 SPINDLE ORIENTATE / Position reference PIN 242 SPINDLE ORIENTATE 242)POSITION REF 4 Used to enter POSITION REF referred to MARKER OFFSET 242)POSITION REF 0 PARAMETER POSITION REF RANGE +/- 30,000 counts DEFAULT 0 counts PIN 242 Note. 242)POSITION REF may be adjusted at any time. If the system is above the zero lock threshold then changing this value has no effect. It may be changed as many times as required whilst operating in the zero speed lock region. 6.10.9.6 SPINDLE ORIENTATE / Marker frequency monitor PIN 243 SPINDLE ORIENTATE 4 243)MARKER FREQ MON Monitors the frequency of the marker pulse on T15. 243)MARKER FREQ MON 0.0 HZ PARAMETER MARKER FREQ MON RANGE 20.00 to 655.37 HZ DEFAULT 0.0 HZ PIN 243 This output function measures the period between successive marker pulses to accurately compute the output frequency. This window has a branch hopping facility. Note. For frequencies below 20 Hz, the monitor will display a random reading. 6.10.9.7 SPINDLE ORIENTATE / In position flag PIN 244 SPINDLE ORIENTATE 244)IN POSITION FLAG 4 This goes high if the position error is approx <20 counts. 244)IN POSITION FLAG LOW PARAMETER IN POSITION FLAG RANGE LOW or HIGH DEFAULT LOW PIN 244 Note. The flag may oscillate whilst the loop is settling if 122)ZERO SPEED LOCK (gain) is high enough to cause overshoot. This window has a branch hopping facility. DIAGNOSTICS 121 7 DIAGNOSTICS 7 DIAGNOSTICS ...................................................................................... 121 7.1 7.2 7.3 7.4 7.5 7.6 7.7 7.8 See also DIAGNOSTICS / SPEED LOOP MONITOR............................................................................... DIAGNOSTICS / ARM I LOOP MONITOR ............................................................................... DIAGNOSTICS / FLD I LOOP MONITOR ................................................................................ DIAGNOSTICS / ANALOG IO MONITOR ................................................................................ DIAGNOSTICS / DIGITAL IO MONITOR ................................................................................ DIAGNOSTICS / BLOCK OP MONITOR ................................................................................. DIAGNOSTICS / EL1/2/3 RMS MON PIN 169 ....................................................................... DIAGNOSTICS / DC KILOWATTS MON PIN 170 .................................................................... 5.1.6 Default % DIAGNOSTIC summary windows. DIAGNOSTICS menu PIN number range 123 to 170 The diagnostics menu provides a monitoring facility for all the main drive parameters. R ENTRY MENU DIAGNOSTICS LEVEL 1 2 If an adjustable parameter has been configured to be a GOTO target, its value is then a monitor of the source and is no longer adjustable. The unit consists of functional software blocks that each perform a given task within the overall block diagram. Some of these blocks are permanently connected e. g. armature current loop. Application blocks however are only functioning when their output is connected using a GOTO. See 13.3.1 Key features of GOTO window. The diagnostics menu is provided for monitoring the important parameters within the permanently functioning blocks, as listed in this menu. The Application and some other block outputs are all gathered together in the BLOCK OP MONITOR. For most blocks, the monitoring points are also found within the block menus themselves. Also there are some less important parameters that may be useful to monitor, that may be found in their block menu, rather than the diagnostics menu. R DIAGNOSTICS 2 170)DC KILOWATTS MON R DIAGNOSTICS SPEED LOOP MONITOR 2 3 R DIAGNOSTICS ARM I LOOP MONITOR 2 3 R DIAGNOSTICS FLD I LOOP MONITOR 2 3 R DIAGNOSTICS ANALOG IO MONITOR 2 3 R DIAGNOSTICS DIGITAL IO MONITOR 2 3 R DIAGNOSTICS BLOCK OP MONITOR 122 125 128 130 131 133 134 134 2 3 2 R DIAGNOSTICS 169)EL1/2/3 RMS MON Note. When you travel right by tapping the right key in the diagnostics menu you will eventually come to the end of a branch which will display the parameter to be monitored. The UP key hops to the end of the branch above, and the DOWN key hops to the end of the branch below giving rapid access to the monitored parameters within each sub-menu. It also provides a reminder that you are not in a parameter changing menu, where this branch hopping feature is not available. 122 DIAGNOSTICS 7 . 1 DIAGNOSTICS / SPEED LOOP MONITOR R SPEED LOOP MONITOR 131)SPEED FBK MON 3 R SPEED LOOP MONITOR 3 123)TOTAL SPD REF MN PIN number R DIAGNOSTICS SPEED LOOP MONITOR 2 3 range 123 to 132 SPEED LOOP MONITOR 3 124)SPEED DEMAND MON This menu allows monitoring of the parameters associated with the the speed loop. The feedback sources can also be read in engineering units which alleviates the need to undertake difficult readings with a voltmeter during commissioning. SPEED LOOP MONITOR 125)SPEED ERROR MON R For convenience, the armature voltage is also shown as a % of max rated value in a dedicated window. SPEED LOOP MONITOR 128)BACK EMF % MON 28)AUTOMATIC RESET 7.1.1 SPEED LOOP MONITOR / Total speed reference monitor PIN 123 SPEED LOOP MONITOR 3 123)TOTAL SPD REF MN Shows the % value of the total speed reference before the STOP RAMP BLOCK. 3 SPEED LOOP MONITOR 3 127)ARM VOLTS % MON The armature volts, tacho volts and encoder rpm monitors all function continuously, irrespective of which is the source of feedback. These signal channels may be utilised for tasks other than speed feedback. R SPEED LOOP MONITOR 126)ARM VOLTS MON 3 3 4 R SPEED LOOP MONITOR 3 129)TACHO VOLTS MON 29)EXTERNAL RESET 4 R SPEED LOOP MONITOR 130)MOTOR RPM MON 29)EXTERNAL RESET 3 4 R SPEED LOOP MONITOR 3 132)ENCODER RPM MON 29)EXTERNAL RESET 4 R 123)TOTAL SPD REF MN 0.00% PARAMETER TOTAL SPD REF MN RANGE +/-300.00% This parameter is a summation of all possible speed references including the RUN MODE RAMP. Note that the RUN MODE RAMP may be active when the unit is in stop mode. This feature allows cascaded systems to function even if a member of the system is stopped. See 6.2 CHANGE PARAMETERS / RUN MODE RAMPS. PIN 123 DIAGNOSTICS 123 7.1.2 SPEED LOOP MONITOR / Speed demand monitor PIN 124 SPEED LOOP MONITOR 3 124)SPEED DEMAND MON Shows the % value of the total speed demand after the STOP RAMP BLOCK 124)SPEED DEMAND MON 0.00% PARAMETER SPEED DEMAND MON RANGE +/-300.00% PIN 124 7.1.3 SPEED LOOP MONITOR / Speed error monitor PIN 125 SPEED LOOP MONITOR 125)SPEED ERROR MON 3 Shows the value of the speed error as a % of full scale. 125)SPEED ERROR MON 0.00% PARAMETER SPEED ERROR MON RANGE +/-300.00% PIN 125 7.1.4 SPEED LOOP MONITOR / Armature volts monitor PIN 126 R SPEED LOOP MONITOR 126)ARM VOLTS MON 3 Shows the average DC armature voltage independently of feedback type. 126)ARM VOLTS MON 0.0 Volts R PARAMETER ARM VOLTS MON RANGE +/- 1250.0 Volts PIN 126 7.1.5 SPEED LOOP MONITOR / Armature volts % monitor PIN 127 SPEED LOOP MONITOR 3 127)ARM VOLTS % MON Shows the value of the average DC arm voltage as a % of desired max arm volts. 127)ARM VOLTS % MON 0.00% PARAMETER ARM VOLTS % MON RANGE +/-300.00% PIN 127 Note. The 100% level is equivalent to 18)RATED ARM VOLTS 7.1.6 SPEED LOOP MONITOR / Back emf % monitor PIN 128 SPEED LOOP MONITOR 128)BACK EMF % MON 3 Shows the value of the average DC back emf as a % of the desired max back emf. Note. Back EMF = AVF – IR drop 128)BACK EMF % MON 0.00% PARAMETER BACK EMF % MON RANGE +/-300.00% PIN 128 124 DIAGNOSTICS 7.1.7 SPEED LOOP MONITOR / Tachogenerator volts monitor PIN 129 R SPEED LOOP MONITOR 3 129)TACHO VOLTS MON Shows the average DC tachogenerator voltage independently of feedback type. R 129)TACHO VOLTS MON 0.00 Volts PARAMETER TACH VOLTS MON RANGE +/- 220.00 Volts PIN 129 Note. There is an unfiltered % version of this value on hidden PIN 716. 7.1.8 SPEED LOOP MONITOR / Motor RPM monitor PIN 130 R SPEED LOOP MONITOR 130)MOTOR RPM MON 3 Shows the value of the revs per minute of the motor. R 130)MOTOR RPM MON 0 RPM PARAMETER MOTOR RPM MON RANGE +/- 7500 RPM PIN 130 Note. 130)MOTOR RPM MON will only be accurate when 1) In AVF feedback mode 18)RATED ARM VOLTS corresponds to 6)DESIRED MAX RPM, for 100% speed. 2) In ANALOG TACHO feedback mode 8)MAX TACHO VOLTS corresponds to 6)DESIRED MAX RPM, for 100% speed. Note. There is an unfiltered version of this value on hidden PIN 717. 7.1.9 SPEED LOOP MONITOR / Encoder RPM monitor PIN 132 There is a % equivalent of this signal on hidden pin 709)MOTOR RPM %. R SPEED LOOP MONITOR 3 132)ENCODER RPM MON Shows the value of the encoder revs per minute independently of feedback type. R 132)ENCODER RPM MON 0 RPM PARAMETER ENCODER RPM MON RANGE +/- 7500 RPM PIN 132 See also 6.1.10.3 ENCODER SCALING / Motor / encoder speed ratio PIN 12. 7.1.10 SPEED LOOP MONITOR / Speed feedback % monitor PIN 131 R SPEED LOOP MONITOR 131)SPEED FBK % MON 3 Shows the value of the speed feedback as a % of full scale. R 131)SPEED FBK % MON 0.00% PARAMETER SPEED FBK % MON Note. There is an unfiltered version of this value on hidden PIN 715. RANGE +/-300.00% PIN 131 DIAGNOSTICS 125 7 . 2 DIAGNOSTICS / ARM I LOOP MONITOR PIN number range 133 to 141 ARM I LOOP MONITOR 3 141)AT CURRENT LIMIT R ARM I LOOP MONITOR 3 133)ARM CUR DEM MON This menu allows monitoring of the parameters associated with the inputs to the current loop. R ARM I LOOP MONITOR 134)ARM CUR % MON The feedback current can be read in amps which alleviates the need to undertake difficult readings with an ammeter during commissioning. R ARM I LOOP MONITOR 3 135)ARM CUR AMPS MON R DIAGNOSTICS ARM I LOOP MONITOR 2 3 For convenience the armature current is also shown as a % of max rated value in a dedicated window. 3 ARM I LOOP MONITOR 3 136)UPPER CUR LIM MN ARM I LOOP MONITOR 3 137)LOWER CUR LIM MN R ARM I LOOP MONITOR 3 138)ACTUAL UPPER LIM R ARM I LOOP MONITOR 3 139)ACTUAL LOWER LIM ARM I LOOP MONITOR 3 140)O/LOAD LIMIT MON 126 DIAGNOSTICS 7.2.1 ARM I LOOP MONITOR / Armature current demand monitor PIN 133 R ARM I LOOP MONITOR 3 133)ARM CUR DEM MON Shows the value of the total armature current demand as a % of full scale. R 133)ARM CUR DEM MON 0.00% PARAMETER ARM CUR DEM MON RANGE +/-150.00% PIN 133 Note. There is a hidden PIN 718 which contains an unfiltered version of current demand. 7.2.2 ARM I LOOP MONITOR / Armature current % monitor PIN 134 R ARM I LOOP MONITOR 134)ARM CUR % MON 3 Shows the value of the average DC arm current as a % of rated arm amps. R 134)ARM CUR % MON 0.00% PARAMETER ARM CUR % MON RANGE +/-150.00% PIN 134 Note. There is an unfiltered version of this value on hidden PIN 719. 7.2.3 ARM I LOOP MONITOR / Armature current amps monitor PIN 135 R ARM I LOOP MONITOR 3 135)ARM CUR AMPS MON Shows the value of the average DC armature current in amps. R 135)ARM CUR AMPS MON 0.0 AMPS PARAMETER ARM CUR AMPS MON RANGE +/-3000.0 AMPS PIN 135 7.2.4 ARM I LOOP MONITOR / Upper current limit monitor PIN 136 ARM I LOOP MONITOR 3 136)UPPER CUR LIM MN Shows the % value of the scaled upper current limit in the current clamp block. 136)UPPER CUR LIM MN 0.00% PARAMETER UPPER CUR LIM MN RANGE +/- 150.00% PIN 136 This is the last stage clamp in the block diagram. See 6.8.1 CURRENT CONTROL / Block diagram. 7.2.5 ARM I LOOP MONITOR / Lower current limit monitor PIN 137 ARM I LOOP MONITOR 3 137)LOWER CUR LIM MN Shows the % value of the scaled lower current limit in the current clamp block. 137)LOWER CUR LIM MN 0.00% PARAMETER LOWER CUR LIM MN RANGE +/- 150.00% This is the last stage clamp in the block diagram. See 6.8.1 CURRENT CONTROL / Block diagram. PIN 137 DIAGNOSTICS 127 7.2.6 ARM I LOOP MONITOR / Actual prevailing upper/ lower current limits PINs 138 / 139 R ARM I LOOP MONITOR 3 138)ACTUAL UPPER LIM Shows the % value of the prevailing upper limit in the current clamp block. R ARM I LOOP MONITOR 3 139)ACTUAL LOWER LIM Shows the % value of the prevailing lower limit in the current clamp block. R 138)ACTUAL UPPER LIM 0.00% PARAMETER ACTUAL UPPER LIM R RANGE +/- 150.00% PIN 138 139)ACTUAL LOWER LIM 0.00% PARAMETER ACTUAL LOWER LIM RANGE +/- 150.00% PIN 139 The lowest of all clamps is the prevailing source. See 6.8.1 CURRENT CONTROL / Block diagram. 7.2.7 ARM I LOOP MONITOR / Overload limit monitor PIN 140 ARM I LOOP MONITOR 3 140)O/LOAD LIMIT MON Shows the prevailing % value of the overload limit in the current clamp block. 140)O/LOAD LIMIT MON 0.00% PARAMETER O/LOAD LIMIT MON RANGE 0.00 to 150.00% PIN 140 7.2.8 ARM I LOOP MONITOR / At current limit flag PIN 141 ARM I LOOP MONITOR 3 141)AT CURRENT LIMIT Shows if the armature current has reached the prevailing current limit clamp. 141)AT CURRENT LIMIT LOW PARAMETER AT CURRENT LIMIT RANGE HIGH (at limit) or LOW PIN 141 128 DIAGNOSTICS 7.3 DIAGNOSTICS / FLD I LOOP MONITOR FLD I LOOP MONITOR 147)FIELD ACTIVE MON PIN number range 143-147. R DIAGNOSTICS FLD I LOOP MONITOR 2 3 This menu allows monitoring of the parameters associated with the field control loop. The motor field current can be read in amps which alleviates the need to undertake difficult readings with an ammeter during commissioning 3 R FLD I LOOP MONITOR 3 143)FIELD DEMAND MON R FLD I LOOP MONITOR 144)FIELD CUR % MON R FLD I LOOP MONITOR 3 145)FLD CUR AMPS MON 3 For convenience the field current is also shown as a % of max rated value in a dedicated window. FLD I LOOP MONITOR 3 146)ANGLE OF ADVANCE 7.3.1 FLD I LOOP MONITOR / Field demand monitor PIN 143 R FLD I LOOP MONITOR 3 143)FIELD DEMAND MON Shows the value of the field current demand as a % of full scale. R 143)FIELD DEMAND MON 0.00% PARAMETER FIELD DEMAND MON RANGE 0.00 to 100.00% PIN 143 7.3.2 FLD I LOOP MONITOR / Field current % monitor PIN 144 R FLD I LOOP MONITOR 144)FIELD CUR % MON 3 Shows the value of the average DC motor field current as a % of rated field amps. R 144)FIELD CUR % MON 0.00 % PARAMETER FIELD CUR % MON RANGE 0.00 to 125.00% PIN 144 7.3.3 FLD I LOOP MONITOR / Field current amps monitor PIN 145 R FLD I LOOP MONITOR 3 145)FLD CUR AMPS MON Shows the value of the average DC motor field current in amps. R 145)FLD CUR AMPS MON 0.00 AMPS PARAMETER FLD CUR AMPS MON RANGE 0.00 to 50.00 AMPS PIN 145 DIAGNOSTICS 129 7.3.4 FLD I LOOP MONITOR / Field firing angle of advance monitor PIN 146 FLD I LOOP MONITOR 3 146)ANGLE OF ADVANCE Shows the value of the field bridge firing angle of advance in degrees. 146)ANGLE OF ADVANCE 0 DEG PARAMETER ANGLE OF ADVANCE RANGE 0 to 180 DEG PIN 146 Note this parameter is only updated if the field is enabled. The convention used is 0 degrees is no firing and 180 degrees is full firing. The formula for calculating the field volts is as follows Volts = 0.45 * AC supply volts *(1-cos alpha). (Firing angle of advance (degrees) = alpha) Field volts table. Note. The result is rounded down then reduced by 1 volt due to the drop in the field bridge. Firing angle (deg) AC supply 200 AC supply 240 AC supply 380 AC supply 415 AC supply 480 25 Minimum field Minimum field Minimum field Minimum field Minimum field 30 12 14 22 24 28 40 20 24 39 42 49 50 31 37 60 65 76 60 44 53 84 92 107 70 58 70 111 121 141 80 73 88 140 154 177 90 89 107 170 185 215 100 104 125 199 218 252 110 119 143 228 249 288 120 134 161 255 279 324 130 146 176 279 305 353 140 157 189 300 328 380 150 166 200 318 347 402 160 173 208 330 361 416 170 177 213 338 369 427 177 179 215 341 372 430 After about 150 degrees there is only about 5% more volts available. This is important to realise when operating in the current control mode. In order to maintain the correct current, the volts must be able to move higher as the field warms up and the field winding resistance increases. Also it is necessary to allow a margin for supply tolerance. This means that when the field is at its highest operating temperature the firing angle should not normally exceed 150 degrees to be sure of preventing saturation of the control loop. A typical field winding resistance will change by about 20% between cold and running temperature. Hence the maximum cold firing angle will be at about 125 degrees. If the field loop does saturate, then the speed loop will have to work harder to maintain control. In AVF (Armature voltage feedback) systems the speed holding may be less accurate. 7.3.5 FLD I LOOP MONITOR / Field active monitor PIN 147 FLD I LOOP MONITOR 147)FIELD ACTIVE MON 3 Shows whether the field output is active (ENABLED) or inactive (DISABLED). 147)FIELD ACTIVE MON DISABLED PARAMETER FIELD ACTIVE MON RANGE ENABLED OR DISABLED PIN 147 130 DIAGNOSTICS 7.4 DIAGNOSTICS / ANALOG IO MONITOR PIN number range 150 -161 ANALOG IO MONITOR 161)AOP3 (T12) MON This menu allows monitoring of the analogue input and output functions. R DIAGNOSTICS ANALOG IO MONITOR 2 3 Analogue inputs are UIP2 to UIP9. The UIP number corresponds to its terminal number. (UIP1 is used internally and not available on a terminal). UIP2 to 9 are universal inputs and can be used as digital and/or analogue inputs. The analogue value appears in this menu and the digital logic level will simultaneously appear in the digital IO menu. 3 R ANALOG IO MONITOR 150)UIP2 (T2) MON 3 R ANALOG IO MONITOR 151)UIP3 (T3) MON 3 R ANALOG IO MONITOR 152)UIP4 (T4) MON 3 Note that the analogue output monitor for AOP1/2/3 shows the value written to that output. If the output is overloaded or shorted then the value shown will not agree with the actual output. ANALOG IO MONITOR 3 153 to160)UIP5 to11 MON The PL/X possesses a very useful commissioning tool, 260)SCOPE OP SELECT. When enabled, this automatically configures AOP3 on terminal 12 as an oscilloscope probe output. See 13.5.3 ANALOG OUTPUTS / Scope output select PIN 260. The output is automatically connected to whatever parameter is being displayed, and reconnected to its original source after the function is no longer enabled. 7.4.1 ANALOG IO MONITOR / UIP2 to 9 analogue input monitor PINs 150 to 157 R ANALOG IO MONITOR 150)UIP2 (T2) MON 3 Shows the analogue voltage for the universal inputs 2 to 9. R 150)UIP2 (T2) MON 0.000 VOLTS PARAMETER UIPX (TX) MON RANGE +/-30.800 volts PINs 150 - 7 Note. There is a separate window for each input. The PINs are 150 to 157 for UIP2 to UIP9 The monitoring range depends on the UIP range selected. +/-5, +/-10, +/-20, or +/-30V Range for 5V is +/- 5.3V Absolute accuracy worst case 0.4%, typically 0.1%. Range for 10V is +/-10.4V Absolute accuracy worst case 0.4%, typically 0.1%. Range for 20V is +/- 20.6V Absolute accuracy worst case 4%, typically 1%. Range for 30V is +/- 30.8V Absolute accuracy worst case 4%, typically 1%. 7.4.2 ANALOG IO MONITOR / AOP1/2/3 analogue output monitor PINs 159, 160, 161 ANALOG IO MONITOR 159)AOP1 (T10) MON 3 Shows the analogue output voltage for AOP1/2/3 (PIN numbers 159, 160, 161) 159)AOP1 (T10) MON 0.000 VOLTS PARAMETER AOPX (TXX) MON RANGE +/-11.300 volts PINs 159-161 Note. The analogue output monitor for AOP1/2/3 shows the value written to that output. If the output is overloaded or shorted then the value shown will not agree with the actual output. DIAGNOSTICS 7.5 131 DIAGNOSTICS / DIGITAL IO MONITOR DIGITAL IO MONITOR PIN number range 162-169 DIAGNOSTICS DIGITAL IO MONITOR R R 169)RUNNING MODE MON 2 3 R 3 DIGITAL IO MONITOR 162)UIP 2 3 4 5 6 7 8 9 3 DIGITAL IO MONITOR 3 163)DIP 1 2 3 4 1 2 3 4 DIO This menu allows monitoring of the digital input and output functions. Universal inputs are UIP2 to UIP9. (UIP1 is used internally and not available on a terminal). DIGITAL IO MONITOR 3 164)DOP 1 2 3 T RJ SC C I P UIP2 to 9 are universal inputs and can be used as digital and/or analogue inputs. The digital logic level always appears in this menu and the analogue value will simultaneously appear in the analogue IO monitor menu. The logic inputs are arranged in groups and can be viewed together in one window. DIGITAL IO MONITOR 3 165)+ARM BRIDGE FLAG R DIGITAL IO MONITOR 166)DRIVE START FLAG 3 R DIGITAL IO MONITOR 167)DRIVE RUN FLAG 3 R 162)UIP 2 3 4 5 6 7 8 9 00000000 7.5.1 DIGITAL IO MONITOR / UIP2 to 9 digital input monitor PIN 162 R DIGITAL IO MONITOR 162)UIP 2 3 4 5 6 7 8 9 3 Shows the digital logic level for UIP2 to 9. Set the logic threshold in the config menu. PARAMETER UIP 2 3 4 5 6 7 8 9 RANGE 0/1 for each UIP (0 = low) PIN 162 Note. If this value is connected to another PIN then the pure binary to decimal equivalent is used. (Most significant bit on the right, least significant on the left). 7.5.2 DIGITAL IO MONITOR / DIP1 to 4 and DIO1 to 4 digital input monitor PIN 163 R DIGITAL IO MONITOR 163)DIP 1 2 3 4 1 2 3 4 3 DIO Shows the digital logic level present at the DIP1-4 and DIO1-4 terminals. R 163)DIP 1 2 3 4 1 2 3 4 DIO 00000000 PARAMETER DIP 1 2 3 4 1 2 3 4 DIO RANGE 0/1 for each IP (0 = low) Note. If this value is connected to another PIN then the pure binary to decimal equivalent is used. (Most significant bit on the right, least significant on the left). PIN 163 132 DIAGNOSTICS 7.5.3 DIGITAL IO MONITOR / DOP1 to 3 + Control IPs digital monitor PIN 164 R DIGITAL IO MONITOR 3 164)DOP 1 2 3 T RJ SC C I P Shows the digital logic level for DOP1 to 3 and Therm, Run, Jog, Start, Cstop R 164)DOP 1 2 3 T RJ SC C I P 00000000 PARAMETER DOP 1 2 3 T RJ SC C I P RANGE 0/1 for 8 signals (0=low) PIN 164 Note. The DOP value shown is the intended value. If the DOP is shorted, a 1 still shows as a 1. Note. If this value is connected to another PIN then the pure binary to decimal equivalent is used. (Most significant bit on the right, least significant on the left). 7.5.4 DIGITAL IO MONITOR / +Armature bridge flag PIN 165 DIGITAL IO MONITOR 3 165)+ARM BRIDGE FLAG Shows whether the positive or negative armature bridge is selected. 165)+ARM BRIDGE FLAG LOW PARAMETER +ARM BRIDGE FLAG RANGE HIGH+ bridge, LOW-bridge PIN 165 7.5.5 DIGITAL IO MONITOR / Drive start flag PIN 166 R DIGITAL IO MONITOR 166)DRIVE START FLAG 3 Shows the status of the internal drive START which may be defeated by alarms R 166)DRIVE START FLAG LOW PARAMETER DRIVE START FLAG RANGE HIGH (on) or LOW (off) PIN 166 7.5.6 DIGITAL IO MONITOR / Drive run flag PIN 167 R DIGITAL IO MONITOR 167)DRIVE RUN FLAG 3 Shows that a command to RUN has been issued to the current loop. R 167)DRIVE RUN FLAG LOW PARAMETER DRIVE RUN FLAG RANGE HIGH (Run) or LOW (Stop) PIN 167 7.5.7 DIGITAL IO MONITOR / Internal running mode monitor PIN 168 R DIGITAL IO MONITOR 3 168)RUNNING MODE MON Shows mode selected by START (T33), JOG (T32) and MODE SELECT (PIN 42) R 168)RUNNING MODE MON STOP PARAMETER RUNNING MODE RANGE 1 of 7 modes displayed Note. MODE SELECT (PIN42) has a default connection from T15. The 7 modes (with their numeric codes) displayed are (0 or 1) STOP (5) JOG SPEED 2 (2) RUN (6) SLACK SPEED 1 (7) SLACK SPEED 2 (4) JOG SPEED 1 (3) CRAWL PIN 168 DIAGNOSTICS 133 7.6 DIAGNOSTICS / BLOCK OP MONITOR DIAGNOSTICS BLOCK OP MONITOR 2 3 BLOCK OP MONITOR 3 560)LATCH OUTPUT MON BLOCK OP MONITOR 3 RESERVED FOR FUTURE BLOCK OP MONITOR 21)RAMP OP MONITOR 3 BLOCK OP MONITOR 45)MP OP MONITOR 3 BLOCK OP MONITOR 3 192)REF XC MASTER MN BLOCK OP MONITOR 568)FILTER1 OP MON BLOCK OP MONITOR 573)FILTER2 OP MON BLOCK OP MONITOR 578)COUNTER COUNT 3 BLOCK OP MONITOR 401)SUMMER1 OP MON 3 BLOCK OP MONITOR 415)SUMMER2 OP MON 3 BLOCK OP MONITOR 429)PID1 OP MONITOR 3 BLOCK OP MONITOR 452)PID2 OP MONITOR 3 3 3 BLOCK OP MONITOR 3 583)TMR ELAPSED TIME BLOCK OP MONITOR 3 RESERVED FOR FUTURE BLOCK OP MONITOR 3 475)PROFILE Y OP MON BLOCK OP MONITOR 3 RESERVED FOR FUTURE BLOCK OP MONITOR 3 RESERVED FOR FUTURE BLOCK OP MONITOR 3 483)DIAMETER OP MON BLOCK OP MONITOR 3 494)TOTAL TENSION MN BLOCK OP MONITOR 3 RESERVED FOR FUTURE BLOCK OP MONITOR 3 500)TORQUE DEMAND MN BLOCK OP MONITOR 3 RESERVED FOR FUTURE BLOCK OP MONITOR 523)PRESET OP MON BLOCK OP MONITOR 3 RESERVED FOR FUTURE 3 134 DIAGNOSTICS 7.6.1 BLOCK OP MONITOR / General description The majority of the functional blocks within the system are also provided with an output monitor in the block menu listing. It is normally the first window. The outputs are contained in each block listing because it is convenient to have the output monitor adjacent to the relevant adjustment parameters when programming. In addition all the block outputs are grouped together in this menu for rapid sequential access if required. The block output monitor order is the same as the order of the blocks in the BLOCK OP CONFIG configuration menu. See 13.12 CONFIGURATION / BLOCK OP CONFIG. 7.7 DIAGNOSTICS / EL1/2/3 RMS MON R DIAGNOSTICS 169)EL1/2/3 RMS MON PIN 169 2 Shows the rms AC supply voltage applied to the EL1, EL2, EL3 terminals. (+/-5%) R 169)EL1/2/3 RMS MON 0.0V PARAMETER EL1/2/3 RMS MON RANGE 0.0 to 1000.0 V PIN 169 Note. With no applied voltage there may be a small offset. This does not affect the actual reading. 7.8 DIAGNOSTICS / DC KILOWATTS MON R DIAGNOSTICS 2 170)DC KILOWATTS MON Shows the output power at the drive A+/Aterminals in Kilowatts. PIN 170 R 170)DC KILOWATTS MON 0.0 PARAMETER DC KILOWATTS MON RANGE +/-3000.0 KW PIN 170 Note. A negative output power shows that the PL/X is regenerating into the AC supply. The power available at the motor shaft will depend on the motor efficiency. (Typically 90 to 95%). To convert Kilowatts to Horsepower multiply by a scaling factor of 1.34. Note for the PL/XD stack driver,which may be used in applications in excess of 3000Kw then this parameter is clamped at 3000Kw. This equates approx. to 7500A at 400V armature or 4000A at 750V armature. See separate PL/XD Stack Driver manual for further details of this unit. MOTOR DRIVE ALARMS 135 8 MOTOR DRIVE ALARMS 8 MOTOR DRIVE ALARMS........................................................................... 135 8.1 MOTOR DRIVE ALARMS menu .......................................................................................... 8.1.1 MOTOR DRIVE ALARMS / Speed feedback mismatch trip enable PIN 171 ................................. 8.1.2 MOTOR DRIVE ALARMS / Speed feedback mismatch tolerance PIN 172 ................................... 8.1.3 MOTOR DRIVE ALARMS / Field loss trip enable PIN 173 ...................................................... 8.1.4 MOTOR DRIVE ALARMS / Digital OP short circuit trip enable PIN 174 ..................................... 8.1.5 MOTOR DRIVE ALARMS / Missing pulse trip enable PIN 175.................................................. 8.1.6 MOTOR DRIVE ALARMS / Reference exchange trip enable PIN 176......................................... 8.1.7 MOTOR DRIVE ALARMS / Overspeed delay time PIN 177 ..................................................... 8.1.8 MOTOR DRIVE ALARMS / STALL TRIP MENU ...................................................................... 8.1.9 MOTOR DRIVE ALARMS / Active and stored trip monitors PINS 181 / 182 ................................ 8.1.10 MOTOR DRIVE ALARMS / External trip reset enable PIN 183 ............................................... 8.1.11 MOTOR DRIVE ALARMS / DRIVE TRIP MESSAGE ................................................................. 136 137 139 139 139 140 140 140 141 142 143 143 136 8.1 MOTOR DRIVE ALARMS menu MOTOR DRIVE ALARMS R MOTOR DRIVE ALARMS DRIVE TRIP MESSAGE 2 3 R MOTOR DRIVE ALARMS 171)SPD TRIP ENABLE 2 MOTOR DRIVE ALARMS 172)SPEED TRIP TOL 2 MOTOR DRIVE ALARMS 173)FLD LOSS TRIP EN 2 PIN number range 171 to 183 R ENTRY MENU LEVEL 1 MOTOR DRIVE ALARMS 2 WARNING. All these alarms are generated with semiconductor electronics. Local safety codes may mandate electro-mechanical alarm systems. All alarms must be tested in the final application prior to use. The manufacturer and suppliers of the PL/X are not responsible for system safety. R There are 16 alarms that continuously monitor important parameters of the motor drive system. 10 of the alarms are permanently enabled and 6 of the alarms can be enabled or disabled using this menu. It also monitors the alarm status. MOTOR DRIVE ALARMS 2 174)DOP SCCT TRIP EN If any enabled alarm is triggered it is then latched causing the drive to shut down and the main contactor to be de-energised. MOTOR DRIVE ALARMS 175)MISSING PULSE EN 2 If the alarm has been disabled then it will not be latched and will not affect the operation of the drive, although it can still be monitored. MOTOR DRIVE ALARMS 176)REF EXCH TRIP EN 2 If 171)SPEED TRIP ENABLE is disabled, then an automatic switch to AVF is implemented for tacho and/or encoder feedback. MOTOR DRIVE ALARMS 2 177)OVERSPEED DELAY There are 3 monitoring functions for all 16 alarms. 1) An active monitor prior to the latch 2) A monitor of the latched status of the alarm. 3) A displayed message showing which alarm caused the drive to shut down. The displayed message will automatically appear whenever the drive is running, and can be removed from the display by tapping the left key or starting the drive. It may be re-examined using the DRIVE TRIP MESSAGE menu. The message will be memorised if the control supply is removed. R MOTOR DRIVE ALARMS STALL TRIP MENU 2 3 MOTOR DRIVE ALARMS 181)ACTIVE TRIP MON 2 MOTOR DRIVE ALARMS 182)STORED TRIP MON 2 The PL/X alarms have a delay timer associated with MOTOR DRIVE ALARMS 2 them such that they only become latched if the fault 183)EXT TRIP RESET condition persists for the whole of the delay period. Values of this delay period are given for the individual alarms. The quoted times are typical since the delay is implemented in microprocessor "cycle time" units which vary with microprocessor loading. The arrival of the alarms prior to the trigger can be accessed for advance warning purposes using the active monitor window. There is a USER ALARM on hidden PIN 712. This may be connected by the user to any flag, to trip the drive. MOTOR DRIVE ALARMS Active trip monitor PIN 181 137 Stored trip monitor PIN 182 Motor Drive Alarms Alarm latching circuit Alarm sensing circuit Alarm enable selector High for Healthy OR Speed feedback trip enable PIN 171 Speed feedback mismatch tol PIN 172 Field loss trip enable PIN 173 Digital OP short cct trip enable PIN 174 Missing pulse trip enable PIN 175 Reference exchange trip enable PIN 176 Overspeed delay time PIN 177 PIN 698 Stall trip enable PIN 178 Stall current level PIN 179 Stall delay time PIN 180 Ext trip reset enable PIN 183 User Alarm. Hidden PIN 712 If an alarm is enabled, triggered and latched causing the drive to shut down, then after approximately a further 10mS no further alarms will be latched. Hence when the latched status of the alarms is monitored it is unlikely that more than 1 alarm will be latched. If however more than 1 is latched, then the first that arrived and initiated the shutdown can be determined from the DRIVE TRIP MESSAGE menu. 8.1.1 MOTOR DRIVE ALARMS / Speed feedback mismatch trip enable PIN 171 R MOTOR DRIVE ALARMS 2 171)SPD TRIP ENABLE Allows the speed feedback mismatch TRIP to be disabled. Feedback type Armature Voltage Tacho OR Encoder Tacho OR Encoder R PARAMETER SPD TRIP ENABLE Fault mode No faults normally possible. Armature voltage mode selected with field weakening enabled. Incorrect polarity and 172)SPEED TRIP TOL set to less than approx. 20% Incorrect polarity and 172)SPEED TRIP TOL set to greater than approx. 20% Feedback loss and 172)SPEED TRIP TOL exceeded Incorrect polarity Total feedback loss (<10% signal) With field weakening Partial feedback loss Encoder + Armature Volts OR Encoder + Tacho. combinational feedback Incorrect encoder and/or tacho polarity and 172)SPEED TRIP TOL set to less than approx. 20% Incorrect encoder and/or tacho polarity and 172)SPEED TRIP TOL set to greater than approx. 20% Encoder loss and 172)SPEED TRIP TOL exceeded. Encoder + Armature Volts OR Encoder + Tacho. Tacho loss and 172)SPEED TRIP TOL exceeded Incorrect encoder and/or tacho polarity Total encoder and/or tacho loss (<10% signal) Partial encoder and/or tacho loss Combinational feedback with field weakening Encoder + Armature voltage mode selected with field weakening enabled 171)SPD TRIP ENABLE ENABLED RANGE ENABLED OR DISABLED DEFAULT ENABLED PIN 171 Result if trip ENABLED Alarm suppressed Drive TRIP when field weakening region entered. Drive TRIP Result if trip DISABLED Alarm suppressed Drive TRIP when field weakening region entered. Automatic switch to AVF Drive TRIP Drive TRIP Drive TRIP Automatic switch to AVF Drive TRIP Drive TRIP when field weakening region entered. Protection limited to armature overvolts TRIP at minimum field current Drive TRIP Drive TRIP Drive TRIP when field weakening region entered. Protection limited to armature overvolts TRIP at minimum field current Automatic switch to AVF Drive TRIP Drive TRIP Drive TRIP Drive TRIP Automatic switch to AVF. (The speed mismatch may be small because the AVF component is still valid, hence 172)SPEED TRIP TOL must be set low enough to ensure an automatic switch occurs). Automatic switch to AVF Drive TRIP Drive TRIP when field weakening region entered. Protection limited to armature overvolts TRIP at minimum field current Drive TRIP when field weakening region entered. Drive TRIP Drive TRIP when field weakening region entered. Protection limited to armature overvolts TRIP at minimum field current Drive TRIP when field weakening region entered. 138 MOTOR DRIVE ALARMS A continuous comparison is made by the controller of the speed feedback and armature voltage feedback. If the difference is greater than the value set by 8.1.2 MOTOR DRIVE ALARMS / Speed feedback mismatch tolerance PIN 172, the alarm is operated. If armature voltage feedback is selected, then the speed feedback alarm is automatically suppressed. If 103)FLD WEAK ENABLE is enabled, then the controller suspends the speed-to-volts comparison in the fieldweakening region where the volts are clamped to a maximum value. Instead, when in the field-weakening region it checks whether the speed feedback is below 10% of full speed. If so, the alarm will operate. This means that it is not practical to start field weakening below 10% of full speed i.e. 10 : 1 range. The automatic switch to AVF feature allows continued running, although at the lower accuracy level of Armature Voltage feedback. The AVF remains the source of feedback until the next STOP / START sequence. The original feedback source is then restored and the alarm reset to allow auto AVF protection once again. It may be necessary to reduce the 172)SPEED TRIP TOL to about 15% if a smooth transfer to auto AVF is required. However, if the threshold is too low then an unwarranted transfer may occur during speed transients. There is a flag on hidden PIN 703 which warns of a speed mismatch after the normal delay time. This flag is reset by a STOP command. It is suggested that the flag is configured to a digital output to provide a warning that the auto AVF has occurred. The speed feedback mismatch alarm is normally triggered by failure of the feedback mechanism in one of the following ways:1) Disconnection of wiring. 2) Failure of the tachogenerator or encoder. 3) Failure of the tachogenerator or encoder mechanical coupling. Note. Alarm delay time: 0.4 secs to TRIP, 0.2 secs to automatic AVF switch. WARNING. The protection afforded in field weakening mode is limited to total feedback loss only. This is because the speed / AVF relationship is not maintained in field weakening mode. If a partial loss of feedback occurs the motor will run to excessive speed. When the field has been completely weakened and is at its minimum level, the armature overvoltage trip will come into operation. This may only occur at a dangerous speed. It is therefore recommended that a mechanical device be utilised to protect against this possibility. Correct setting of 110)MIN FIELD CURRENT should ensure that the overvolts TRIP occurs just above the maximum operating speed. MOTOR DRIVE ALARMS 139 8.1.2 MOTOR DRIVE ALARMS / Speed feedback mismatch tolerance PIN 172 MOTOR DRIVE ALARMS 2 172)SPEED TRIP TOL Sets the speed feedback mismatch trip tolerance. 172)SPEED TRIP TOL 50.00% PARAMETER SPEED TRIP TOL RANGE 0.00 to 100.00% DEFAULT 50.00% PIN 172 Note. If this value is set too low then spurious alarms may be caused by dynamic lags or non-linear effects. Note. Mismatched calibration between the AVF and tacho and/or encoder calibration erodes this margin. Note. There is a flag on hidden PIN 703 which warns of a speed mismatch after the normal delay time. This flag is reset by a start or jog command. 8.1.3 MOTOR DRIVE ALARMS / Field loss trip enable PIN 173 R MOTOR DRIVE ALARMS 2 173)FLD LOSS TRIP EN Allows the field failure alarm trip to be disabled. R PARAMETER FLD LOSS TRIP EN 173)FLD LOSS TRIP EN ENABLED RANGE ENABLED OR DISABLED DEFAULT ENABLED PIN 173 This alarm will normally trigger if the field current drops below 20% of rated current (5% in field weakening mode). Faulty operation of the field controller may also cause a motor field fail alarm. The most usual cause for the motor field alarm is an open circuit motor field. If this alarm occurs, the motor field connections should be checked and the field resistance measured. The resistance of the field = dataplate field volts / dataplate field current. WARNING. For rated field currents that are less than 25% of model rating the alarm threshold may be too low to trigger. The alarm must be tested. To overcome this problem, 4)RATED FIELD AMPS may be set to a higher level and 114)FIELD REFERENCE set lower. This has the effect of raising the threshold. E.g. Set 4)RATED FIELD AMPS to twice motor rating and 114)FIELD REFERENCE to 50.00%. If the PL/X is feeding a load which requires no field supply, for example a permanent magnet motor, then 99)FIELD ENABLE should be disabled. This automatically inhibits the field fail alarm. Alarm delay time: 2.00 secs. 8.1.4 MOTOR DRIVE ALARMS / Digital OP short circuit trip enable PIN 174 MOTOR DRIVE ALARMS 2 174)DOP SCCT TRIP EN Allows the digital output short circuit alarm trip to be enabled. 174)DOP SCCT TRIP EN DISABLED PARAMETER DOP SCCT TRIP EN RANGE ENABLED OR DISABLED DEFAULT DISABLED PIN 174 All digital outputs, and the 24V user supply have been designed to withstand a direct short circuit to 0V. If this happens, an internal alarm is raised. The remaining digital outputs are also disabled resulting in a low output. (Short circuit current is approximately 350mA for digital outputs and 400mA for +24V). If the alarm is disabled and the shorting fault has not interrupted the drive running normally, then the drive will continue to run. Note, if any digital output is shorted the +24V terminal T35 will remain active with a capability of 50mA. If the +24V output is shorted then all digital outputs will also go low and this alarm is activated. In this case if the +24V is being used to enable CSTOP or START then the drive will stop. 140 MOTOR DRIVE ALARMS 8.1.5 MOTOR DRIVE ALARMS / Missing pulse trip enable PIN 175 MOTOR DRIVE ALARMS 2 175)MISSING PULSE EN Allows the missing pulse alarm trip to be disabled. 175)MISSING PULSE EN ENABLED PARAMETER MISSING PULSE EN RANGE ENABLED OR DISABLED DEFAULT ENABLED PIN 175 The controller continuously monitors the armature current waveform. If a fault develops within the controller or the armature bridge, it is possible that one or more pulses may be missing from the normal 6-pulse armature current waveform. Although the controller may appear to function normally, the motor will experience excess heating due to the distorted current waveform. If at least one of the 6 current pulses is missing from the feedback waveform and the current demand is above 10% then the system will start counting missing pulses. The alarm will trigger after a sequential series of missing pulses lasting approximately 30 seconds. The most usual causes of missing pulse failure is either an open circuit main fuse, or a gate lead plug not properly re-connected after a stack maintenance procedure. Alarm delay time: approx 30 secs. 8.1.6 MOTOR DRIVE ALARMS / Reference exchange trip enable PIN 176 MOTOR DRIVE ALARMS 2 176)REF EXCH TRIP EN Enables the REFERENCE EXCHANGE data link alarm trip. 176)REF EXCH TRIP EN DISABLED PARAMETER REF EXCH TRIP EN RANGE ENABLED OR DISABLED DEFAULT DISABLED PIN 176 The drive can transmit and receive a speed reference or other parameter to or from another controller using the serial port. During the receive cycle it checks that the data received is valid. If the data is invalid then it raises an alarm. This is only applicable in the SLAVE mode of operation. See 10.3 RS232 PORT1 / PORT1 REF EXCHANGE The alarm flag is available on hidden PIN 701. Alarm delay time: 1.5 secs. 8.1.7 MOTOR DRIVE ALARMS / Overspeed delay time PIN 177 MOTOR DRIVE ALARMS 2 177)OVERSPEED DELAY Sets the the delay time before the overspeed alarm is latched. 177)OVERSPEED DELAY 5.0 SECS PARAMETER OVERSPEED DELAY See 8.1.11.7 DRIVE TRIP MESSAGE / Overspeed. RANGE 0.1 to 600.0 seconds DEFAULT 5.0 secs PIN 177 MOTOR DRIVE ALARMS 141 8.1.8 MOTOR DRIVE ALARMS / STALL TRIP MENU See also 6.8.3.1.2 How to get overloads greater MOTOR DRIVE ALARMS 2 STALL TRIP MENU 3 R R STALL TRIP MENU 3 180)STALL DELAY TIME R STALL TRIP MENU 178)STALL TRIP ENBL 3 3 R STALL TRIP MENU 179)STALL CUR LEVEL than 150% using 82)O/LOAD % TARGET. In this case 179)STALL CUR LEVEL must be set below 82)O/LOAD % TARGET for stall protection. 8.1.8.1 R STALL TRIP MENU / Stall trip enable PIN 178 STALL TRIP MENU 178)STALL TRIP ENBL 3 Allows the motor stall alarm trip to be enabled. R PARAMETER STALL TRIP ENBL 178)STALL TRIP ENBL ENABLED RANGE ENABLED OR DISABLED DEFAULT ENABLED PIN 178 A DC motor is generally not capable of carrying large amounts of current when stationary. If the current exceeds a certain limit and the motor is stationary, then the PL/X controller can provide a stall trip alarm. If 178)STALL TRIP ENBL is enabled, the current is above 179)STALL CUR LEVEL, and the motor is at zero speed (below ZERO INTERLOCKS / 117)ZERO INTLK SPD %) for longer than 180)STALL DELAY TIME, then the alarm is activated. WARNING. When using armature voltage feedback the IR drop may be sufficient to provide a signal in excess of 117)ZERO INTLK SPD % and hence the stall alarm will not operate. Set 14)IR COMPENSATION as accurately as possible, and then test the alarm with a stalled motor. (Disable the field). Progressively increase current limit to above the 179)STALL CUR LEVEL, to check that the AV speed feedback remains below 117)ZERO INTLK SPD %. It may be necessary to increase 117)ZERO INTLK SPD % to ensure tripping. 8.1.8.2 R STALL TRIP MENU / Stall current level PIN 179 STALL TRIP MENU 179)STALL CUR LEVEL 3 Sets the stall alarm trip LEVEL as a % of rated motor amps. R PARAMETER STALL CUR LEVEL 179)STALL CUR LEVEL 95.00% RANGE 0.00 to 150.00% DEFAULT 95.00% PIN 179 DEFAULT 10.00 secs PIN 180 See 6.8.3.1.2 How to get overloads greater than 150% using 82)O/LOAD % TARGET. 8.1.8.3 R STALL TRIP MENU / Stall time PIN 180 STALL TRIP MENU 3 180)STALL DELAY TIME Sets the delay time between stall start and alarm trigger. R PARAMETER STALL DELAY TIME 180)STALL DELAY TIME 10.0 SECS RANGE 0.1 to 600.0 seconds 142 MOTOR DRIVE ALARMS 8.1.9 MOTOR DRIVE ALARMS / Active and stored trip monitors PINS 181 / 182 MOTOR DRIVE ALARMS 2 181)ACTIVE TRIP MON 181)ACTIVE TRIP MON 0000 Shows the status of the 16 active alarms (4 groups of 4 in HEX code). Prior to latch PARAMETER ACTIVE TRIP MON MOTOR DRIVE ALARMS 2 182)STORED TRIP MON RANGE See table below PIN 181 182)STORED TRIP MON 0000 Shows the status of the 16 latched alarms. (4 groups of 4 in HEX code). PARAMETER STORED TRIP MON RANGE See table below PIN 182 Branch hopping facility between these two windows. The 4 characters in the window are hex codes. The table below shows how to decode them to binary logic The codes 0, 1, 2, 4, 8 are the most likely. The others only occur with 2 or more alarms high in any group. HEX CODE 0 1 2 3 4 5 6 7 BINARY 0000 0001 0010 0011 0100 0101 0110 0111 HEX CODE 8 9 A B C D E F BINARY 1000 1001 1010 1011 1100 1101 1110 1111 Note. If this value is connected to another PIN then the pure hexadecimal to decimal equivalent is used. (Most significant character on the right, least significant on the left). You can decode the HEX into 16 flags from right to left in 4 groups of 4 HEX HEX HEX HEX using the above table as an aid. Example. 0005 shows ARMATURE OVERCURRENT and OVERSPEED. decode decode decode decode Example. 0060 shows MISSING PULSE and FIELD LOSS List of motor alarms display location 0000 ARMATURE OVERCURRENT SPEED FBK MISMATCH OVERSPEED ARMATURE OVER VOLTS Bit Bit Bit Bit 1 2 3 4 for for for for 16-BIT 16-BIT 16-BIT 16-BIT Demultiplexer Apps Block Demultiplexer Apps Block Demultiplexer Apps Block Demultiplexer Apps Block FIELD OVERCURRENT FIELD LOSS MISSING PULSE STALL TRIP Bit Bit Bit Bit 5 6 7 8 for for for for 16-BIT 16-BIT 16-BIT 16-BIT Demultiplexer Apps Block Demultiplexer Apps Block Demultiplexer Apps Block Demultiplexer Apps Block THERMISTOR ON T30 HEATSINK OVERTEMP SHORT CCT DIG OP BAD REFERENCE EXCH Bit Bit Bit Bit 9 for 16-BIT Demultiplexer Apps Block 10 for 16-BIT Demultiplexer Apps Block 11 for 16-BIT Demultiplexer Apps Block 12 for 16-BIT Demultiplexer Apps Block CONTACTOR LOCK OUT USER ALARM INPUT (PIN 712) SYNCHRONIZATION LOSS SUPPLY PHASE LOSS Bit Bit Bit Bit 13 for 14 for 15 for 16 for 16-BIT 16-BIT 16-BIT 16-BIT Demultiplexer Demultiplexer Demultiplexer Demultiplexer Apps Apps Apps Apps Block Block Block Block 0000 0000 0000 0001 0010 0100 1000 0001 0010 0100 1000 0001 0010 0100 1000 0001 0010 0100 1000 Note. There is an Application Block called 16-DEMULTIPLEX which can extract a flag for each of these Alarms See section 12 APPLICATION BLOCKS and also refer to Part 2 Application Blocks Manual for more detail. MOTOR DRIVE ALARMS 143 8.1.10 MOTOR DRIVE ALARMS / External trip reset enable PIN 183 MOTOR DRIVE ALARMS 183)EXT TRIP RESET 2 Allows the trip to be reset by START on T33 going low. 183)EXT TRIP RESET ENABLED PARAMETER EXT TRIP RESET RANGE ENABLED OR DISABLED DEFAULT ENABLED PIN 183 When DISABLED will prevent re-starting after a trip. (DO NOT RELY ON THIS FOR SAFETY). 8.1.11MOTOR DRIVE ALARMS / DRIVE TRIP MESSAGE If an alarm is triggered, a displayed message showing which alarm caused the drive to shut down will automatically appear in the bottom line of the display window, along with !!!!!! ALARM !!!!!! on the top line. It can be removed from the display by tapping the left key or starting the drive. It may be re-examined using the DRIVE TRIP MESSAGE window. The message will be memorised if the control supply is removed. To remove the message from the memory, go to this window and tap the down key. Note. If when trying to enter the DRIVE TRIP MESSAGE window no alarms have been detected, then the MOTOR DRIVE ALARMS window will show the message NO ALARMS DETECTED and the DRIVE TRIP MESSAGE window is closed. 8.1.11.1 DRIVE TRIP MESSAGE / Armature overcurrent MOTOR DRIVE ALARMS DRIVE TRIP MESSAGE 2 3 DRIVE TRIP MESSAGE 3 ARMATURE OVERCURRENT An armature current trip is provided. This is set to operate for current feedback values exceeding 170% of the maximum model current, or 300% of 2)RATED ARM AMPS, whichever is reached first. Motor Faults: If the motor armature windings fail, the armature impedance may drop sharply. This may cause excessive armature current which will activate the current trip. If this occurs, the motor armature should be checked (Meggered) for insulation resistance, which should be above acceptable limits. (Disconnect the drive when using a megger). If the motor becomes completely short-circuited, the current trip will not protect the controller. High speed semi-conductor thyristor fusing must always be provided to protect the thyristor stack. Alarm delay time. Alarm will allow 300% loading for around 10 msecs and 400% for 5 msecs. 8.1.11.2 DRIVE TRIP MESSAGE / Armature overvolts MOTOR DRIVE ALARMS DRIVE TRIP MESSAGE 2 3 DRIVE TRIP MESSAGE 3 ARMATURE OVERVOLTS If the motor armature voltage feedback exceeds 18)RATED ARM VOLTS by more than 20% then this alarm will operate. . 18)RATED ARM VOLTS may be lower than the dataplate maximum. This alarm operates with any source of speed feedback. The alarm can be caused by a badly adjusted field voltage setting, field current loop, field-weakening back emf loop or speed loop overshooting. Alarm delay time: 1.5 secs. 8.1.11.3 DRIVE TRIP MESSAGE / Field overcurrent MOTOR DRIVE ALARMS DRIVE TRIP MESSAGE 2 3 DRIVE TRIP MESSAGE 3 FIELD OVERCURRENT The controller checks that the field current does not exceed 115% of 4)RATED FIELD AMPS. This alarm could become active due to regulator failure or a badly tuned control loop causing overshoots. Alarm delay time: 15 secs. 144 MOTOR DRIVE ALARMS 8.1.11.4 DRIVE TRIP MESSAGE / Field loss MOTOR DRIVE ALARMS DRIVE TRIP MESSAGE 2 3 DRIVE TRIP MESSAGE FIELD LOSS 3 See 8.1.3 MOTOR DRIVE ALARMS / Field loss trip enable PIN 173. Alarm delay time: 2 secs. 8.1.11.5 DRIVE TRIP MESSAGE / User trip MOTOR DRIVE ALARMS DRIVE TRIP MESSAGE 2 3 DRIVE TRIP MESSAGE USER TRIP 3 There is a hidden PIN 712 that will cause a trip after going high. Use a jumper to connect to flag source. See 13.3.4 JUMPER connections. Alarm delay time: 0.5 secs. 8.1.11.6 DRIVE TRIP MESSAGE / Thermistor on T30 MOTOR DRIVE ALARMS DRIVE TRIP MESSAGE 2 3 DRIVE TRIP MESSAGE 3 THERMISTOR ON T30 It is good practice to protect DC motors against sustained thermal overloads by fitting temperature sensitive resistors or switches in the field and interpole windings of the machine. Temperature sensitive resistors have a low resistance (typically 200 Ohms) up to a reference temperature (125 deg C). Above this, their resistance rises rapidly to greater than 2000 Ohms. Temperature switches are usually normally closed, opening at about 105 deg C. Motor overtemperature sensors should be connected in series between terminals T30 and T36. If the motor temperature rises such that the resistance of the sensor exceeds 1800 Ohms, the thermistor alarm will be activated. If this happens, the motor must be allowed to cool before the alarm can be reset. Motors overheat due to many factors, but the most common cause is inadequate ventilation. Check for blower failure, wrong rotation of the blower, blocked ventilation slots and clogged air filters. Other causes of overheating relate to excessive armature current. The nominal armature current on the motor nameplate should be checked against the current calibration for the PL/X. There is no motor temperature alarm inhibit; terminals T30 and T36 must be linked if over-temperature sensors are not used. Note. There is a flag on hidden PIN 702 which warns of thermistor over-temp after the normal delay time. This flag is reset by a start or jog command. Alarm delay time: 15 secs. 8.1.11.7 DRIVE TRIP MESSAGE / Overspeed MOTOR DRIVE ALARMS DRIVE TRIP MESSAGE 2 3 DRIVE TRIP MESSAGE OVERSPEED 3 If the speed feedback signal exceeds 110% of rated speed for longer than the alarm delay time, then the overspeed alarm is activated. This alarm is likely to be caused by a badly adjusted speed loop or overhauling of motors controlled by 2 Quadrant models. Alarm delay time: 0.5 secs. + (8.1.7 MOTOR DRIVE ALARMS / Overspeed delay time PIN 177). MOTOR DRIVE ALARMS 145 8.1.11.8 DRIVE TRIP MESSAGE / Speed feedback mismatch MOTOR DRIVE ALARMS DRIVE TRIP MESSAGE 2 3 DRIVE TRIP MESSAGE 3 SPEED FBK MISMATCH See 8.1.1 MOTOR DRIVE ALARMS / Speed feedback mismatch trip enable PIN 171. This message will also appear if a trip is caused by trying to field weaken with AVF feedback. 8.1.11.9 DRIVE TRIP MESSAGE / Stall trip MOTOR DRIVE ALARMS DRIVE TRIP MESSAGE 2 3 DRIVE TRIP MESSAGE STALL TRIP 3 DRIVE TRIP MESSAGE MISSING PULSE 3 See 8.1.8.1 STALL TRIP MENU / Stall trip enable PIN 178. 8.1.11.10 DRIVE TRIP MESSAGE / Missing pulse MOTOR DRIVE ALARMS DRIVE TRIP MESSAGE 2 3 See 8.1.5 MOTOR DRIVE ALARMS / Missing pulse trip enable PIN 175. 8.1.11.11 DRIVE TRIP MESSAGE / Supply phase loss MOTOR DRIVE ALARMS DRIVE TRIP MESSAGE 2 3 DRIVE TRIP MESSAGE 3 SUPPLY PHASE LOSS The controller continuously monitors the incoming supply of the ELl, EL2 connections. If either are lost, the alarm will operate. The subsequent control action depends on the running condition at the time the alarm is triggered. The message will also briefly appear after the control supply has been removed. 1) If the main contactor is energised at the time of failure then it will be de-energised after the ride through time of 2 seconds has elapsed. If the supply is restored before the ride through time has elapsed then normal running will resume. During the temporary supply loss period the PL/X will shut the armature current demand off until it is safe to restore it. The unit measures the back emf to calculate a safe start into the rotating load. 2) If the main contactor is de-energised at the time of the supply loss then a Start command will allow the contactor to energise but inhibit armature current. After a few seconds the contactor will be de-energised. The Control Supply on T52, T53 can tolerate a supply loss for 300mS at 240V AC, and 30mS at 110V AC, before requesting permanent shut down. See also 6.1.16 CALIBRATION / EL1/2/3 rated AC volts PIN 19 QUICK START. The controller will detect total failure of the supply. A missing phase is detected under most circumstances. However, the controller may be connected to the same supply as other equipment that is regenerating a voltage onto the supply lines during the missing phase period. Under these circumstances, the SUPPLY PHASE LOSS alarm may be unable to detect failure of the incoming supply, and hence not operate. In the case of a supply phase loss alarm, the supply to the controller should be checked. The auxiliary and the main high speed semi-conductor fuses, should be checked. See also 3.6 Supply loss shutdown. The supply is monitored on EL1/2. This allows AC supply or DC outgoing main contactors to be used. Alarm delay time 2.0 secs. 146 MOTOR DRIVE ALARMS 8.1.11.12 DRIVE TRIP MESSAGE / Synchronization loss MOTOR DRIVE ALARMS DRIVE TRIP MESSAGE 2 3 DRIVE TRIP MESSAGE 3 SYNCHRONIZATION LOSS The PL/X controller automatically "locks on" to any 3-phase supply within a frequency range of 45 to 65 Hertz. This allows the thyristors to be fired at the correct instant during each supply cycle. The synchronisation circuit can cope with a large level of supply distortion to ensure operation with very distorted supplies. The lock on time is 0.75 seconds. If the standard wiring configuration is adopted with EL1/2/3 permanently energised then the phase lock will only need to lock on during the first application of power. This allows the main contactor to be operated very rapidly with minimal start up delay if required. Wiring configurations that involve application of the auxiliary supply coincident with a start requirement will have 0.75 second delay prior to main contactor energisation. If the supply frequency exceeds the min/max limits, or if the controller is supplied from a power supply which has excessive distortion this may cause synchronisation errors and the alarm to operate. Note. This alarm will operate during running. If there is failure to achieve synchronisation at start, then the alarm CONTACTOR LOCK OUT is displayed. See 8.1.11.18 DRIVE TRIP MESSAGE / Contactor lock out. Alarm delay time: 0.5 secs. 8.1.11.13 DRIVE TRIP MESSAGE / Heatsink overtemp MOTOR DRIVE ALARMS DRIVE TRIP MESSAGE 2 3 DRIVE TRIP MESSAGE 3 HEATSINK OVERTEMP In the event of blower failure, or restriction of the cooling airflow, the heatsink temperature may rise to an unacceptable level. Under these conditions, the heatsink overtemp alarm will operate. If this alarm operates on units fitted with a heatsink blower, it should be checked for obstruction and the cooling air path checked for obstructions. Models fitted with twin top mounted fans are provided with fan stall protection. Once the obstruction is removed the fan should resume normal operation. If the fan does not run, the fan assembly must be replaced. For units with an AC driven rear mounted fan (PL/X 185/225/265) check that the 110V AC fan supply is present on terminals B1, B2. For PL/X 275 - 980 check that the 240V AC fan supply is present on the terminals provided under the lower connection cover. For PL/X275 -980 this alarm will also operate if the supply voltage is not present aswell as for over-temperature of the heatsink. The unit enclosure must be supplied with sufficient cool dry clean air. See 14.1 Product rating table. The unit must be allowed to cool in order to re-start. Alarm delay time: 0.75 secs 8.1.11.14 DRIVE TRIP MESSAGE / Short circuit digital outputs MOTOR DRIVE ALARMS DRIVE TRIP MESSAGE 2 3 DRIVE TRIP MESSAGE 3 SHORT CIRCUIT DIG OP See 8.1.4 MOTOR DRIVE ALARMS / Digital OP short circuit trip enable PIN 174. 8.1.11.15 DRIVE TRIP MESSAGE / Bad reference exchange MOTOR DRIVE ALARMS DRIVE TRIP MESSAGE 2 3 DRIVE TRIP MESSAGE 3 BAD REFERENCE EXCH See 8.1.6 MOTOR DRIVE ALARMS / Reference exchange trip enable PIN 176. Note. There is a flag on hidden PIN 701 which warns of a bad reference exchange. This flag is reset by a start or jog command. MOTOR DRIVE ALARMS 147 8.1.11.16 DRIVE TRIP MESSAGE / Cannot autotune MOTOR DRIVE ALARMS DRIVE TRIP MESSAGE 2 3 DRIVE TRIP MESSAGE 3 CANNOT AUTOTUNE During autotune the drive turns off the field to prevent shaft rotation. An "autotune error" will be triggered by speed feedback being > 20% of rated speed or field current feedback being > 5 % of rated field current during the autotune activity. Note. Speed feedback being > 20% may be caused by residual field magnetisation resulting in shaft rotation. If so, retry the Autotune with the motor shaft mechanically locked. 8.1.11.17 DRIVE TRIP MESSAGE / Autotune quit MOTOR DRIVE ALARMS 2 DRIVE TRIP MESSAGE 3 DRIVE TRIP MESSAGE AUTOTUNE QUIT 3 The controller will quit the autotune function if the coast stop, start or run terminals are disabled (taken low) Alternatively, if the autotune ENABLE/DISABLE is instructed to be DISABLED during its autotune sequence then this message will appear. See 6.8.9 CURRENT CONTROL / Autotune enable PIN 92. A time-out ( approx. 2 mins) will also cause an autotune quit. 8.1.11.18 DRIVE TRIP MESSAGE / Contactor lock out MOTOR DRIVE ALARMS 2 DRIVE TRIP MESSAGE 3 DRIVE TRIP MESSAGE 3 CONTACTOR LOCK OUT This alarm may be caused by two possible events at the commencement of a running mode request. It is accompanied by automatic inhibiting of the current loop followed by de-energisation of the contactor. 1) If the incoming 3 phase supply is of insufficient quality to allow the synchronisation circuit to measure its frequency and/or phase rotation. It may be due to an intermittant or missing phase on EL1/2/3. 2) The ZERO REFERENCE interlock function has been enabled and the operator has failed to reset the external speed references to zero. See 6.10 CHANGE PARAMETERS / ZERO INTERLOCKS. 8.1.11.19 DRIVE TRIP MESSAGE / Warning flags Note. The following alarms are also available on hidden PINs after the normal delay time irrespective of whether they are enabled to trip the drive or not. These flags are reset by a start or jog command. 700)STALL WARNING 701)REF XC WARNING 702)THERMISTOR WARN 703)SPD FBK WARN There is also one further active flag 704)I LOOP OFF WARN on a hidden PIN which goes low as soon as the current loop stops making current under the following fault conditions. 8.1.11.1 DRIVE TRIP MESSAGE / Armature overcurrent 8.1.11.11 DRIVE TRIP MESSAGE / Supply phase loss (Control supply or EL1/2/3 supply) 8.1.11.12 DRIVE TRIP MESSAGE / Synchronization loss The drive needs to be started (T33/T32) and the RUN enabled (T31) for 704 to function. This is because it is operating within the current control software and therefore it will not change at all with the drive stopped or the current loop quenched by RUN (T31) being low. 148 MOTOR DRIVE ALARMS 9 SELF TEST MESSAGE There is a group of self test messages that provide information about problems occuring in the drive itself which are not related to the motion control system. These will appear when the problem occurs and are not saved for later access. They will disappear when the appropriate action is taken to cure the problem 9.1.1 SELF TEST MESSAGE / Data corruption The PL/X has facilities to allow all the parameter settings to be transferred serially from another source INITIALISING using PARAMETER EXCHANGE. This may be from another DATA CORRUPTION drive unit or from a computer. The process is called DRIVE RECEIVE. Sending the parameter values to another destination is called a DRIVE TRANSMIT. This alarm will appear at the end of DRIVE RECEIVE parameter transfer if the drive parameters have been corrupted. The most likely cause for this problem is DRIVE RECEIVE of a corrupted parameter file. The contents of the target recipe page will have been corrupted. However the volatile memory will still hold the values pertaining at the time of the corruption. If the previously prevailing parameters had been sourced from the now corrupted target recipe page, then it is possible to restore the original recipe. To do this , press the left key and the drive will display the previously prevailing parameters. Then go to the PARAMETER SAVE menu and save these parameters so that the bad data held in the target recipe page is overwritten. Unfortunately the desired new file cannot be used. If the message occurs at power up then the left key restores factory defaults. IMPORTANT WARNING. Check that the calibration parameters and drive personality Iarm burden value are correct. These may also need reentering. See 13.14.2 DRIVE PERSONALITY / Recipe page PIN 677 See 13.14.4 DRIVE PERSONALITY / Armature current burden resistance PIN 680 9.1.2 SELF TEST MESSAGE / Disable GOTO, GETFROM The ENABLE GOTO, GETFROM configuration selection has been left in the ENABLE state. This needs to be disabled in order to run the drive. Parameter name DISABLE GOTO, GETFROM 9.1.3 SELF TEST MESSAGE / Self cal tolerance This alarm will appear at power-up if the self calibration of the analog inputs has exceeded their normal INITIALISING tolerance. SELF CAL TOLERANCE This tolerance can be relaxed by 0.1% with each press of the left key to enable the unit to operate, although possibly at reduced accuracy. It indicates an aged component that has drifted slightly, or a pollution problem. 9.1.4 SELF TEST MESSAGE / Proportional armature current cal fail This alarm will appear at power-up if the self calibration INITIALISING of the proportional armature current amplifier has failed. If turning the control supply off and on does not remove PRP ARM CUR CAL FAIL the problem, then a hardware failure is suspected. 9.1.5 SELF TEST MESSAGE / Integral armature current cal fail This alarm will appear at power-up if the self calibration of the integral armature current amplifier has failed. If turning the control supply off and on does not remove the problem, then a hardware failure is suspected. INITIALISING INT ARM CUR CAL FAIL MOTOR DRIVE ALARMS 9.1.6 SELF TEST MESSAGE / Stop drive to adjust parameter This message appears when attempting to alter a parameter which belongs to the class that is inadvisable to adjust while the motor is running. The message will blink as the up/down keys are pressed. The parameter remains unaltered. The drive must be stopped to adjust the parameter. 149 Parameter name STOP DRIVE TO ADJUST 9.1.7 SELF TEST MESSAGE / Enter password This message appears when attempting to alter a parameter before the correct password has been entered. The message will blink as the up/down keys are pressed. See 11.2 DISPLAY FUNCTIONS / PASSWORD CONTROL. Parameter name ENTER PASSWORD 9.1.8 SELF TEST MESSAGE / Enable GOTO, GETFROM This message appears when attempting to configure connections before the ENABLE GOTO, GETFROM mode has been enabled. The message will blink as the up/down keys are pressed. Parameter name ENABLE GOTO, GETFROM 9.1.9 SELF TEST MESSAGE / GOTO CONFLICT At the end of a configuration session the user must ENABLE GOTO, GETFROM always proceed to the ENABLE GOTO, GETFROM window GOTO CONFLICT to set it to DISABLED. This message will then appear if the user has accidentally connected more than one GOTO to any PIN during the session. It will also appear as an alarm message if the drive is asked to run and there is a GOTO CONFLICT. E.g. if a parameter file containing a GOTO CONFLICT has been loaded. See 13.15 CONFLICT HELP MENU. 9.1.10 SELF TEST MESSAGE / Internal error code INTERNAL ERROR CODE This message will appear for a variety of reasons. 0001 Codes 0001/2/3 indicate a microprocessor system problem. Please consult supplier. The message SUPPLY PHASE LOSS indicates the control supply has dipped. See 3.6 Supply loss shutdown. Code 0005 appears if a very small motor is run on a large PL/X with a high inductance 3 phase supply. In this case it will be necessary to re-calibrate the model rating to a lower current. See 13.14.4 DRIVE PERSONALITY / Armature current burden resistance PIN 680, and 13.14.4.1 50% / 100% rating select. If this message appears when running then:1)The armature current will quench. 2)The main contactor and field will de-energise. 3)The digital outputs will be disabled. 4)The HEALTHY flag (PIN 698) will be set low. Normal operation may be re-instated by pressing the left key or turning the control supply off and on again. 9.1.11 SELF TEST MESSAGE / Authorisation needed Parameter name This message will appear if a PARAMETER SAVE on RECIPE AUTHORISATION NEEDED PAGE = 3 -KEY RESET , or a DRIVE RECEIVE of a page 3 file, is attempted, AND the page has been locked by the supplier. Page 3 may be locked because it contains a recipe that is required to be protected from being overwritten. Please consult your supplier. It may also appear if certain special parameters are altered, however this is unlikely to happen in normal operation. WARNING. The lock status is also included in, and travels with a page 3 file. Receiving a page 3 file with locked status will automatically lock any unlocked page 3. See 10.2.1.1 PARAMETER EXCHANGE with a locked recipe page 3. 150 MOTOR DRIVE ALARMS 9.1.12 SELF TEST MESSAGE / Memory write error Indicates a save problem. Usually occurs if the control supply is below 90V AC. PARAMETER SAVE 2 MEMORY WRITE ERROR 9.1.13 SELF TEST MESSAGE / Memory version error It indicates that a file SAVED using PARAMETER SAVE, with more recent software, has been loaded onto a unit with incompatible older software. PARAMETER SAVE 2 MEMORY VERSION ERROR Either by host computer using parameter exchange. To correct the problem, press the left key and the drive will be returned to its factory default values. Unfortunately any desired parameter changes will need to be re-entered and SAVED. Alternatively it may be possible to use PL PILOT to transfer the file. See 9.1.13.1 Transferring files using PILOT below. Or by transfer of EEPROM. In this case the original file in the EEPROM will still be intact and will still work with the original younger version of software. (Transferring IC15 and IC16 aswell as the EEPROM may resolve the problem). See 10.2.3.3 PARAMETER EXCHANGE / Eeprom transfer between units. See 10.2.4 Rules of parameter exchange relating to software version. 9.1.13.1 Transferring files using PILOT+ Please refer to the PILOT+ Manual for details of transferring files (recipes) SERIAL LINKS 151 10 SERIAL LINKS, RS232 and FIELDBUS 10 SERIAL LINKS, RS232 and FIELDBUS .......................................................... 151 10.1 SERIAL LINKS / RS232 PORT1 ......................................................................................... 10.1.1 RS232 PORT1 / Connection pinouts .............................................................................. 10.1.2 RS232 PORT1 / Port1 Baud rate PIN 187....................................................................... 10.1.3 RS232 PORT1 / Port1 function PIN 188 ........................................................................ 10.1.4 How to use USB ports on external PC ............................................................................ 10.2 RS232 PORT1 / PARAMETER EXCHANGE............................................................................. 10.2.1 PARAMETER EXCHANGE / Drive transmit ........................................................................ 10.2.1.1 PARAMETER EXCHANGE with a locked recipe page 3. ................................................. 10.2.1.2 Transmitting parameter data file to a PC. Windows 95 to Windows XP. ........................... 10.2.2 PARAMETER EXCHANGE / Drive receive ......................................................................... 10.2.2.1 Receiving parameter data file from a PC. Windows 95 to Windows XP............................. 10.2.3 PARAMETER EXCHANGE / menu list to host..................................................................... 10.2.3.1 Transmitting a menu list to a PC. Windows 95 to windows XP ....................................... 10.2.3.2 PARAMETER EXCHANGE / Drive to drive.................................................................. 10.2.3.3 PARAMETER EXCHANGE / Eeprom transfer between units ............................................ 10.2.4 Rules of parameter exchange relating to software version.................................................. 10.2.4.1 PL PILOT Legacy configuration tool and SCADA ......................................................... 10.3 RS232 PORT1 / PORT1 REF EXCHANGE.............................................................................. 10.3.1 REFERENCE EXCHANGE / Reference exchange slave ratio PIN 189 ....................................... 10.3.2 REFERENCE EXCHANGE/ Reference exchange slave sign PIN 190 ......................................... 10.3.3 REFERENCE EXCHANGE / Reference exchange slave monitor PIN 191 ................................... 10.3.4 REFERENCE EXCHANGE / Reference exchange master monitor PIN 192 ................................. 10.3.5 REFERENCE EXCHANGE / Reference exchange master GET FROM .......................................... 11 152 153 153 153 153 154 154 155 155 156 156 157 157 158 159 159 160 161 162 162 162 162 162 DISPLAY FUNCTIONS ............................................................................. 163 11.1 DISPLAY FUNCTIONS / Reduced menu enable ..................................................................... 11.2 DISPLAY FUNCTIONS / PASSWORD CONTROL....................................................................... 11.2.1 PASSWORD CONTROL / Enter password ......................................................................... 11.2.2 PASSWORD CONTROL / Alter password .......................................................................... 11.3 DISPLAY FUNCTIONS / Language select............................................................................. 11.4 DISPLAY FUNCTIONS / Software version ............................................................................ 11.5 Remotely mounted display unit ...................................................................................... 163 163 164 164 164 164 164 Please note. The references to PL PILOT and early Windows PCs are retained in this manual as a guide for users with older units. The modern version of the configuration tool for the PL/X range is called PILOT+ and details for PILOT+ are found in a separate PILOT+ Manual WARNING. Comms operation is suspended whilst the unit is in CONFIGURATION mode. See 13 CONFIGURATION, and 13.3.7 CONFIGURATION / ENABLE GOTO, GETFROM. The RS232 PORT1 is a standard product feature providing a daisy chain fast data facility without need for a host (REFERENCE EXCHANGE). Or an ASCII comms proprietary multi-drop link using ANSI-X3.28-2.5-B I protocol. A full description of the ASCII comms facility can be found in the SERIAL COMMs manual. The RS232 PORT1 is used for configuration with both PILOT+ and the legacy PL PILOT configuration tool. Also archiving recipes via windows hyperterminal on PCs running XP and earlier systems The PL/X can support proprietary fieldbus applications. This requires extra hardware in the shape of :a) Mounting board for FIELDBUS card. (part no. LA102738) b) FIELDBUS card. (e.g. Profibus, Devicenet) The above components are incorporated within the unit and plugged onto the PL/X control card. There is a sub-menu in the CONFIGURATIONS menu that allows configuration of the parameters to be input and output by the PL/X. See 13.13 CONFIGURATION / FIELDBUS CONFIG. A full description of the FIELDBUS facility can be found in the SERIAL COMMs manual. 152 SERIAL LINKS SERIAL LINKS menu Port1 is a non-isolated RS232 port used for PL/X configuration and serial comms. R ENTRY MENU SERIAL LINKS LEVEL 1 2 Glossary of terms. Protocol Port RS232, RS422, RS485 R SERIAL LINKS RS232 PORT1 2 3 The instructions for the order of sending data and handshaking. The physical connector for the serial link. Electrical specification standards for serial transmission. (RS – Recommended Standard) The rate at which the data is sent, which must be matched for all parties. American standard code for information interchange. American national standards institute. Baud rate ASCII ANSI 10.1 SERIAL LINKS / RS232 PORT1 PINs used 187 to 192. The RS232 PORT1 is located just above the middle set of control terminals. It is a female 4 way FCC-68 type socket. This port can be used in 2 ways. R SERIAL LINKS RS232 PORT1 2 3 1)For PARAMETER EXCHANGE with other devices. a) From another computer or drive in ASCII. b) To another computer or drive in ASCII. c) To another computer or printer in the form of a text list of display windows and their parameters. This function may be used to keep records and files of parameter settings, or allow the transfer of parameter settings from an old control board to a new one. R RS232 PORT1 PORT1 COMMS LINK 3 4 RS232 PORT1 187)PORT1 BAUD RATE 3 RS232 PORT1 188)PORT1 FUNCTION 3 RS232 PORT1 3 PARAMETER EXCHANGE 4 RS232 PORT1 REFERENCE EXCHANGE 3 4 There is also an option to select ASCII COMMS in 188)PORT1 FUNCTION to implement a full duplex ANSI communications protocol for use with a host computer or for interface with a PC based configuration tool. The sub-menu for this function is PORT1 COMMS LINK. Please refer to the SERIAL COMMS MANUAL. Note. PORT 1 FUNCTION is not subject to password control for software versions 4.06 and above. 2) For speed REFERENCE EXCHANGE to or from another unit in digital format during running. This allows low cost digital speed accuracy ratio between drives especially when using encoder feedback. Note. Some computers may not be fitted with an RS232 COM port. Instead they will possess a USB port. In this case it is necessary to fit a USB - RS232 convertor (E.g. Single in line convertor type USB to serial male D9, or multiport type Belkin F5U120uPC). After installation of the convertor drivers, right click on the ‘My Computer’ icon and select Properties / Device Manager / Ports to find the port allocations. (COM1, COM2, COM3 etc.). Then you must use the nominated USB port allocation within Hyperterminal or PL PILOT. See 10.1.4 How to use USB ports. SERIAL LINKS 153 10.1.1 RS232 PORT1 / Connection pinouts The socket is type FCC68 4 way. pin function D pin W 0V D5 X +24V not connected Y transmit D2 Z receive D3 W X Y Z RS232 PORT1 socket located just above the centre terminal block. (Unit to host, 9 way female D type part no. LA102595) (Unit to unit 2 metre cable part number LA102596), See 10.2.3.2 PARAMETER EXCHANGE / Drive to drive for connection details) Warning the 24V supply on pin 2 may damage your PC or other instrument. If in doubt do not connect it. The PL/X1 transmit must be connected to the PL/X2 receive, and the PL/X1 receive to the PL/X2 transmit. 10.1.2 RS232 PORT1 / Port1 Baud rate PIN 187 R RS232 PORT1 187)PORT1 BAUD RATE 3 Sets the baud rate of port1 to suit the host. R PARAMETER PORT1 BAUD RATE 187)PORT1 BAUD RATE 9600 RANGE 1 of 9 standard baud rates DEFAULT 9600 PIN 187 The standard baud rates available are 300 600 1,200 2,400 4,800 9,600 19,200 34,800 and 57,600. Note. This is not subject to PASSWORD control. See 11.2 DISPLAY FUNCTIONS / PASSWORD CONTROL. 10.1.3 RS232 PORT1 / Port1 function PIN 188 RS232 PORT1 188)PORT1 FUNCTION Sets the function of port1. 3 188)PORT1 FUNCTION PARAM EXCH SELECT PARAMETER PORT1 FUNCTION RANGE 4 modes DEFAULT PARAMETER EXCH SELECT PIN 188 0) PARAM EXCH SELECT, 1) REF EXCHANGE MASTER, 2) REF EXCHANGE SLAVE, 3) ASCII COMMS If PARAM EXCH SELECT is selected, proceed to the PARAMETER EXCHANGE sub-menu. If master or slave ref EXCHANGE is selected, proceed to the REFERENCE EXCHANGE sub-menu. ASCII COMMS is selected to implement a full duplex ANSI communications protocol for use with a host computer or the PILOT+ configuration tool. Please refer to PILOT+ MANUAL for specification. Note. This is not subject to PASSWORD control. See 11.2 DISPLAY FUNCTIONS / PASSWORD CONTROL. 10.1.4 How to use USB ports on external PC Note. Some computers may not be fitted with an RS232 COM port. Instead they will possess a USB port. In this case it is necessary to fit a USB - RS232 convertor (Eg. Single in line convertor type USB to serial male D9, or multiport type Belkin F5U120uPC). These are supplied with the required driver utilities software which needs to be installed on the computer first. After installation of the driver software, right click on the ‘My Computer’ icon and select Properties / DeviceManager / Ports to find the port allocated to the convertor. (COM1, COM2, COM3, or COM4.). Then you must use the nominated port allocation when setting up PILOT+ configuration tool. See PILOT+ manual for details. (To select the COM port within the PL PILOT legacy config tool go to the 'Options' menu in the top task bar. It will offer COM1, COM2, COM3, or COM4. It may need its baud rate setting to 19,200 in the 'Setup COM Port' option). Note. When using USB to RS232 converters always boot up the PC with the converter already plugged into the PC so that it gets properly initialised. 154 SERIAL LINKS 10.2 RS232 PORT1 / PARAMETER EXCHANGE The RS232 PORT1 can be used to transfer a file of the PL/X settings between the PL/X and a host. The transfer uses an ASCII binary file structure and XON / XOFF protocol. See also 5.3 Archiving PL/X recipes. The purpose of this facility is to allow the parameter settings to be recorded, or parameter transfer from an old to new control board. RS232 PORT1 3 PARAMETER EXCHANGE 4 a) From another computer or drive in ASCII. b) To another computer or drive in ASCII c) To another computer in the form of text list of display windows and their parameters. PARAMETER EXCHANGE 4 MENU LIST TO HOST 5 PARAMETER EXCHANGE 4 DRIVE TRANSMIT 5 55 PARAMETER EXCHANGE 4 DRIVE RECEIVE 5 Transmitting parameters from the PL/X to a host is defined as DRIVE TRANSMIT whereas receiving data by the PL/X from a host is defined as DRIVE RECEIVE. RS232 PORT1 Setup. Set the PL/X RS232 PORT1 baud rate to match the host port baud rate When using a computer or printer, set its serial port to work with the following fixed protocols. 1 Stop bit NO Parity 8 bits XON/XOFF Handshaking To use the PARAMETER EXCHANGE sub-menu, first choose PARAM EXCH SELECT in the previous menu window called RS232 PORT1 / 188)PORT1 FUNCTION. 10.2.1 PARAMETER EXCHANGE / Drive transmit PARAMETER EXCHANGE 4 DRIVE TRANSMIT 5 Starts transmission of the parameter file in 677)RECIPE PAGE, to the host. DRIVE TRANSMIT 5 UP KEY TO CONTINUE PARAMETER DRIVE TRANSMIT RANGE TRANSMITTING then FINISHED See 10.2.4 Rules of parameter exchange relating to software version. This is the transfer of the Parameter file from the page selected in 677)RECIPE PAGE from the PL/X to a host computer. This file information fully describes the PL/X 's settings for the chosen page, in a binary format. The file is of the drive's saved settings for the chosen page, which will not be the present settings if changes have been made without performing a PARAMETER SAVE. Read only values will be at the level pertaining at the time of transmission. The files for each RECIPE PAGE may be transmitted irrespective of the displayed set. Note. The source page is included in the file, this ensures that the file will return to the same page if it is received by any unit. See also 5.3 Archiving PL/X recipes. 1) Connect the PL/X to the host using the appropriate lead. See10.1.1 RS232 PORT1 / Connection pinouts. 2) Using a standard communications package prepare the host to receive an ASCII file. Remember to set up the host's serial port first. See 10.2.1.2 Transmitting parameter data file to a PC. Windows 95 to Windows XP. 3) Make sure that the PORT1 FUNCTION has been set to PARAM EXCH SELECT. 4) Get the host ready to receive a file, use the file extension .TXT (Suggest using .TX2 page 2, .TX3 for page 3, .TXL for Locked page 3). 5) Start transmitting on the PL/X by selecting DRIVE TRANSMIT followed by the up key. 6) The file ends in a CTRL-Z. With some packages this automatically closes the file. If this is not the case, when the PL/X says it has FINISHED and the host has stopped scrolling text or printing, close the file manually. The last line should read : O O O O O O O 1 F F. 7) The file can now be saved for back up. SERIAL LINKS 155 10.2.1.1 PARAMETER EXCHANGE with a locked recipe page 3. Page 3 may be locked by the factory to prevent overwriting. To find out if page 3 is locked first do a 3-KEY RESET and then perform a PARAMETER SAVE. If the message AUTHORISATION NEEDED appears then page 3 is locked. The lock status is included in, and travels with a page 3 file to a host computer. Receiving a page 3 file with locked status, from a computer, will automatically lock any unlocked page 3. If page 3 is already locked it will not receive any file, either locked or unlocked. To remove the lock from a page 3 recipe on the PL/X, first SAVE it on a free page (eg page 2) of the PL/X. This copies the page 3 contents on to page 2, which discards the lock. Then transmit this page 2 file to the computer for use with other PL/Xs. See 13.14.2 DRIVE PERSONALITY / Recipe page PIN 677. 10.2.1.2 Transmitting parameter data file to a PC. Windows 95 to Windows XP. (Microsoft HyperTerminal, part of Accessories in Windows 95 to XP. Not available in Windows 2007 onwards. Although users can download a hyperterminal app to a modern PC). The first part of this section describes how to create a personalised Hyperterminal which once created, may be used for all PARAMETER EXCHANGE functions between host computers and the PL/X. On computers supplied with Windows ’95 upwards, this program is to be found as standard in the folder “Accessories”. To use it click on Start then travel through Programs, Accessories and click on Hyper Terminal. Double click on the Hypertrm.exe icon or highlight it and click on File then Open. It is now necessary for you to create a personalised Hyperterminal that can be used to receive or send parameter files to the PL/X. (Note this tool does not hold any parameter files, it only handles the files). You will be asked for a Name for the connection and an Icon – use your name, or your company name for example. Then choose one of the icons offered. Once you have finished click on OK. Having done this you will be asked for a telephone number to dial – this can be ignored as you are connecting a drive to the host computer, but you need to select whichever port you are using for the connection to the drive – Com 1 for example. Select from the Connect using menu by clicking on the down arrow and highlighting the appropriate selection. Click on OK and select the port settings. The settings should be set to: (Baud rate) match PL/X baud rate, 8 Data bits, Parity none, 1 Stop bit and Xon/Xoff Flow control. Select each of these from the menu choices available as above. Note that Advanced port settings can be left as defaults unless you have problems with data corruption during transmission or reception. Click on OK when you have finished selecting the port settings. Now click on File, Properties, Settings and check that Emulation is set to Auto detect. The setting of Backscroll buffer lines should be zero. In addition, click on ASCII Setup and confirm that Append line feeds to incoming line ends and Force incoming data to 7 bit ASCII are unchecked and that Wrap lines that exceed terminal width is checked. Click on OK then OK again in the previous menu to finish. It is recommended that the above settings are saved. When you have completed and saved the above you will have a personalised Hyperterminal that may be used at any time to send or receive PL/X parameter files, and there will be no need to repeat the above. It is now necessary to save the captured PL/X data in a format that can be transmitted to this or another drive at a later date. Click on Transfer then Capture text and you will be asked for a folder and file for the captured data to be stored in. Choose an appropriate destination and name using the default file extension TXT. (Suggest using TX2 page 2, TX3 for page 3, TXL for Locked page 3).When you are finished click on Start. HyperTerminal now returns to the main screen and is ready for reception. You will notice that the bottom menu bar now highlights “Capture”. Proceed to transmit drive data as outlined in PARAMETER EXCHANGE. Once transmission is complete and the drive reports “FINISHED” click on the disconnect icon or click on Call then Disconnect to finish. You may now exit from HyperTerminal by clicking on File then Exit or by pressing Alt and F4 or by closing the window. It is not necessary to save the session if your personalised Hyperterminal has been saved as described above. The file of received data has now been saved ready for transmission to another or the same drive. See also 5.3 Archiving PL/X recipes. 156 SERIAL LINKS 10.2.2 PARAMETER EXCHANGE / Drive receive PARAMETER EXCHANGE 4 DRIVE RECEIVE 5 Starts the process of serial transmission of parameter values from the host. DRIVE RECEIVE 5 UP KEY TO CONTINUE PARAMETER DRIVE RECEIVE RANGE RECEIVING then LEFT KEY TO RESTART See 10.2.4 Rules of parameter exchange relating to software version. See also 5.3 Archiving PL/X recipes. This is the transfer of the Parameters from the host to the PL/X. This information is written directly to the drive’s permanent memory, so the drive's present settings for the TARGET RECIPE PAGE will be overwritten. The file will contain its recipe page source (Normal, 2, 3) and will automatically save on that recipe page. See also. 10.2.1.1 PARAMETER EXCHANGE with a locked recipe page 3 1) Connect the PL/X to the host using the appropriate lead. See10.1.1 RS232 PORT1 / Connection pinouts. 2) Using a standard communications package, prepare the host to send an ASCII file. Remember to set up the host's serial port first. See 10.2.2.1 Receiving parameter data file from a PC. Windows 95 to Windows XP 3) Make sure that the PORT1 FUNCTION has been set to PARAM EXCH SELECT. 4) Enter this menu, when the PL/X says RECEIVING; begin the file transmission by the host computer. Note. If the message AUTHORISATION NEEDED appears on the PL/X display it means recipe page 3 has been locked and cannot be overwritten. Please refer to supplier. See also. 10.2.1.1 PARAMETER EXCHANGE with a locked recipe page 3 5) The file ends in a 0 0 0 0 0 0 0 1 F F which the PL/X uses to automatically SAVE the file. 6) The PL/X must now be reset by pressing the LEFT key. (This resets to recipe page NORMAL RESET. To see other pages the appropriate power up reset must then be actioned). 7) If there has been a problem there may be a message. See 9.1.1 SELF TEST MESSAGE / Data corruption. 8) WARNING. Check the CALIBRATION parameters are correct after this process. Note. There is a hidden pin 708)REMOTE PARAM RCV which is a logic input that can initiate a drive receive. 10.2.2.1 Receiving parameter data file from a PC. Windows 95 to Windows XP See 10.2.4 Rules of parameter exchange relating to software version. See also 5.3 Archiving PL/X recipes. (Microsoft HyperTerminal, part of Accessories in Windows ’95 t0 XP). If you have not already created a personalised Hyperterminal please see 10.2.1.2. Transmitting parameter data file to a PC. Windows 95 to Windows XP. This description assumes you have already stored a parameter file from a PL/X. See 10.2.1.2 Open your personalised Hyperterminal and click on Transfer then Send Text File and you will be asked for a folder and file that was used for the previously captured data you wish to send to the PL/X. Highlight the file from the list provided and it will be selected ready for sending. Do not click on Open yet. Prepare the drive to receive data as outlined in PARAMETER EXCHANGE. This information is written directly to the drive’s permanent memory, so the drive's present settings for the target recipe page will be overwritten. The file will contain its original recipe page source (Normal, 2, 3) and will automatically save on that recipe page. Once the drive reports “RECEIVING” click on Open. The drive will receive the data and report “LEFT KEY TO RESTART” when complete. (This resets to recipe page NORMAL RESET. To see other pages the appropriate power up reset must be actioned). The new parameter data file, including calibration values, has been automatically saved in the PL/X. Click on the disconnect icon or click on Call then Disconnect to finish. You may now exit from HyperTerminal by clicking on File then Exit or by pressing Alt and F4 or by closing the window. You will be asked if you wish to save the session, this is not necessary so choose No. WARNING. Check the CALIBRATION parameters are correct after this process. SERIAL LINKS 157 10.2.3 PARAMETER EXCHANGE / menu list to host PARAMETER EXCHANGE 4 MENU LIST TO HOST 5 Starts the process of serial transmission of the working menu listing to the host. MENU LIST TO HOST 5 UP KEY TO CONTINUE PARAMETER MENU LIST TO HOST RANGE TRANSMITTING then FINISHED This is the transfer of the menu list description including all values from the PL/X to a host computer or printer. This information fully documents the PL/X 's working settings in a clear textual format. Note. Any parameter that has been changed from the factory default will have a space followed by a character at the end of the line. The character may be a £ or # or other, depending on the host. The listing is of the drive's present working settings, which may or may not have been saved permanently using PARAMETER SAVE. The source of the settings depends on the power up reset type that occurred on the last application of the control supply, and any changes that have been made prior to transmission. See 13.14.2 DRIVE PERSONALITY / Recipe page PIN 677. Read only values show the level pertaining at the time. 1) Connect the PL/X to the host using the appropriate lead. See10.1.1 RS232 PORT1 / Connection pinouts. 2) Using a standard communications package prepare the host to receive an ASCII file. Remember to set up the host's serial port first. See 10.2.1.2. Transmitting parameter data file to a PC. Windows 95 to Windows XP. 3) Make sure that the PORT1 FUNCTION has been set to PARAM EXCH SELECT. 4) Get the host ready to receive a file, use the file extension PRN. (Suggest using PR2, PR3 for pages 2, 3). 5) Start transmitting on the PL/X by selecting MENU LIST TO HOST followed by the up key. 6) The file ends in a CTRL-Z. With some packages this automatically closes the file. If not, when the PL/X says it has FINISHED and the host has stopped scrolling text or printing, close the file manually. 7) The file can now be treated like any normal text file. Note. It is also possible to print a menu list from the total instrument drop down list. 10.2.3.1 Transmitting a menu list to a PC. Windows 95 to windows XP On computers supplied with Windows ’95 - XP, this program is found in the folder “Accessories”. See also 5.3 Archiving PL/X recipes. This description assumes you have created and are using a personalised Hyperterminal. If you have not already created a personalised Hyperterminal please see 10.2.1.2. Transmitting parameter data file to a PC. Windows 95 to Windows XP. You now have a choice regarding what will happen once your personalised HyperTerminal receives data. Click on Transfer then Capture to Printer if you want the file sent automatically to your default printer. Note. The listing sent by the drive cannot be looked at whilst you are running HyperTerminal. The personalised Hyperterminal is only used to handle the list, not to store it. Click on Transfer then Capture text and you will be asked for a folder and file for the data to be captured. Chose an appropriate destination and name, and use a file extension appropriate to the word processor you intend using. The defaults .PRN or .PR2 or .PR3 can be used by most, another example is .DOC for Microsoft Word etc. When you are finished click on Start. HyperTerminal now returns to the main screen and is ready for reception. You will notice that the bottom menu bar now highlights “Capture” and/or “Print echo” depending on which of the above you have selected. Proceed to transmit data as outlined in PARAMETER EXCHANGE. The source of the settings depends on the power up reset type that occured on the last application of the control supply, and any changes that have been made prior to transmission. See 13.14.2 DRIVE PERSONALITY / Recipe page PIN 677. Read only values will show the level pertaining at the time.Once data is received and the drive reports “Finished”, click on the disconnect icon or click on Call then Disconnect to finish. 158 SERIAL LINKS You may now exit from HyperTerminal by clicking on File then Exit or by pressing Alt and F4 or by closing the window. You will be asked if you wish to save the session, this is not necessary as your personalised Hyperterminal already exists. If you previously selected Capture text, the file of received menu listing can now be loaded into whichever word processor you are using to be viewed or printed etc. 10.2.3.2 PARAMETER EXCHANGE / Drive to drive See 10.2.4 Rules of parameter exchange relating to software version. During maintenance it is sometimes not possible to transfer parameter settings using computers, but may be necessary to transfer settings from one unit to another. To overcome this problem the PL/X has a built in ability to exchange parameters between two functioning control cards. This method may be used if there is a problem with the power chassis but the unit still responds to the application of the control supply as normal. For faulty units see 10.2.3.3 PARAMETER EXCHANGE / Eeprom transfer between units. W X Y Z Socket pin W X Y Z function 0V Open transmit receive Plug 1 0V Open Wire3 Wire4 Plug 2 0V Open W X Y Z 4 Note. The wires on pins Y and Z are transposed (Unit to unit 2 metre cable part number LA102596. Unit to host, 9 way female Dtype part no. LA102595). Turn on the control supply to the source and target PL/Xs. The display and keys on both units should be working in order to proceed with this transfer technique. Connect the RS232 PORT1 of the source PL/X to the RS232 PORT1 of the target PL/X using an appropriate lead wired between plug 1 and plug 2 as above, with pins Y and Z transposed, and pin X disconnected. The socket is type FCC68 4 way The recipe page of the transmitted file depends on the recipe page selection in the source PL/X. See 13.14.2 DRIVE PERSONALITY / Recipe page PIN 677. Only one page is sent each time. To send all three pages requires three separate transmission sequences. The recipe page selected on the source PL/X also determines its page destination on the target PL/X. Provided the displays and keys are operating on both units you may proceed to 10.1.2 RS232 PORT1 / Port1 Baud rate PIN 187 and set the baud rates for each unit to be 9600. Then proceed to 10.2.1 PARAMETER EXCHANGE / Drive transmit on the source PL/X, followed by 10.2.2 PARAMETER EXCHANGE / Drive receive on the target PL/X. With the target PL/X in the DRIVE RECEIVE window, press the up key to place it in a RECEIVING mode. Return to the source PL/X and in the DRIVE TRANSMIT window press the up key to commence / TRANSMITTING. Note. If the message AUTHORISATION NEEDED appears it means recipe page 3 has been locked ON THE RECEIVING unit and cannot be overwritten. See 13.14.2.1 Recipe page block diagram or refer to supplier. When the messages change to FINISHED, press the left key on the target PL/X. Look at the calibration parameters and other unique parameters to ascertain with confidence that the configuration has been transferred, then turn off both the control supplies. Remove the interconnecting lead. The target PL/X is now loaded with the parameter file from the source PL/X. SERIAL LINKS 159 10.2.3.3 PARAMETER EXCHANGE / Eeprom transfer between units STATIC SENSITIVE This equipment contains electrostatic discharge (ESD) sensitive parts. Observe static control precautions when handling, installing and servicing this product. In an emergency break down situation it is possible to transfer the Eeprom IC. This IC contains all 3 recipe page parameters and connection details. See 13.14.2 DRIVE PERSONALITY / Recipe page PIN 677. See 9.1.13 SELF TEST MESSAGE / Memory version error. See 10.2.4 Rules of parameter exchange relating to software version before proceeding. To gain access to the Eeprom IC it is necessary to remove the plastic cover from the unit. To do this first remove the end caps, then remove the 4 corner fixing screws that retain the cover. When removing the cover please take care not to stress the display and key connection ribbons. Unplug the ribbons from the control card to completely remove the top cover. The plugs are keyed to ensure correct reconnection. WARNING. During IC insertion avoid bending the control card and causing damage. This is best achieved by removing the control card and supporting it on a suitable surface. Special attention must be paid to providing support to the card in the area of the IC being inserted, to avoid stressing the surrounding components. See 13.14.4.3 Changing control or power cards. The IC is Component legend IC17. It is located in a dual in line socket on the control board. Remove the one from the new unit first. Then remove the one from the old unit and insert it in the new unit without letting the pins fold under or mislocate in the socket. It is advisable to label the ICs prior to removal. Make sure that the IC is inserted without rotation, with PIN 1 in the correct position. Summary. Take out IC17 of the new PL/X and replace with IC17 from the old PL/X. Maintain correct orientation, do not allow pins to fold under or mislocate. Do not bend the control card during this process. This process must be documented to retain correct version control for future maintenance procedures. WARNING. Check the CALIBRATION parameters are correct after this process. 10.2.4Rules of parameter exchange relating to software version The rules governing the ability of a parameter file to be transferred to a PL/X are very simple. 1) A parameter set generated on older software versions is allowed to be transferred to newer versions, but not from newer to older. E.g. A file generated using version 2.12 software may be used on units employing version 2.12, 2.13 ---- 3.01 software etc. but not on units employing 2.11, 2.10 ---- 2.01 etc. The system is designed in this way because a replacement unit is more likely to have newer software. A newer version of software may possess parameters that did not exist on earlier versions. When an earlier version file is transmitted to the newer version, it automatically uses the default values for any parameters it cannot find in the older version file. Once the new parameters have been adjusted and a PARAMETER SAVE performed then they will become permanently memorised. These rules apply for all modes of file transfer. See 11.5 Remotely mounted display unit. If the message MEMORY VERSION ERROR appears it indicates that an incompatible newer software file has been loaded onto a unit with older software. See 9.1.13 SELF TEST MESSAGE / Memory version error. See 9.1.13.1 Parameter exchange using ASCII COMMS 160 SERIAL LINKS ASCII COMMS is an ANSI multi-drop protocol for use with a host. (refer to SERIAL COMMS manual) or for interface with a PC based configuration tool. (PL PILOT). See below and 13.2.1 PL PILOT legacy configuration tool. See also 5.3 Archiving PL/X recipes. See also 11.5 Remotely mounted display unit. Note. The PL/X uses an RS232 port to transmit serial data. Some computers may not be fitted with an RS232 COM port. Instead they will probably possess a USB port. In this case it is necessary to fit a USB - RS232 convertor to the computer (Eg. Single in line convertor type USB to serial male D9, or multiport type Belkin F5U120uPC). These are supplied with the required driver utilities. After installation of the convertor, right click on the ‘My Computer’ icon and select Properties / Device Manager / Ports to find the port allocations. (COM1, COM2, COM3 etc.). Then you must use the nominated USB port allocation when setting up comms utilities. Eg. Hyperterminal or PILOT+ or PL PILOT (Legacy config tool). 10.2.4.1 PL PILOT Legacy configuration tool and SCADA Note PL PILOT is the original configuration tool for the PL/X. It has been replaced by PILOT+. However PL PILOT is still able to be used and this section provides details. There is a proprietary PC based SCADA (System Control And Data Acquisition) package available which is fully configured to communicate with the PL/X range. This package provides many features, including. PL/X Configuration Multi-drop capability Chart recording Data logging Alarm logging Bar charts Drawing package Multi-instument views Multiple comm ports Recipe management Full parameter monitoring Bit map graphics import The SCADA package is designed by SPECVIEW, and forms the platform for the PL PILOT config tool. Further details about this package are accessible from the entry page of the PL PILOT configuration tool. PL PILOT runs on a standard PC (Windows 95 upwards). It can set any parameter value, make any legal internal connection, and monitor all the available parameters. It provides the user with block diagrams where each parameter may be quickly accessed and altered. The system allows recipes of drive configurations to be stored and/or down loaded as desired. It may also be operated off-line to develop and save recipes. PL PILOT is also able to support up to 10 drives on one link. It can access all parameters, connections and diagnostics for each drive. It is able to display these from any drive or combinations of drives and send recipes to any drive on the link. This powerful tool is available free of charge and is supplied on a CD with the PL/X. The operating instructions for PL PILOT are accessed within the tool itself by using the HELP BUTTON. Click on the Help BUTTON in the top right hand corner of the PL PILOT entry menu for further information. To install from the CD, follow the self launching instructions when the CD is inserted into the PC. For users that are installing for the first time select. ‘Typical ‘ in the ‘Setup type’ dialog box. For users that are installing the latest version on systems with an existing version select ‘Repair’. If you have existing recipes in the previous version these will automatically be retained in the latest version. If you have to change any com port settings on the computer, or save changed serial link parameters on the PL/X, then you may need to turn the PL/X off and on again to clear the comms buffers of false data before the system will start communicating. See also 10.1.4 How to use USB ports. There is a suitable cable supplied to connect the PC COM 1 serial port to PL/X RS232 PORT1. 187)PORT1 BAUD RATE. Set to 19200 on the target PL/X, and in ‘Options’ / ‘Setup COM Port’ in PL PILOT. 188)PORT1 FUNCTION. Set to ASCII COMMS on the target PL/X. Warning. PL PILOT may add up to 10mS to PL/X cycle times, which may affect the response of applications that require fast sampling. Eg. SPINDLE ORIENTATE. To overcome this effect, reduce the baud rate. Note. PL PILOT is not subject to the PASSWORD. See 11.2 DISPLAY FUNCTIONS / PASSWORD CONTROL. See also 5.3 Archiving PL/X recipes. SERIAL LINKS 161 10.3 RS232 PORT1 / PORT1 REF EXCHANGE Allows the accurate transmission of parameters (typically a reference) between units with the same 0V. (The slave/master mode is set by PORT1 FUNCTION). RS232 PORT1 REFERENCE EXCHANGE 3 4 In MASTER mode the unit initiates high bandwidth transmission of data, and can also receive data. In SLAVE mode the unit waits to receive data and then immediately transmits its own data. Using a GETFROM to source the transmit data, and and a GOTO to target the received data, within each PL/X in the chain, gives ultimate flexibility to the user. See 13.3 Configurable connections. This function could of course be implemented by using an analogue signal connection between the drives. However if the system requires greater speed and accuracy, then this method may be employed. REFERENCE EXCHANGE GET FROM 4 REFERENCE EXCHANGE 189)REF XC SLV RATIO 4 REFERENCE EXCHANGE 190)REF XC SLV SIGN 4 REFERENCE EXCHANGE 191)REF XC SLAVE MON 4 REFERENCE EXCHANGE 4 192)REF XC MASTER MN TRANSMIT. (Initiated by the PL/X in Master mode or by receiving data in SLAVE mode) See 10.1.1 RS232 PORT1 / Connection pinouts for details of the transmit / receive connections. Master Monitor PIN 192 Getfrom Daisy chain. When using more than 2 units, connect RS232 PORT 1 to an external terminal block to separate the transmit and receive connections. E.g. from MASTER transmit to SLAVE1 receive, and from SLAVE1 transmit to SLAVE 2 receive etc. The last SLAVE transmit can connect to the MASTER receive if desired. RS232 PORT 1 RECEIVE. (In SLAVE mode, receiving data triggers an immediate transmission sequence) Slave monitor PIN 191 Ratio +/-Sign Ref exch Slave Goto PIN 189 PIN 190 With 2 units, the MASTER may use spare SLAVE blocks. (Send an input, and receive the output). For information about transmission errors see 8.1.11.15 DRIVE TRIP MESSAGE / Bad reference exchange. Multi Drive Digital speed locking. Daisy chain using reference exchange and encoder feedback for each drive. When using this for digital speed accuracy, it is important that the remaining analogue inputs do not inject small errors into the loop when they are dormant. See 6.7 CHANGE PARAMETERS / SPEED CONTROL. Useful tips for eliminating unwanted analogue references. 1) The RUN MODE RAMP output will remain at precisely zero providing the Ramp Hold (T16) input is permanently high and the ramp is not permanently preset to a non-zero value. The ramp input may often be used by line master drives, but in the slave drive the ramp should be disabled using T16. Note that the incoming digital reference may be passed through the ramp function by re-configuring the appropriate internal PL/X connections. In this case, the analogue input to the ramp (terminal T4) is disconnected. 2) Analogue input 2 (T2) may be used for inching references. In which case it should be re-connected via input 1 of the SUMMER 1 apps block, which possesses a deadband function. During normal running, the terminal is shorted to OV or left open circuit. This ensures no signal passes if the input remains within the deadband. The analogue inch reference is set above the deadband so as to give the required inching speeds, forward or backward. Selection between analogue inching and absolutely zero is thus automatic. If T2 is not being used it may be dis-connected, or the UIP2 scaler on PIN 322 should be set to 0.0000. 3) Zero input 3 (T3) using 6.6.7 SPEED REF SUMMER / Speed/Current Reference 3 ratio PIN 67. 162 SERIAL LINKS 10.3.1 REFERENCE EXCHANGE / Reference exchange slave ratio PIN 189 REFERENCE EXCHANGE 189)REF XC SLV RATIO 4 Scales the incoming parameter for use within the unit. 189)REF XC SLV RATIO 1.0000 PARAMETER REF XC SLV RATIO RANGE +/-3.0000 DEFAULT 1.0000 PIN 189 Note. In SLAVE mode, when data is received, it initiates an immediate transmit of its own GETFROM data. 10.3.2 REFERENCE EXCHANGE/ Reference exchange slave sign PIN 190 REFERENCE EXCHANGE 190)REF XC SLV SIGN 4 Used to invert the incoming parameter. 190)REF XC SLV SIGN NON-INVERT PARAMETER REF XC SLV SIGN RANGE NON-INVERT or INVERT DEFAULT NON-INVERT PIN 190 Note. In SLAVE mode, when data is received, it initiates an immediate transmit of its own GETFROM data. 10.3.3 REFERENCE EXCHANGE / Reference exchange slave monitor PIN 191 REFERENCE EXCHANGE 191)REF XC SLAVE MON 4 Monitors the RS232 port 1 incoming data in both modes. 191)REF XC SLAVE MON 0.00% PARAMETER REF XC SLAVE MON RANGE +/- 300.00% PIN 191 In MASTER mode the receive channel still accepts data. E.g. A MASTER unit can borrow a SLAVE unit block. 10.3.4 REFERENCE EXCHANGE / Reference exchange master monitor PIN 192 REFERENCE EXCHANGE 4 192)REF XC MASTER MN Monitors the outgoing data prior to RS232 port 1 transmit. 192)REF XC MASTER MN 0.00% PARAMETER REF XC MASTER MN RANGE +/- 300.00% PIN 192 Note. In MASTER mode the unit initiates transmission. In SLAVE mode transmission is initiated by reception. 10.3.5REFERENCE EXCHANGE / Reference exchange master GET FROM REFERENCE EXCHANGE GET FROM 4 Defines the source PIN for data to output via the TRANSMIT channel GET FROM XXX)Description of function PARAMETER GET FROM RANGE PIN 000 to 720 DEFAULT 400 This is the data that will be transmitted by a master, and by a slave in response to receiving data. Hence to cascade units there is one MASTER feeding the first SLAVE, then the first SLAVE feeds the second SLAVE etc. The data being received in each unit is connected internally by the REF EXCH SLAVE GOTO in the BLOCK OP CONFIG menu. The data being sent to the next unit is determined by this GETFROM DISPLAY FUNCTIONS 163 11 DISPLAY FUNCTIONS This menu is used to alter the display presentation. ENTRY MENUPOT RAMPS LEVEL31 MOTORISED DISPLAY FUNCTIONS 2 52)UP TIME 4 R The REDUCED MENU shows only the commonly used selections and enables more rapid travel around the tree structure. There are 2 sets of reduced menu parameter values that can be selected. See 6.1.17 CALIBRATION / Motor 1 or 2 select PIN 20 . R DISPLAY FUNCTIONS SOFTWARE VERSION R DISPLAY FUNCTIONS 2 REDUCED MENU ENABLE R DISPLAY FUNCTIONS PASSWORD CONTROL 2 3 DISPLAY FUNCTIONS LANGUAGE SELECT 2 R If you see this symbol in the manual, this indicates that the window is in the reduced and full menu. 2 11.1 DISPLAY FUNCTIONS / Reduced menu enable R DISPLAY FUNCTIONS 2 REDUCED MENU ENABLE Enables the reduced menu display format. R PARAMETER REDUCED MENU REDUCED MENU ENABLE DISABLED RANGE ENABLED or DISABLED DEFAULT DISABLED See 6.1.17 CALIBRATION / Motor 1 or 2 select PIN 20 11.2 DISPLAY FUNCTIONS / PASSWORD CONTROL The password will prevent accidental alteration by unauthorised users. It does not protect against sabotage. It allows a password to be required prior to parameter changes. The default password and power up entry are both 0000. So a PL/X that has not had a password alteration is always unlocked. An altered password is not retained after removal of the control supply unless a PARAMETER SAVE has been actioned. If a parameter change is tried without a valid password entry then the message ENTER PASSWORD will R DISPLAY FUNCTIONS PASSWORD CONTROL 2 3 R PASSWORD CONTROL ENTER PASSWORD 3 4 flash as the up/down keys are pressed. See also 13.14.2 DRIVE PASSWORD CONTROL 3 PERSONALITY / Recipe page PIN 677. Each recipe R ALTER PASSWORD 4 page may have its own password, but it is recommended that the same password is used for every page to avoid confusion. A file copied using parameter exchange will carry the password from the source page. If that file is transmitted to another drive unit, the password will be carried with it. This requires careful housekeeping. If you forget the password then enter 4591 and the existing password is shown in ALTER PASSWORD. Note. PL PILOT, PORT 1 FUNCTION and 187)PORT1 BAUD RATE are not subject to password control. Hence it is also possible to overcome the problem of forgetting passwords by using the PL PILOT config tool to save the recipe. It may then be re-loaded after the password has been restored to 0000 on recipe page NORMAL RESET using a 4-KEY RESET. See 5.1.3 Restoring the drive parameters to the default condition. 164 DISPLAY FUNCTIONS 11.2.1 PASSWORD CONTROL / Enter password R PASSWORD CONTROL ENTER PASSWORD 3 Enter the correct password here to alter parameters. R PARAMETER ENTER PASSWORD ENTER PASSWORD 0000 RANGE 0000 to FFFF DEFAULT 0000 If the entered password is correct, then the ALTER PASSWORD window will show the password. If it is incorrect then the ALTER PASSWORD window will show ****. Each recipe page may have its own password. See 13.14.2 DRIVE PERSONALITY / Recipe page PIN 677. 11.2.2 PASSWORD CONTROL / Alter password R PASSWORD CONTROL ALTER PASSWORD 3 To alter the password, scroll the new password here. R PARAMETER ALTER PASSWORD ALTER PASSWORD 0000 RANGE 0000 to FFFF DEFAULT 0000 To alter the password, enter the existing password in the ENTER PASSWORD window first. Then using this window, change to the new desired password. The altered password is immediately effective and copied to the ENTER PASSWORD window, but only retained for the next power up if a PARAMETER SAVE is performed, otherwise the previous password will be required again. 11.3 DISPLAY FUNCTIONS / Language select R DISPLAY FUNCTIONS LANGUAGE SELECT 2 Use this window to alter the display language. R PARAMETER LANGUAGE SELECT LANGUAGE SELECT 0 RANGE DEFAULT 0 0 to 3 11.4 DISPLAY FUNCTIONS / Software version DISPLAY FUNCTIONS SOFTWARE VERSION 2 This window shows the version number of the installed code. SOFTWARE VERSION Version number PARAMETER SOFTWARE VERSION RANGE Version number See 10.2.4 Rules of parameter exchange relating to software version. 11.5 Remotely mounted display unit There is a family of proprietary Terminal Interface Units (TIU) available that are compatible with the PL/X. The font contains a bright and clear dispay with an adjustable backlight. All the PL/X parameters are accessible by the TIU which can support up to 300 menu and sub-menu pages. Each page can display up to 8 parameters including numeric, alphanumeric and bit status. Parameters can be displayed and/or altered, and users can attach their own display messages to status bits. The TIU is configured with a windows-based software. The supply and comms connection to the TIU is from the PL/X RS232 PORT1. Please refer to your supplier for further information. APPLICATION BLOCKS 165 12 APPLICATION BLOCKS The PL/X contains a comprehensive range of extra system application blocks. These are described in a separate accompanying manual. At the time of publication, the list of blocks is as follows APPLICATION BLOCKS / SUMMER 1, 2 APPLICATION BLOCKS / PID 1, 2. APPLICATION BLOCKS / PARAMETER PROFILER APPLICATION BLOCKS / REEL DIAMETER CALC APPLICATION BLOCKS / TAPER TENSION CALC APPLICATION BLOCKS / TORQUE COMPENSATOR APPLICATION BLOCKS / PRESET SPEED APPLICATION BLOCKS / MULTI-FUNCTION 1 to 8 APPLICATION BLOCKS / LATCH APPLICATION BLOCKS / FILTER 1, 2 APPLICATION BLOCKS / BATCH COUNTER APPLICATION BLOCKS / INTERVAL TIMER APPLICATION BLOCKS / COMPARATOR 1 to 4 APPLICATION BLOCKS / C/O SWITCH APPLICATION BLOCKS / 16-BIT DEMULTIPLEX 12.1 General rules 12.1.1Sample times When application blocks are being processed the workload on the internal microprocessor is increased. With no application blocks activated the time taken to perform all the necessary tasks (cycle time) is approximately 5mS. The input low time must be at least 50mS The input high time must be at least 50mS With all the application blocks activated the cycle time is approximately 10mS. In the future the designers expect to add even more application blocks. It is not expected however that the typical cycle time will ever be greater than 30mS. (Bear in mind that it would be highly unusual for all the application blocks to be activated). With this in mind it is recommended that the system designer takes care that external logic signals are stable long enough to be recognised. In order to achieve this, the logic input minimum dwell time has been specified at 50mS. However it will of course be possible to operate with much lower dwell times than this for specific installations where the cycle time is low. There is then however the risk that a future re-configuration of the blocks by the user would increase the cycle time sufficiently to cause sampling problems. 12.1.2 Order of processing It may be useful for system 0) Analogue inputs 1) Motorised pot 2) Digital inputs 3) Reference exchange 4) Jumpers 5) Multi-function 6) Alarms 7) PID1, 2 8) Summer 1, 2 9) Run mode ramps 10) Diameter calc 11) Taper tension 12) Torque compensator designers to know the order in which the blocks are processed within each cycle. 13) Zero interlocks 14) Speed control 15) Preset speed 16) Parameter profile 17) Latch 18) Batch counter 19) Interval timer 20) Filters 21) Comparators 22) C/O Switches 23) All terminal outputs 24) 16-BIT Demultiplex 166 APPLICATION BLOCKS 12.1.3 Logic levels Logic inputs will recognise the value zero, (any units), as a logic low. All other numbers, including negative numbers, will be recognised as a logic high. 12.1.4 Activating blocks In order to activate a block it is necessary to configure its GOTO window to a PIN other than 400)Block disconnect. In the CONFIGURATION menu first enter the ENABLE GOTO, GETFROM window and set it to ENABLED. Then staying in the CONFIGURATION menu proceed to BLOCK OP CONFIG to find the appropriate GOTO. After completing the connection return to the ENABLE GOTO, GETFROM window and set it to DISABLED. 12.1.4.1 Conflicting GOTO connections When the ENABLE GOTO, GETFROM window is set it to DISABLED, the system will undertake an automatic conflict check. If it has found that there are 2 or more GOTOs connected to the same PIN, it will issue the alarm GOTO CONFLICT. Proceed to 13.15 CONFLICT HELP MENU in CONFIGURATION to find the number of conflicting GOTO connections, and the target PIN that causes the conflict. One of the GOTO connections must be removed to avoid the conflict. This process is repeated until there are no conflicts. Note that this tool is extremely helpful. Without it there is the possibility that user GOTO configuration errors would cause multiple values to alternately appear at the conflict PIN resulting in unusual system behaviour. 12.1.4.2 Application blocks PIN table The application blocks start at PIN 401 and continue up to approximately PIN 670. There is a complete numeric PIN table for these in the separate application blocks manual. CONFIGURATION 167 13 CONFIGURATION 13 CONFIGURATION .................................................................................. 167 13.1 Driveweb Ethernet Connectivity and PILOT+ configuration tool ............................................... 13.2 CONFIGURATION menu................................................................................................. 13.2.1 PL PILOT legacy configuration tool.............................................................................. 13.3 Configurable connections ............................................................................................. 13.3.1 Key features of GOTO window .................................................................................... 13.3.2 Key features of GET FROM window............................................................................... 13.3.3 Summary of GOTO and GET FROM windows .................................................................... 13.3.4 JUMPER connections ................................................................................................ 13.3.5 Block Disconnect PIN 400......................................................................................... 13.3.6 Hidden parameters.................................................................................................. 13.3.7 CONFIGURATION / ENABLE GOTO, GETFROM................................................................... 13.4 CONFIGURATION / UNIVERSAL INPUTS .............................................................................. 13.4.1 UNIVERSAL INPUTS / Block diagram.............................................................................. 13.5 CONFIGURATION / ANALOG OUTPUTS .............................................................................. 13.5.1 ANALOG OUTPUTS / AOP4 Iarm output rectify enable PIN 250 ........................................... 13.5.2 ANALOG OUTPUTS / AOP1/2/3/4 SETUP........................................................................ 13.5.3 ANALOG OUTPUTS / Scope output select PIN 260 ........................................................... 13.6 CONFIGURATION / DIGITAL INPUTS.................................................................................. 13.6.1 Using DIP inputs for encoder signals. ............................................................................ 13.6.2 DIGITAL INPUTS / DIPX SETUP..................................................................................... 13.6.3 DIGITAL INPUTS / RUN INPUT SETUP............................................................................. 13.7 CONFIGURATION / DIGITAL IN/OUTPUTS ........................................................................... 13.7.1 DIGITAL IN/OUTPUTS / DIOX SETUP.............................................................................. 13.8 CONFIGURATION / DIGITAL OUTPUTS ............................................................................... 13.8.1 DIGITAL OUTPUTS / DOPX SETUP ................................................................................ 13.9 CONFIGURATION / STAGING POSTS.................................................................................. 13.9.1 Connecting PINs with different units ............................................................................ 13.9.2 STAGING POSTS / Digital / analog 1/2/3/4 PINs 296 to 303 ............................................... 13.10 CONFIGURATION / SOFTWARE TERMINALS ......................................................................... 13.10.1 SOFTWARE TERMINALS / Anded run PIN 305 ................................................................ 13.10.2 SOFTWARE TERMINALS / Anded jog PIN 306................................................................. 13.10.3 SOFTWARE TERMINALS / Anded start PIN 307............................................................... 13.10.4 SOFTWARE TERMINALS / Internal run input PIN 308 ....................................................... 13.11 CONFIGURATION / JUMPER CONNECTIONS ......................................................................... 13.11.1 JUMPER CONNECTIONS / Make jumper GET FROM source connection ................................... 13.11.2 JUMPER CONNECTIONS / Make jumper GOTO destination connection ................................... 13.12 CONFIGURATION / BLOCK OP CONFIG .............................................................................. 13.12.1 BLOCK OP CONFIG / Block outputs GOTO ..................................................................... 13.12.2 Other GOTO windows ............................................................................................. 13.13 CONFIGURATION / FIELDBUS CONFIG ............................................................................... 13.14 CONFIGURATION / DRIVE PERSONALITY ............................................................................ 13.14.1 DRIVE PERSONALITY / PASSIVE MOTOR SET ................................................................... 13.14.2 DRIVE PERSONALITY / Recipe page PIN 677 ................................................................. 13.14.3 DRIVE PERSONALITY / Maximum current response PIN 678 ............................................... 13.14.4 DRIVE PERSONALITY / Armature current burden resistance PIN 680.................................... 13.15 CONFLICT HELP MENU.................................................................................................. 13.15.1 CONFLICT HELP MENU / Number of conflicts ................................................................. 13.15.2 CONFLICT HELP MENU / Multiple GOTO conflict PIN identifier............................................ 167 168 168 169 170 170 171 171 171 171 172 172 174 178 178 178 180 180 180 181 182 183 183 186 186 188 189 190 191 191 191 192 192 193 193 193 194 195 195 195 196 196 197 197 198 201 201 201 13.1 Driveweb Ethernet Connectivity and PILOT+ configuration tool The PL/X series of DC Drives has been designed to operate with the Driveweb Ethernet based distributed control system hardware and software. Please refer to Supplier. PILOT+ is a configuration tool with an SFD capability opition. Please refer to PILOT+ Manual. PL PILOT is the legacy SCADA based configuration tool forthe PL/X). 168 CONFIGURATION 13.2 CONFIGURATION menu PIN numbers used 250 to 399. ENTRY MENU CONFIGURATION LEVEL 1 2 There are 720 parameters each with a unique PIN that is used in the process of configuration. The PINs identify connection points during configuration and can store values. CONNECTIONS. It is possible to construct complex systems by making connections to PINs. There are 2 connection tools available. These are GOTOs and GET FROMs. When a parameter is given a value by the programming procedure, or is using its default value, it is important to understand how it is affected after connection to another source using the GOTO function. In this case the value is solely determined by the source. The parameter can be used as a diagnostic monitor of that source. If the connection from the source is then removed, the default or desired value of the target must be re-entered and saved via the keys or PL PILOT. APPLICATION BLOCKS from the applications menu are normally dormant. Connecting the output of a block, using its GOTO, to a PIN other than 400, activates it. See also 0 Parameter exchange using ASCII COMMS and 10.2.4.1 PL PILOT Legacy configuration tool and SCADA. 13.2.1 PL PILOT legacy configuration tool PL PILOT, a self installing PC based graphical configuration, monitoring and recipe manipulation tool, which allows fast and easy adjustment, is supplied with the unit on a CD. It may also be used for up to 10 PL/Xs on one multidrop serial link. There is a suitable cable supplied to connect the PC COM 1 serial port to PL/X RS232 PORT1. 187)PORT1 BAUD RATE. Set it to 19200 on the target PL/X, and in ‘Options’ / ‘Setup COM Port’ in PL PILOT. 188)PORT1 FUNCTION. Set it to ASCII COMMS on the target PL/X. PL PILOT can configure and monitor. See 10.1.4 How to use USB ports and 10.2.4.1 PL PILOT Legacy configuration tool and SCADA. For PL PILOT version compatibility see 5.1.7 Finding the software version number of the unit. See also 5.3 Archiving PL/X recipes. Note. PILOT is not subject to PASSWORD control. See 11.2 DISPLAY FUNCTIONS / PASSWORD CONTROL. CONFIGURATION CONFLICT HELP MENU 2 3 CONFIGURATION 2 ENABLE GOTO, GETFROM CONFIGURATION UNIVERSAL INPUTS 2 3 CONFIGURATION ANALOGUE OUTPUTS 2 3 CONFIGURATION DIGITAL INPUTS 2 3 CONFIGURATION DIGITAL IN/OUTPUTS 2 3 CONFIGURATION DIGITAL OUTPUTS 2 3 CONFIGURATION STAGING POSTS 2 3 CONFIGURATION SOFTWARE TERMINALS 2 3 CONFIGURATION JUMPER CONNECTIONS 2 3 CONFIGURATION BLOCK OP CONFIG 2 3 CONFIGURATION FIELDBUS CONFIG 2 3 CONFIGURATION DRIVE PERSONALITY 2 3 CONFIGURATION 169 13.3 Configurable connections The internal connections within the PL/X may be re-configured using the display and keys, or PL PILOT. Range This is a universal programmable connection device known as a JUMPER. It is basically a piece of virtual wire with a GOTO at the destination end and a GET FROM at the source end. It can join any pair of PINs including PINs within blocks (There are 16 jumpers). PIN 320 T2 UIP2 Analog monitor PIN 150 ANALOG PIN 321 PIN 322 PIN 323 Scaler PIN 324 GO TO Offset Input PIN 325 / PIN 327 GO TO OP1 High value1 Low value1 High Low Threshold PIN 329 PIN 162 Dig mon PIN 326 / PIN 328 High value2 Low value2 GO TO OP2 GOTO connection from a block output to any PIN except outputs PIN 411 PIN 408 dead band Pin 692 PIN 402 PIN 404 PIN 406 PIN 413 No display Subtotal output Summer 1 PIN 413 Input 1 PIN 410 PIN 412 Input 3 PIN 413 PIN 401 PIN 413 Output Summer 1 PIN 402 PIN 403 PIN 405 PIN 407 Input 2 T 10 PIN 413 PIN 413 No display Subtotal output Pin 691 PIN 412 GO TO PIN 159 OP monitor PIN 253 Rect/Bipolar PIN 252 Offset PIN 251 AOP1 GET FROM AOP1 This is an external wire connection made to a PL/X terminal. This connection is made by virtue of the design of the block and is not programmable. This is a programmable GET FROM connection made from a block input to any other PIN within blocks. Note. To start a connection configuration session ENABLE GOTO, GETFROM must be set to ENABLED. The PL/X possesses a versatile range of pre-designed BLOCKS. Signals need to be routed to the inputs of the blocks, processed inside the block, then routed from the output to the desired destination. Examples of blocks are a signal summer and a universal terminal input. There are 2 types of connection tool which can be programmed by the user called GOTO and GET FROM. It is not possible to make illegal connections e. g. from output to output. It is possible however to connect more than 1 GOTO to a legal pin (eg an input) and this would result in an error at the target PIN. The PL/X has a conflict checker which warns of GOTO connection conflicts after configuration. (When the user sets ENABLE GOTO, GETFROM to DISABLED). See 13.15 CONFLICT HELP MENU. See also 13.9.1 Connecting PINs with different units. Note. To end a connection configuration session ENABLE GOTO, GETFROM must be set to DISABLED. Note. It is not possible to connect a GOTO directly to a GETFROM. To do this first connect the GOTO to a STAGING POST (or other unused PIN), then connect the GETFROM to the same STAGING POST. 170 CONFIGURATION 13.3.1 Key features of GOTO window Note. To start a connection configuration session ENABLE GOTO, GETFROM must be set to ENABLED. Note. To end a connection configuration session ENABLE GOTO, GETFROM must be set to DISABLED. For simple blocks the block description appears here. UIPX CONFIGURATION UIP ANALOG GOTO Most blocks being connected are also shown here for extra clarity. 4 Defines the target destination PIN for the UIPX analog connection The PIN of the target connection will scroll here. Pressing and holding the up or down key will cause accelerated scrolling. UIP ANALOG GOTO PIN) Description of function PARAMETER UIP ANALOG GOTO RANGE PIN 000 to DEFAULT 400 720 The description of the target connection will scroll on the bottom line. A default of 400 shows that there is no connection made 13.3.2 Key features of GET FROM window Note. To start a connection configuration session ENABLE GOTO, GETFROM must be set to ENABLED. Note. To end a connection configuration session ENABLE GOTO, GETFROM must be set to DISABLED. For simple blocks the block description appears here. PARAMETER PROFILE 3 PROFL X-AXIS GET FROM Defines the target source PIN for connection to PROFL X-AXIS The PIN of the target source connection will scroll here. Some functions being connected are also shown here for extra clarity. Pressing and holding the up or down key will cause accelerated scrolling. PROFL X-AXIS GET FROM PIN) Description of function PARAMETER PROFL X-AXIS GET FROM RANGE PIN 000 The description of the target source connection will scroll on the bottom line. to 720 DEFAULT 400 A default of 400 shows that there is no connection made. CONFIGURATION 171 13.3.3 Summary of GOTO and GET FROM windows Note. To start a connection configuration session ENABLE GOTO, GETFROM must be set to ENABLED. Note. To end a connection configuration session ENABLE GOTO, GETFROM must be set to DISABLED. The above ENABLE / DISABLE is done automatically when working from the PILOT+ configuration tool). These windows make configuration connections really fast and simple. You do not have to work with lists of numbers and undecipherable codes in order to make connections. The UP/DOWN keys have an accelerating action for rapid arrival at the desired target. The block PINs are arranged in adjacent groups. You only need to know one PIN in the target block to easily find all the others. Alternatively, just scroll through any GETFROM window, from one end to the other, to see all the PINs with their descriptions, or use the PIN table at the back of each manual. The description of the target connection is usually unambiguous. E.g. there are many PROPORTIONAL GAINS within the drive that can be accessed, but all are preceded with an indication of their block location. This can usually be read even if you are scrolling at high speed. The GOTO window automatically skips over illegal connections, e.g. other outputs. If more than one GOTO connection is accidently made to any PIN, then the conflict checker will warn, and assist, in finding the PIN. Note. It is not possible to connect a GOTO directly to a GETFROM. To do this first connect the GOTO to a STAGING POST (or other unused PIN), then connect the GETFROM to the same STAGING POST. Remember, when a GOTO connection is made, the target parameter can not be adjusted using the keys. Its value is determined by the source of the GOTO connection. It becomes a value monitor for the GOTO. If the connection from the source is then removed, the default or desired value of the target must be reentered and saved via the keys or PILOT+. 13.3.4 JUMPER connections There are 16 virtual wires called JUMPER1-16 with a GOTO at the output end, and a GETFROM at the input. JUMPER connections can join any legal pair of PINs including outputs, inputs, and PINs within blocks. GOTO to output connections are automatically avoided. The GETFROM end can also connect onto PINs that have already been connected using a GOTO or GETFROM, allowing the fan out of an output for example. (The JUMPER1-16 nomenclature is also independantly used in 13.13 CONFIGURATION / FIELDBUS CONFIG). Up to 16 JUMPER connections are available. The 8 MULTI-FUNCTION blocks may also be used as jumpers. See the applications manual for a description of these blocks. Each JUMPER is identified by a number and possesses its own configuration menu. In the menu is a GOTO window and a GET FROM window to define the connections. A JUMPER is a special class of connection that is normally reserved for making parallel connections or connections to the interior PINs inside blocks. If a JUMPER is used to connect an APPLICATION block output, it is not able to activate the block. This is only possible using the block GOTO connection, which is found within the BLOCK OP CONFIG menu. See also 13.9 CONFIGURATION / STAGING POSTS. 13.3.5 Block Disconnect PIN 400 When you enter the GOTO or GETFROM windows the starting point is approximately midway at PIN 400)Block Disconnect. This enables rapid access to either end of the range. APPLICATION blocks are located above 400, and DRIVE control loop blocks below. Connecting within a GOTO window of a block to a PIN other than 400 will activate the block. Conversely connecting to 400 will de-activate the block. 13.3.6 Hidden parameters There are a small number of parameters that are available for connection, but not provided with an adjustment display window in the menu tree. For example unfiltered or rectified versions of displayed parameters. They are all grouped together in the PIN table from 720 downwards. They are also shown on the relevant block diagrams with a grey IO arrow instead of a black arrow. The PIN number and description of these hidden parameters appears as normal when using the GOTO or GET FROM windows. 172 CONFIGURATION 13.3.7 CONFIGURATION / ENABLE GOTO, GETFROM CONFIGURATION 2 ENABLE GOTO, GETFROM Used to allow configuration of the internal system connections ENABLE GOTO, GETFROM DISABLED PARAMETER ENABLE GOTO, GETFROM RANGE ENABLED or DISABLED DEFAULT DISABLED Note. To start a connection configuration session ENABLE GOTO, GETFROM must be set to ENABLED. Note. To end a connection configuration session ENABLE GOTO, GETFROM must be set to DISABLED. When the window is set to DISABLED the automatic conflict checker starts checking to see if more than one GOTO connection has been made to any PIN (More than one GOTO would lead to a unwanted values at the target PIN). If it finds a conflict, the alarm message GOTO CONFLICT will appear on the bottom line. To help find the conflict. See 13.15 CONFLICT HELP MENU. 13.4 CONFIGURATION / UNIVERSAL INPUTS Pin numbers 320 to 399 CONFIGURATION UNIVERSAL INPUTS 2 3 The PL/X series not only possesses 8 analogue inputs, but also measures all of these to high resolution with excellent response time. In addition it is possible to program the voltage range of each input to +/- (5/10/20/30V). This allows signals other than 10V full scale to be used, and enables the input to be used as a sophisticated digital input. This can be achieved for example, by programming the input to the 30V range and selecting the programmable logic threshold at 15V, to recognise a 0 or 1. Each input has 3 outputs, a linear output and a dual logic output. They operate simultaneously. UIP3 is specially adapted to acquire signals with a faster response than the others and is therefore used for input to the speed/current loop that requires a fast response. UNIVERSAL INPUTS UIP9 (T9) SETUP 3 4 UNIVERSAL INPUTS UIP2 (T2) SETUP 3 4 UNIVERSAL INPUTS UIP3 (T3) SETUP 3 4 UNIVERSAL INPUTS UIP4 (T4) SETUP 3 4 UNIVERSAL INPUTS UIP5 (T5) SETUP 3 4 UNIVERSAL INPUTS UIP6 (T6) SETUP 3 4 UNIVERSAL INPUTS UIP7 (T7) SETUP 3 4 There is a permanent internal connection to the speed/current loop from UIP3 to 64)SPEED REF 3 MON. The linear GOTO of UIP3 is operative UNIVERSAL INPUTS 3 independantly of the internal connection to the UIP8 (T8) SETUP 4 speed/current loop. (Note. The GOTO may be left configured to 400)Block Disconnect, if the internal connection is utilised). To connect UIP3 elsewhere, nullify the internal connection, (set 67)SPD/CUR RF3 RATIO in the SPEED REF SUMMER menu to 0.0000), then reconfigure the linear GOTO. The parameter 64)SPEED REF 3 MON is a monitor of the UIP3 analog output. CONFIGURATION 173 UNIVERSAL INPUTS / UIP2 to 9 This shows the UIP2 submenu There are 8 sub UNIVERSAL INPUTS UIP2 (T2) SETUP 3 4 UIP2 (T2) SETUP 329)UIP2 THRESHOLD 4 UIP2 (T2) SETUP 320)UIP2 IP RANGE 4 UIP2 (T2) SETUP 321)UIP2 IP OFFSET 4 UIP2 (T2) SETUP 322)UIP2 CAL RATIO 4 UIP2 (T2) SETUP 323)UIP2 MAX CLAMP 4 UIP2 (T2) SETUP 324)UIP2 MIN CLAMP 4 UIP2 (T2) SETUP UIP ANALOG GOTO 4 UIP2 (T2) SETUP UIP DIGITAL OP1 GOTO 4 menus, one for each input 2 to 9 Each input terminal UIP2 to 9 is provided with its own processing block with a linear and logic output. It allows the following functions. Range selectable +/- (5, 10, 20, 30V). Linear functions. Linear offset. Signed scaling. Clamping of the linear output. Logic functions. Adjustable threshold for logic level detection. The comparator output is a low or a high. The high state results in the HI VALUE being output. The low state results in the LO VALUE output. Note. UIPs offer good noise immunity. The LO and HI values can be entered using the display and keys, or may be connected from other PINs using JUMPERS. This turns the function into a change-over switch for dynamic values. There are 2 sets of value for high and value for low windows each pair having its own GOTO connection facility. This allows 2 independent output values for logic high input and 2 independent output values for a logic low input. This facility allows versatile parameter changeover functions to be selected by a single input. E.g. DIG OP1 GOTO value change to target PIN x, DIG OP2 GOTO simultaneous logic change to target PIN y. For logic only usage a value of 0.00% is read as a low. Any non zero +/- value is read as a high. Logic inversion is accomplished by entering 0.00% in the value for HI window and 0.01% in the value for LO window. Range PIN 320 T2 UIP2 Analog monitor PIN 150 ANALOG PIN 321 PIN 322 PIN 323 Scaler PIN 324 GO TO Offset Input PIN 325 / PIN 327 GO TO OP1 High value1 Low value1 High Low Threshold PIN 329 PIN 162 Dig mon PIN 326 / PIN 328 High value2 Low value2 GO TO OP2 a UIP2 (T2) SETUP UIP DIGITAL OP2 GOTO 4 UIP2 (T2) SETUP 325)UIP2 HI VAL OP1 4 UIP2 (T2) SETUP 326)UIP2 LO VAL OP1 4 UIP2 (T2) SETUP 327)UIP2 HI VAL OP2 4 UIP2 (T2) SETUP 328)UIP2 LO VAL OP2 4 174 CONFIGURATION 13.4.1 UNIVERSAL INPUTS / Block diagram Range PIN 320 T2 UIP2 Analog monitor PIN 150 There are 2 independent digital outputs driven by the comparator. Each has a GO TO connection plus a value for high and a value for low. ANALOG PIN 321 PIN 322 PIN 323 Scaler PIN 324 GO TO Offset Input PIN 325 / PIN 327 GO TO OP1 High value1 Low value1 High Low Threshold PIN 329 PIN 326 / PIN 162 Dig mon PIN 328 High value2 Low value2 GO TO OP2 13.4.1.1 UIPX SETUP / UIP(2) to (9) Input range PIN 3(2)0 to 3(9)0 UIP2 (T2) SETUP 320)UIP2 IP RANGE 4 Sets the 0 to +/-100% voltage range of the UIPX input signal This is a code, not a voltage 320)UIP2 IP RANGE 0 PARAMETER UIP2 IP RANGE RANGE 1=+/-5V, 0=+/-10V, 2=+/-20V, 3=+/-30V DEFAULT 0=+/-10V PIN 320 The +/-5V and +/-10V ranges are the most accurate (0.4%, typically 0.1%). The +/-20V and +/-30V ranges use resistor divider networks and the absolute accuracy is 4%. Also, if the same signal is used externally elsewhere, then it is important that the source impedance of the signal connected to the terminal is as low as possible. This is because as the PL/X scans the inputs, the input impedance will vary between 100K and 50K for these ranges. A source of signal with a high input impedance will be affected by the change in input resistance. This will not affect the accuracy of the reading within the PL/X, but may cause an external measurement by another instrument to vary. It is important to remember this when commissioning, as readings at the control terminals with a voltmeter may show slight variations if the source impedance is high. The 5V and 10V ranges are not affected by source impedance. 13.4.1.2 UIPX SETUP / UIP(2) to (9) Input offset PIN 3(2)1 to 3(9)1 UIP2 (T2) SETUP 321)UIP2 IP OFFSET 4 Sets the level of bi-polar offset to be added to the input signal 321)UIP2 IP OFFSET 0.00% PARAMETER UIP2 IP OFFSET RANGE +/- 100.00% DEFAULT 0.00% PIN 321 Note. +/-100% always represents a +/-10Volts offset independant of the selected range. So when the range selected is either 5V, 20V or 30V the offset addition remains at +/10V for +/-100%, and hence no longer represents a true percentage of the range. Whereas for the default 10V input range the offset percentage represents the volts and the true percentage. E. g. for a 2V offset to a signal using the 30V range enter the value 20.00%. The offset is added or subtracted prior to the scaling function. This offset does not affect the signal used for the digital threshold comparison. CONFIGURATION 175 13.4.1.2.1 4-20mA loop input SETUP UIP 2 2 0 R 0V When using 4-20mA loop signals all that is required is to fit an external burden resistor of 220 Ohms between the input and 0V. The resulting voltage signal generated by passing the signal current through the burden will be +0.88V for 4 mA (represents 0%) and 4.4V for 20mA (represents 100%). Using the appropriate UIPX SETUP block, select the following :5V range (Max voltage generated by loop across burden = 4.4V) -8.8% offset (4mA gives 0.88V). (offset is always +/-100%=+/-10V) 1.420 scaling factor ((4.4 – 0.88) X 1.420= 5V i.e 100%) For burden resistors of other values, the range, offset and scale will differ accordingly. 13.4.1.3 UIPX SETUP / UIP(2) to (9) Linear scaling ratio PIN 3(2)2 to 3(9)2 UIP2 (T2) SETUP 322)UIP2 CAL RATIO 4 Allows linear scaling of the signal on the UIPX input. 322)UIP2 CAL RATIO 1.0000 PARAMETER UIP2 CAL RATIO RANGE +/- 3.0000 DEFAULT 1.0000 PIN 322 Note. This does not affect the signal used for the digital threshold comparison. This scaling factor may be used to introduce an inversion by selecting a negative number. A scaling factor of 1.0000 is equivalent to 100.00%. In this case the full range of the input as selected in the range selection window will be equivalent to a 100.00% signal. E. g. With the 30V range selected and a scaling factor of 1.0000, then a signal of 30V would represent a demand of 100.00% speed. 13.4.1.4 UIPX SETUP / UIP(2) to (9) Maximum clamp level PIN 3(2)3 to 3(9)3 UIP2 (T2) SETUP 323)UIP2 MAX CLAMP 4 Sets an upper clamp level for the scaled linear input signal. 323)UIP2 MAX CLAMP +100.00% PARAMETER UIP2 MAX CLAMP RANGE +/- 300.00% DEFAULT +100.00% PIN 323 DEFAULT -100.00% PIN 324 13.4.1.5 UIPX SETUP / UIP(2) to (9) Minimum clamp level PIN 3(2)4 to 3(9)4 UIP2 (T2) SETUP 324)UIP2 MIN CLAMP 4 Sets a lower clamp level for the scaled linear input signal. 324)UIP2 MIN CLAMP -100.00% PARAMETER UIP2 MIN CLAMP RANGE +/- 300.00% 176 CONFIGURATION 13.4.1.6 UIPX SETUP / UIP(2) to (9) Make analog GOTO destination connection UIP2 (T2) SETUP UIP ANALOG GOTO 4 Defines the target destination PIN for the analog connection to UIPX UIPX UIP2 UIP3 Term 2 3 Analog GOTO Analog GOTO Analog GOTO UIP4 UIP5 UIP6 UIP7 UIP8 UIP9 4 5 6 7 8 9 Analog Analog Analog Analog Analog Analog GOTO GOTO GOTO GOTO GOTO GOTO UIP ANALOG GOTO PIN) Description of function PARAMETER UIP ANALOG GOTO RANGE PIN 000 to Default connection name Aux speed reference Speed reference / Current demand (Fast IP) (Internally connected, not using the GOTO) Ramp input Lower current clamp (-ve) Main current limit/Upper current clamp +ve Not connected Not connected Not connected 720 DEFAULT -See table. Default connection PIN 63 PIN 400 (Block disconnect) PIN 26 PIN 90 PIN 89 PIN 400 (Default digital) PIN 400 (Default digital) PIN 400 (Default digital) 13.4.1.7 UIPX SETUP / UIP(2) to (9) Make digital output 1 GOTO destination connection UIP2 (T2) SETUP UIP DIGITAL OP1 GOTO 4 Defines the target destination PIN for the logic connection to UIPX. UIP DIGITAL OP1 GOTO PIN) Description of function PARAMETER UIP DIGITAL OP1 GOTO UIPX UIP2 UIP3 Term 2 3 Dig OP1 GOTO Dig OP1 GOTO Dig OP1 GOTO Default connection name Not connected Not connected UIP4 UIP5 UIP6 UIP7 UIP8 UIP9 4 5 6 7 8 9 Dig Dig Dig Dig Dig Dig Not connected Not connected Not connected Motorised pot preset enable Motorised pot up command Motorised pot down command OP1 OP1 OP1 OP1 OP1 OP1 GOTO GOTO GOTO GOTO GOTO GOTO RANGE PIN 000 to 720 DEFAULT -See table. Default connection PIN 400 (Default analog) PIN 400 (Block disconnect) PIN 400 (Default analog) PIN 400 (Default analog) PIN 400 (Default analog) PIN 52 PIN 48 PIN 49 13.4.1.8 UIPX SETUP / UIP(2) to (9) Make digital output 2 GOTO destination connection UIP2 (T2) SETUP UIP DIGITAL OP2 GOTO 4 Defines the target destination PIN for the logic connection to UIPX. UIP DIGITAL OP2 GOTO PIN) Description of function PARAMETER UIP DIGITAL OP2 GOTO RANGE PIN 000 All UIP DIGITAL OP2 GOTO default connections are 400)Block Disconnect. to 720 DEFAULT 400 CONFIGURATION 177 13.4.1.9 UIPX SETUP / UIP(2) to (9) Digital input, high value for output 1 PIN 3(2)5 to 3(9)5 UIP2 (T2) SETUP 325)UIP2 HI VAL OP1 4 Sets the OP1 value selected by a high UIPX input. 325)UIP2 HI VAL OP1 0.01% PARAMETER UIP2 HI VAL OP1 RANGE DEFAULT 0.01% +/- 300.00% PIN 325 Note. You can make a simple AND gate by selecting this as the target PIN of a logical GOTO. 13.4.1.10 UIPX SETUP / UIP(2) to (9) Digital input, low value for output 1 PIN 3(2)6 to 3(9)6 UIP2 (T2) SETUP 326)UIP2 LO VAL OP1 4 Sets the OP1 value selected by a low UIPX input. 326)UIP2 LO VAL OP1 0.00% PARAMETER UIP2 LO VAL OP1 RANGE DEFAULT 0.00% +/- 300.00% PIN 326 Note. You can make a simple OR gate by selecting this as the target PIN of a logical GOTO. 13.4.1.11 UIPX SETUP / UIP(2) to (9) Digital input, high value for output 2 PIN 3(2)7 to 3(9)7 UIP2 (T2) SETUP 327)UIP2 HI VAL OP2 4 Sets the OP2 value selected by a high UIPX input. 327)UIP2 HI VAL OP2 0.01% PARAMETER UIP2 HI VAL OP2 RANGE DEFAULT 0.01% +/- 300.00% PIN 327 Note. You can make a simple AND gate by selecting this as the target PIN of a logical GOTO. 13.4.1.12 UIPX SETUP / UIP(2) to (9) Digital input, low value for output 2 PIN 3(2)8 to 3(9)8 UIP2 (T2) SETUP 328)UIP2 LO VAL OP2 4 Sets the OP2 value selected by a low UIPX input. 328)UIP2 LO VAL OP2 0.00% PARAMETER UIP2 LO VAL OP2 RANGE DEFAULT 0.00% +/- 300.00% PIN 328 Note. You can make a simple OR gate by selecting this as the target PIN of a logical GOTO. 13.4.1.13 UIPX SETUP / UIP(2) to (9) Threshold PIN 3(2)9 to 3(9)9 UIP2 (T2) SETUP 329)UIP2 THRESHOLD 4 Sets the threshold to determine the logic high/low for UIPX. 329)UIP2 THRESHOLD 6.000 VOLTS PARAMETER UIP2 THRESHOLD RANGE +/- 30.000 V DEFAULT 6.000 V PIN 329 E. g. If the range input is set to 20 or 30V, then a threshold of 15.000 V will cause the output to go high for signals greater than +15.000V and low for signals less than or equal to +15.000V. The threshold is algebraic. Hence a threshold of –1.000 V will give a high for an input of –0.999 V. 178 CONFIGURATION 13.5 CONFIGURATION / ANALOG OUTPUTS ANALOG OUTPUTS 260)SCOPE OP SELECT 3 ANALOG OUTPUTS 250)Iarm OP RECTIFY 3 ANALOG OUTPUTS AOP1 (T10) SETUP 3 4 ANALOG OUTPUTS AOP2 (T11) SETUP 3 4 ANALOG OUTPUTS AOP3 (T12) SETUP 3 4 PINs used CONFIGURATION ANALOG OUTPUTS 2 3 250 to 260 There are 4 analogue outputs. 3 programmable and 1 committed to output the armature current signal . AOP1/2/3 Programmable output specification. 12 bit plus sign resolution (2.5mV steps). Short circuit protection to 0V. (Protection is only available for any one output. More than 1 OP shorted may damage the unit). Output current +/-5mA maximum. Output range 0 to +/-11.300V. (10V normally represents 100%). T 10 PIN 159 OP monitor PIN 253 PIN 252 Rect/Bipolar 13.5.1 ANALOG OUTPUTS / AOP4 Iarm output rectify enable PIN 250 ANALOG OUTPUTS 250)Iarm OP RECTIFY Offset GET FROM 250)Iarm OP RECTIFY DISABLED PARAMETER Iarm OP RECTIFY 13.5.2 ANALOG OUTPUTS / AOP1/2/3/4 SETUP There are 3 menus, 1 for each analogue output. This list shows AOP1 RANGE ENABLED or DISABLED DEFAULT DISABLED AOP1 (T10) SETUP GET FROM 4 AOP1 (T10) SETUP 251)AOP1 DIVIDER 4 The signal to be output is obtained from the internal system using the GET FROM window. AOP1 (T10) SETUP 252)AOP1 OFFSET 4 The next process is a signed scaling divider followed by an offset, which may be added or subtracted. The output mode may be selected as either rectified or bi-polar, prior to being placed on the terminal as a linear voltage signal. AOP1 (T10) SETUP 253)AOP1 RECTIFY EN 4 ANALOG OUTPUTS AOP1 (T10) SETUP AOP1 AOP1 3 Sets Iarm output (T29) to be either bi-polar or rectified. PIN 251 3 4 PIN 250 CONFIGURATION 179 13.5.2.1 AOPX SETUP / AOP1/2/3 Dividing factor AOP1 (T10) SETUP 251)AOP1 DIVIDER PINs 251 / 254 / 257 4 Divides the GET FROM signal source by a signed factor. 251)AOP1 DIVIDER +1.0000 PARAMETER AOP1 DIVIDER RANGE DEFAULT +1.0000 +/- 3.0000 PIN 251 This factor is normally set to provide a maximum amplitude of 10V for the terminal signal voltage. The PL/X default 100.00% voltage is 10.00V. Hence a dividing factor of 1.000 gives 10.00V amplitude for 100.00% signals. This factor is arranged as a divider function to allow high gains if required, by dividing by numbers less than 1.0000. This scaling takes place prior to the addition of an offset in the next window. 13.5.2.2 AOPX SETUP / AOP1/2/3 Offset AOP1 (T10) SETUP 252)AOP1 OFFSET PINs 252 / 255 / 258 4 Sets the level of bi-polar offset to be added to the final signal. 252)AOP1 OFFSET 0.00% PARAMETER AOP1 OFFSET RANGE +/- 100.00% DEFAULT 0.00% PIN 252 Note 100.00% is equivalent to 10.00V. Changing the divider factor will not affect the offset value. 13.5.2.3 AOPX SETUP / AOP1/2/3 Rectify mode enable AOP1 (T10) SETUP 253)AOP1 RECTIFY EN 4 Allows the output mode to be rectified when enabled. PINs 253 / 256 / 259 253)AOP1 RECTIFY EN DISABLED PARAMETER AOP1 RECTIFY EN RANGE ENABLED or DISABLED DEFAULT DISABLED PIN 253 13.5.2.4 AOPX SETUP / AOP1/2/3 Make output GET FROM source connection AOP1 (T10) SETUP GET FROM 4 Defines the source PIN for the connection to AOPX. GET FROM PIN) Description of function PARAMETER GET FROM RANGE PIN 000 to 720 DEFAULT See 13.5.2.5 13.5.2.5 Default connections for AOP1/2/3 AOPX Function Terminal GET FROM AOP1 Unfiltered total speed feedback T10 PIN 715 AOP2 Unfiltered total speed reference T11 PIN 123 AOP3 Unfiltered armature current demand T12 PIN 718 Note. The function 260)SCOPE OP SELECT described below uses AOP3. Any internal GETFROM connection made to AOP3 is left intact but ignored by 260)SCOPE OP SELECT function. 180 CONFIGURATION 13.5.3 ANALOG OUTPUTS / Scope output select PIN 260 ANALOG OUTPUTS 260)SCOPE OP SELECT 3 260)SCOPE OP SELECT DISABLED Enables AOP3 to output the value of the parameter in any display window. PARAMETER SCOPE OP SELECT RANGE ENABLED or DISABLED PIN 260 The signal output is automatically switched to the displayed parameter, and provides a linear signed signal. The output scale may be changed by using 257)AOP3 DIVIDER (default 100% gives 10V). This allows very rapid selection of the signal source for display on an oscilloscope. Note. Any internal GETFROM connection made to AOP3 is left intact but ignored by 260)SCOPE OP SELECT function. 13.6 CONFIGURATION / DIGITAL INPUTS Pins 310 to 319 CONFIGURATION DIGITAL INPUTS T 14 DIP monitor PIN 163 2 3 PIN 310 DIPX PIN 311 High value Low value GO TO DIGITAL INPUTS RUN INPUT SETUP 3 4 DIGITAL INPUTS DIP1 (T14) SETUP 3 4 DIGITAL INPUTS DIP2 (T15) SETUP 3 4 DIGITAL INPUTS DIP3 (T16) SETUP 3 4 DIGITAL INPUTS DIP4 (T17) SETUP 3 4 Encoder blocks There are 4 digital logic inputs DIP1/2/3/4 on terminals T14/15/16/17, plus the RUN input on T31. The DIP inputs may also be used for incremental encoder or register mark inputs. In this case the logic functions will continue to operate as described here. The LO and HI values can be entered using the display and keys, or may be connected to other output PINs using JUMPERS. This turns the function into a change-over switch for dynamic values. For logic only usage a value of 0.00% is read as a low. Any non zero +/- value is read as a high. Logic inversion is accomplished by entering 0.00% in the value for HI window and 0.01% in the value for LO window. 13.6.1Using DIP inputs for encoder signals. Logic thresholds. 0 < 2V, 1 > 4V Note. When using encoders with quadrature outputs it is very important that the phase relationship of the 2 pulse trains remains as close to 90 degrees as possible. If the encoder is not mounted and centered accurately on the shaft, it can cause skewing of the internal optics as the shaft rotates through 360 degrees. This produces a severe degradation of the phase relationship on a cyclical basis. If the encoder appears to gyrate as the shaft rotates you must rectify the problem before trying to proceed with commissioning. The best way of checking the output is to use a high quality oscilloscope and observe both pulse trains for good phase holding and no interference. Do this with the drive rotating to +/- 100% speed using AVF as the feedback source. Note. If a logic input with high noise immunity is required it is recommended to use a UIP. See 6.1.10 CALIBRATION / ENCODER SCALING for more information about encoder feedback. CONFIGURATION 181 13.6.2 DIGITAL INPUTS / DIPX SETUP DIGITAL INPUTS DIP1 (T14) SETUP DIGITAL IP CONFIG 3 4 3 Pins used 310 to 317. DIP1 is shown in this menu list. 13.6.2.1 DIPX SETUP / DIP1/2/3/4 Input high value DIP1 (T14) SETUP 310)DIP1 IP HI VALUE 4 DIP1 (T14) SETUP 310)DIP1 IP HI VALUE 4 DIP1 (T14) SETUP 311)DIP1 IP LO VALUE 4 PINs 310 / 312 / 314 / 316 4 Sets the level of the value selected by a high DIP1 input. DIP1 (T14) SETUP GOTO 310)DIP1 IP HI VALUE 0.01% PARAMETER DIP1 IP HI VAL RANGE +/- 300.00% DEFAULT 0.01% PIN 310 DEFAULT 0.00% PIN 311 Note. You can make a simple AND gate by selecting this as the target PIN of a logical GOTO. 13.6.2.2 DIPX SETUP / DIP1/2/3/4 Input low value DIP1 (T14) SETUP 311)DIP1 IP LO VALUE PINs 311 / 313 / 315 / 317 4 Sets the level of the value selected by a low DIPX input. 311)DIP1 IP LO VALUE 0.00% PARAMETER DIP1 IP LO VALUE RANGE +/- 300.00% Note. You can make a simple OR gate by selecting this as the target PIN of a logical GOTO. 13.6.2.3 DIPX SETUP / DIP1/2/3/4 Make input value GOTO destination connection DIP1 (T14) SETUP GOTO 4 Defines the target source PIN for the connection to DIPX . GOTO PIN) Description of function PARAMETER GOTO RANGE PIN 000 to 720 DEFAULT See 13.6.2.4 13.6.2.4 Default connections for DIP1/2/3/4 DIPX DIP1 DIP2 DIP3 DIP4 Terminal Function Spare input Marker input Encoder input (B train) Encoder input (A train) Terminal T14 T15 T16 T17 High value 0.01% (High) 0.01% (High) 0.01% (High) 0.01% (High) Low value 0.00% (Low) 0.00% (Low) 0.00% (Low) 0.00% (Low) GO TO Unconnected Unconnected Unconnected Unconnected 182 CONFIGURATION 13.6.3 DIGITAL INPUTS / RUN INPUT SETUP Pins 318 and 319 DIGITAL INPUTS RUN INPUT SETUP DIGITAL IP CONFIG T 31 RUN Digital Input Terminal 3 4 3 RUN monitor PIN 164 (CIP) PIN 318 RUN IP PIN 319 High value Low value GO TO RUN INPUT SETUP GOTO 4 RUN INPUT SETUP 318)RUN IP HI VALUE 4 RUN INPUT SETUP 319)RUN IP LO VALUE 4 In the unlikely event that there is a shortage of digital inputs, the RUN input may be used. The default GOTO PIN normally used by the RUN input is called 308)INTERNAL RUN IP, and must be set to a logic high when the RUN input terminal is disconnected. See 13.10.4 SOFTWARE TERMINALS / Internal run input PIN 308. 13.6.3.1 RUN INPUT SETUP / RUN input HI value PIN 318 RUN INPUT SETUP 318)RUN IP HI VALUE 4 Sets the level of the value selected by a high RUN input. 318)RUN IP HI VALUE 0.01% PARAMETER RUN IP HI VALUE RANGE +/- 300.00% DEFAULT 0.01% PIN 318 DEFAULT 0.00% PIN 319 Note. You can make a simple AND gate by selecting this as the target PIN of a logical GOTO. 13.6.3.2 RUN INPUT SETUP / RUN input LO value PIN 319 RUN INPUT SETUP 319)RUN IP LO VALUE 4 Sets the level of the value selected by a low RUN input. 319)RUN IP LO VALUE 0.00% PARAMETER RUN IP LO VALUE RANGE +/- 300.00% Note. You can make a simple OR gate by selecting this as the target PIN of a logical GOTO. 13.6.3.3 RUN INPUT SETUP / Make input value GOTO destination connection RUN INPUT SETUP GOTO 4 Defines the target PIN for the connection to RUN IP GOTO PIN) Description of function PARAMETER GOTO RANGE PIN 000 to 720 DEFAULT 308 CONFIGURATION 183 13.7 CONFIGURATION / DIGITAL IN/OUTPUTS CONFIGURATION DIGITAL IN/OUTPUTS 2 3 There are 4 digital input / output terminals DIO1 to DIO4. The digital output function is connected to the terminal via a diode which is shown in the block. When the output is low then the diode is reverse biased and the terminal may be taken high if desired. Note. The PL/X must be stopped in order to implement a DIOX OP MODE change. 13.7.1 DIGITAL IN/OUTPUTS / DIOX SETUP PINs used 271 to 294. DIGITAL IN/OUTPUTS DIO1 (T18) SETUP 3 4 By selecting DISABLED in 271)DIO OP MODE window, the output switch is permanently open, and the terminal behaves as a digital input only. The digital output processing function may still be used internally even though the output switch is open. By selecting ENABLED in 271)DIO OP MODE window, the output switch is permanently closed, and the terminal behaves as a digital output. The input function still operates and may be used to monitor the terminal state at any time. See 3.4.2 Digital inputs and outputs, and 7.5.2 DIGITAL IO MONITOR / DIP1 to 4 and DIO1 to 4 digital input monitor PIN 163 For systems involving multiple units with digital outputs wired in OR’d mode, the input function can be used to monitor when the last OR’d output turns off. PIN 271 OP mode en PIN 274 PIN 685 PIN 272 Rect/Bipolar GET FROM DIO1 Digital IO DIO Monitor PIN 163 3 4 DIGITAL IN/OUTPUTS DIO1 (T18) SETUP 3 4 DIGITAL IN/OUTPUTS DIO2 (T19) SETUP 3 4 DIGITAL IN/OUTPUTS DIO3 (T20) SETUP 3 4 DIO1 (T18) SETUP 276)DIO1 IP LO VALUE 4 DIO1 (T18) SETUP 271)DIO1 OP MODE 4 DIO1 (T18) SETUP 272)DIO1 RECTIFY EN 4 DIO1 (T18) SETUP 273)DIO1 THRESHOLD 4 DIO1 (T18) SETUP 274)DIO1 INVERT MODE 4 DIO1 (T18) SETUP GET FROM 4 DIO1 (T18) SETUP GOTO 4 DIO1 (T18) SETUP 275)DIO1 IP HI VALUE 4 DIO1 PIN 273 Threshold T 18 DIGITAL IN/OUTPUTS DIO4 (T21) SETUP PIN 275 DIO1 PIN 276 High value Low value GO TO 184 CONFIGURATION 13.7.1.1 DIOX SETUP / DIO1/2/3/4 Output mode enable PINs 271 / 277 / 283 / 289 DIO1 (T18) SETUP 271)DIO1 OP MODE 4 271)DIO1 OP MODE DISABLED Enables the output mode of operation of the DIOX terminal. PARAMETER DIO1 OP MODE RANGE ENABLED or DISABLED DEFAULT DISABLED PIN 271 Note. The terminal logic level is sensed by the input function irrespective of the output mode selection. 13.7.1.2 DIOX SETUP / DIO1/2/3/4 OP val rectify enable PINs 272/ 278 / 284 /290 DIO1 (T18) SETUP 272)DIO1 RECTIFY EN 4 272)DIO1 RECTIFY EN DISABLED Selects rectified or bipolar mode for the OP generator. PARAMETER DIO1 RECTIFY EN The digital output is generated by comparing an internal linear or logic signal with a threshold. E.g. Linear speed feedback. The rectified mode will enable the digital output to change state at a chosen speed for both directions of rotation. The bipolar mode will enable the digital output to change state at only one chosen point in the entire range of positive or negative rotation. RANGE ENABLED or DISABLED PIN 271 OP mode en PIN 274 PIN 685 DEFAULT DISABLED PIN 272 Rect/Bipolar PIN 272 DIO1 GET FROM PIN 273 Threshold T 18 DIO1 Digital IO DIO Monitor PIN 163 PIN 275 DIO1 PIN 276 High value Low value GO TO 13.7.1.3 DIOX SETUP / DIO1/2/3/4 OP comp threshold PINs 273 / 279 / 285 / 290 DIO1 (T18) SETUP 273)DIO1 THRESHOLD 4 273)DIO1 THRESHOLD 0.00% Sets the comparator threshold for the DIOX OP generator. PARAMETER DIO1 THRESHOLD RANGE +/- 300.00% DEFAULT 0.00% PIN 273 The output of the comparator will be high when the signal from the rectifier mode box exceeds the threshold. The comparator output is low for identical inputs. For comparing logic values always put 0.00% in the threshold window. 13.7.1.4 DIOX SETUP / DIO1/2/3/4 OP inversion PINs 274 / 280 / 286 / 291 DIO1 (T18) SETUP 274)DIO1 INVERT MODE 4 Allows the comparator output logic to be inverted for DIOX. 274)DIO1 INVERT MODE NON INVERT PARAMETER DIO1 INVERT MODE RANGE INVERT, NON INVERT DEFAULT NON INVERT PIN 274 CONFIGURATION 185 13.7.1.5 DIOX SETUP / DIO1/2/3/4 Make output GET FROM source connection DIO1 (T18) SETUP GET FROM 4 Defines the target source PIN for connection to the DIOX. PIN 271 OP mode en PIN 274 PIN 685 GET FROM PIN) Description of function PARAMETER GET FROM PIN 272 Rect/Bipolar RANGE PIN 000 DIO1 GET FROM PIN 273 Threshold DIO1 Digital IO T 18 DIO Monitor PIN 163 PIN 275 DIO1 PIN 276 High value Low value GO TO to DEFAULT 400 720 The connection is made here for the digital output block source. It may be a linear or logic value. After processing by the rectifier box it gets compared to the threshold. The comparator output state HIGH or LOW is then inverted or not inverted by the inverter mode box. It then proceeds to the output stage through the digital output enable switch and becomes a 24V logic signal. It is also available for internal connection. See 3.4.2 Digital inputs and outputs. 13.7.1.6 DIOX SETUP / DIO1/2/3/4 Make input GOTO destination connection DIO1 (T18) SETUP GOTO 4 Defines the target destination PIN for connection to the DIOX. GOTO PIN) Description of function PARAMETER GOTO RANGE PIN 000 to 720 DEFAULT See 13.7.1.9 The digital input mode detects whether the input is high or low, and then selects an output value PIN 271 OP mode en PIN 274 PIN 685 PIN 272 Rect/Bipolar DIO1 GET FROM PIN 273 Threshold T 18 If the input is high then the HI value is selected. If the input is low then the LO value is selected. PIN XXX PIN XXX DIO1 Digital IO The connection is made here for the digital input LO or HI result GOTO destination. DIO Monitor PIN 276 PIN 163 The LO and HI values can be entered using the display and keys. To switch dynamically changing values, connect them using jumpers to the LO/HI value PINS. For logic only usage a value of 0.00% is read as a low. Any non zero +/- value is read as a high. Logic inversion is accomplished by entering 0.00% in the value for HI window and 0.01% in the value for LO window. PIN 275 DIO1 High value Low value GO TO 13.7.1.7 DIOX SETUP / DIO1/2/3/4 Input high value DIO1 SETUP 275)DIO1 IP HI VALUE 4 Sets the level of the value selected by a high DIOX input. PINs 275 / 281 / 287 / 293 275)DIO1 IP HI VALUE 0.01% PARAMETER DIO1 IP HI VALUE RANGE +/- 300.00% DEFAULT 0.01% See 13.7.1.6 DIOX SETUP / DIO1/2/3/4 Make input GOTO destination connection. Note. You can make a simple AND gate by selecting this as the target PIN of a logical GOTO. PIN 275 186 CONFIGURATION 13.7.1.8 DIOX SETUP / DIO1/2/3/4 Input low value DIO1 (T18) SETUP 276)DIOX IP LO VALUE PINs 276 / 282 / 288 / 294 4 276)DIOX IP LO VALUE 0.00% Sets the level of the value selected by a low DIOX input. PARAMETER DIO1 IP LO VALUE RANGE DEFAULT 0.00% +/- 300.00% PIN 276 See 13.7.1.6 DIOX SETUP / DIO1/2/3/4 Make input GOTO destination connection. Note. You can make a simple OR gate by selecting this as the target PIN of a logical GOTO. 13.7.1.9 Default connections for DIO1/2/3/4 DIOX DIO1 DIO2 DIO3 DIO4 Terminal Function Zero reference interlock Jog Mode select Ramp Hold Dual current clamp enable Terminal T18 T19 T20 T21 IO mode Input Input Input Input High value 0.01% (High) 0.01% (High) 0.01% (High) 0.01% (High) Low value 0.00% (Low) 0.00% (Low) 0.00% (Low) 0.00% (Low) GOTO PIN 116 PIN 42 PIN 33 PIN 88 13.7.1.10 DIO1/2/3/4 Internal output result PINs 685/6/7/8 There is a hidden PIN for each block to enable internal connection of the output processing part of the block. This section of the block will continue to function irrespective of the output mode. DIO1/2/3/4 PIN 685/6/7/8)DIO1 O/P BIN VAL. 13.8 CONFIGURATION / DIGITAL OUTPUTS DIGITAL OUTPUTS DOP3 (T24) SETUP 3 4 DIGITAL OUTPUTS DOP1 (T22) SETUP 3 4 DIGITAL OUTPUTS DOP2 (T23) SETUP 3 4 DOP1 (T22) SETUP GET FROM 4 DOP1 (T22) SETUP 261)DOP1 RECTIFY EN 4 DOP1 (T22) SETUP 262)DOP1 THRESHOLD 4 DOP1 (T22) SETUP 263)DOP1 INVERT MODE 4 PINs used 261 to 269. CONFIGURATION DIGITAL OUTPUTS 2 3 There are 3 digital outputs DOP1/2/3. See 3.4.2 Digital inputs and outputs (DOP3 may be used to control external serial link convertors.) 13.8.1 DIGITAL OUTPUTS / DOPX SETUP The windows are shown for DOP1. DOP2/3 windows are identical apart from the PIN numbers. DIGITAL OUTPUTS DOP1 (T22) SETUP 3 4 PIN 263 PIN 261 T 22 PIN 682 DOP monitor PIN 164 DOP1 GET FROM Rect/Bipolar DOP1 Digital OP terminal PIN 262 Threshold CONFIGURATION 187 13.8.1.1 DOPX SETUP / DOP1/2/3 OP val rectifiy enable PINs 261 / 264 / 267 DOP1 (T22) SETUP 261)DOP1 RECTIFY EN 4 Enables rectified mode for the OP generator. 261)DOP1 RECTIFY EN ENABLED PARAMETER DOP1 RECTIFY EN RANGE ENABLED or DISABLED DEFAULT ENABLED PIN 261 The digital output is generated by comparing an internal linear or logic signal with a threshold. Select DISABLED for the bi-polar mode. E.g. Linear speed feedback. The rectified mode will enable the digital output to change state at a chosen speed for both directions of rotation. The bipolar mode will enable the digital output to change state at only one chosen point in the entire range of positive or negative rotation. 13.8.1.2 DOPX SETUP / DOP1/2/3 OP comparator threshold PINs 262 / 265 / 268 DOP1 (T22) SETUP 262)DOP1 THRESHOLD 4 Sets the comparator threshold for the DOPX OP generator. 262)DOP1 THRESHOLD 0.00% PARAMETER DOP1 THRESHOLD RANGE DEFAULT 0.00% +/- 300.00% PIN 262 The output of the comparator will be high when the signal from the rectifier mode box exceeds the threshold. The comparator output is low for identical inputs. 13.8.1.3 DOPX SETUP / DOP1/2/3 Output inversion enable PINs 263 / 266 / 269 DOP1 (T22) SETUP 263)DOP1 INVERT MODE 4 Allows the comparator output logic to be inverted for DOPX generator. 263)DOP1 INVERT MODE NON-INVERT PARAMETER DOP1 INVERT MODE RANGE INVERT or NON-INVERT DEFAULT NON-INVERT PIN 263 13.8.1.4 DOPX SETUP / DOP1/2/3 Make output GET FROM source connection DOP1 (T22) SETUP GET FROM 4 Defines the source PIN for the connection to DOPX OP GET FROM PIN) Description of function PARAMETER GET FROM PIN 263 RANGE PIN 000 to 720 DEFAULT 400 The connection is made here for the digital output block source. It may be a linear or logic value. After GET FROM Rect/Bipolar processing by the rectifier box it gets compared to the threshold. The comparator output state HIGH or LOW is PIN 262 Threshold DOP1 Digital DOP monitor then inverted or not inverted by the inverter mode PIN 164 OP terminal box and becomes a 24V logic signal. For comparing logic values always put 0.00% in the threshold window. The comparator output is low for identical inputs. PIN 261 T 22 PIN 682 DOP1 188 CONFIGURATION 13.8.1.5 Default connections for DOP1/2/3 DOPX DOP1 DOP2 DOP3 Terminal Function Zero speed Ramping flag Drive healthy Terminal T22 T23 T24 Threshold 0.00% (Low) 0.00% (Low) 0.00% (Low) Getfrom source Zero speed flag Ramping flag Drive healthy flag GET FROM Pin PIN 120 PIN 35 PIN 698 13.8.1.6 DOP1/2/3 Internal output result PINs 682/3/4 The binary result of these outputs is available for internal use on PINs 682 DOP1, 683 DOP2, 684 DOP3. 13.9 CONFIGURATION / STAGING POSTS PIN number range 296 to 303. These staging posts are like virtual wire wrap posts. CONFIGURATION STAGING POSTS 2 3 There are 4 digital posts and 4 analogue posts. HIGH 0.00% STAGING POSTS 303)ANALOG POST 4 3 STAGING POSTS 296)DIGITAL POST 1 3 STAGING POSTS 297)DIGITAL POST 2 3 STAGING POSTS 298)DIGITAL POST 3 3 STAGING POSTS 299)DIGITAL POST 4 3 STAGING POSTS 300)ANALOG POST 1 3 STAGING POSTS 301)ANALOG POST 2 3 LOW DIGITAL POST1 PIN 296 ANALOG POST1 PIN 300 The digital and analogue posts are allocated PIN numbers and are used as virtual wiring nodes. They can contain a value or act as constants for setting a value. 1) When receiving values via a serial link, the posts can store the data and are then connected by the user to the desired destinations. 2) Blocks in the applications menu are normally dormant. Connecting the output to a PIN destination other than 400 activates them. Using a STAGING POSTS 3 software post is extremely useful during system 302)ANALOG POST 3 commissioning if a block output needs to be examined prior to incorporation into a system. The block output will be activated by connecting it to one of these posts. It may then be monitored via the display, and if required, connection to an analogue output terminal using the terminals GET FROM link allows monitoring with an oscilloscope. See also 13.5.3 ANALOG OUTPUTS / Scope output select PIN 260. When satisfied with the output functionality, you can then connect it to the final system destination.The analogue posts are used for linear values. The digital posts are used for logic values, a zero value is a logic low, a non zero +/- value is a logic high. Note. Staging posts are also used for making connections between a GOTO and a GETFROM. Note. Any unused settable PIN may perform the function of a staging post. A convenient cluster of 8 PINs can be found in the PRESET SPEED application block for example. CONFIGURATION 189 13.9.1 Connecting PINs with different units When using the available methods of connection it is perfectly feasible, indeed likely, that an output PIN scaled in one set of units will be linked to another PIN normally scaled in a different set of units. E.g. The output of analogue input terminal scaled in % may be connected to the ramp parameter called FORWARD UP TIME, which is scaled in seconds. This is no problem for the system because when it is processing the blocks it works in an internal system of pure numbers. This allows PINs of any type of units and scaling range to be inter-connected. To do this it follows a simple set of rules. The internal pure number range is a 5 digit number equal to +/-30,000 counts. All linear parameters work with numbers that lie within this range. 13.9.1.1 Connecting linear values with different units The pure number for any parameter can be found by stripping out the decimal point and the units. 0.1 = 5.00% = 200.00 = 1 500 20,000 E.g. 60)DROP OUT DELAY range 0.1 to 600.0 seconds. In this case the pure number range is 1 to 6000. 59)DROP OUT SPEED range 0.00 to 100.00%. In this case the pure number range is 0 to 10,000. When a connection is made the pure number is transferred from the output to the input during processing. If the pure number that arrives at a PIN lies outside the range of that PIN then it will automatically be clamped to the maximum limit of the target PIN. E.g. 129)TACHO VOLTS MON =190.00 VOLTS pure number = 19,000 is connected to 24)REVERSE UP TIME. This has a range of 0.1 to 600.0 SECONDS. When the pure number of 19,000 arrives it will be clamped to 6,000 and displayed as 600.0 SECONDS. 13.9.1.2 Connecting logic values with different messages In the system there are several parameters that have only 2 states, and some that have more than 2. E.g. 64)SPD/CUR REF 3 SIGN 29)RAMP AUTO PRESET = 9)SPEED FBK TYPE INVERT State 0 2 states or NON-INVERT State 1 DISABLED State 0 2 states or ENABLED State 1 = ARMATURE VOLTAGE State 0 5 states TACHOGENERATOR State 1 ENCODER State 2 ENCODER + AVF State 3 ENCODER + TACHO State 4 When using 2 state logic parameters the system sees one state as 1 and the other as a 0 according to this table. LOGIC 1 PARAMETER LOGIC 0 PARAMETER HIGH LOW ENABLED DISABLED MOTOR 2 MOTOR 1 INVERT NON-INVERT Non zero or negative value in logic Zero value in logic statement statement If the value is connected from a PIN which uses a binary or hexadecimal string (e.g.digital IO monitor) then the pure decimal equivalent is used. When calculating the decimal equivalent, the most significant bit is on the right and the least significant on the left. 190 CONFIGURATION 13.9.1.3 Connecting to multi-state logic parameters When connecting to multi state logic parameters (E.g. SPEED FBK TYPE or UIPX RANGE), the states are placed in numerical order as follows. 1st choice 2nd choice 3rd choice 4th choice 5th choice = = = = = logic 0 logic 1 value of pure number 2 value of pure number 3 value of pure number 4 Hence in order to switch between choice 1 (value 0) and 2 (value 1) a normal logic flag may be connected as the source of control. If the block providing the instuction to change state, possesses a value for high/low output, (e. g. digital input DIP1) ensure that a low is 0.00% value, and a high 0.01% value. To switch between type 4(value 3) and type 5(value 4), use a value for low of 0.03%, and for high, 0.04%. If the source of logic state is internal and does not possess a value for high/low, then utilise one of the C/O SWITCHES. See the Applications Manual for details of the C/O SWITCH. E. g. The C/O SWITCH uses a logic value to switch between a HI value input and a LO value input. To switch between type 4(value 3) and type 5(value 4), use a LO value of 0.03%, and HI value, 0.04%. Hence when the logic value is 0, the C/O SWITCH will send the value of pure number 3 to the multi state PIN, and then choice 4 will be selected. Likewise choice 5 will be selected for a logic 1. 13.9.2 STAGING POSTS / Digital / analog 1/2/3/4 PINs 296 to 303 STAGING POSTS 296)DIGITAL POST 1 3 Used as storage point for logic state and/or connecting point. 296)DIGITAL POST 1 LOW PARAMETER DIGITAL POST 1 RANGE HIGH or LOW DEFAULT LOW PIN 296 When a pure logic value of 0 arrives at a DIGITAL SOFTWARE POST the display will show LOW. When a pure logic value of 1 arrives it will show HIGH. STAGING POSTS 300)ANALOG POST 1 3 Used as storage point for linear values and/or connecting point. 300)ANALOG POST 1 0.00% PARAMETER ANALOG POST 1 RANGE +/-300.00% DEFAULT 0.00% PIN 300 CONFIGURATION 191 13.10 CONFIGURATION / SOFTWARE TERMINALS PIN numbers used 305 to 308. SOFTWARE TERMINALS 3 308)INTERNAL RUN IP CONFIGURATION 2 SOFTWARE TERMINALS 3 SOFTWARE TERMINALS 3 305)ANDED RUN SOFTWARE TERMINALS 3 306)ANDED JOG The 3 drive control functions are ANDED with their respective hardware equivalent input terminal and the resulting output controls the drive. This allows the local terminal function to be over-ridden by a remote command, OR a remote command to be over-ridden by a local terminal. SOFTWARE TERMINALS 3 307)ANDED START 13.10.1 SOFTWARE TERMINALS / Anded run PIN 305 From RUN T31 PIN 308 Internal RUN To internal system From ANDED RUN PIN 305 HIGH or LOW SOFTWARE TERMINALS 305)ANDED RUN 3 Sets a logic input to an internal AND gate to control RUN. 305)ANDED RUN is normally used by a serial link to control the drive. The local hardware terminal in the LOW position will defeat the serial link. The serial link in the OFF position.will defeat the local hardware terminal. Note. If the RUN terminal has been used as a general digital input, then 308)INTERNAL RUN IP must be set HIGH for the drive to run. 305)ANDED RUN HIGH PARAMETER ANDED RUN RANGE HIGH or LOW DEFAULT HIGH PIN 305 13.10.2 SOFTWARE TERMINALS / Anded jog PIN 306 To internal system From JOG T32 From ANDED JOG PIN 306 HIGH or LOW SOFTWARE TERMINALS 306)ANDED JOG 3 Sets a logic input to an internal AND gate to control JOG 306)ANDED JOG is normally used by a serial link to control the drive. The local hardware terminal in the LOW position will defeat the serial link. The serial link in the OFF position will defeat the local hardware terminal. 306)ANDED JOG HIGH PARAMETER ANDED JOG RANGE HIGH or LOW DEFAULT HIGH PIN 306 192 CONFIGURATION 13.10.3 SOFTWARE TERMINALS / Anded start PIN 307 To internal system From START T33 From ANDED START PIN 307 HIGH or LOW SOFTWARE TERMINALS 307)ANDED START 3 Sets a logic input to an internal AND gate to control START. 307)ANDED START is normally used by a serial link to control the drive. The local hardware terminal in the LOW position will defeat the serial link. The serial link in the OFF position will defeat the local hardware terminal. 307)ANDED JOG HIGH PARAMETER ANDED START RANGE HIGH or LOW DEFAULT HIGH PIN 307 DEFAULT LOW PIN 308 13.10.4 SOFTWARE TERMINALS / Internal run input PIN 308 SOFTWARE TERMINALS 308)INTERNAL RUN IP 3 Used to set RUN mode if the RUN terminal is reprogrammed. 308)INTERNAL RUN IP LOW PARAMETER INTERNAL RUN IP RANGE HIGH or LOW The RUN command normally comes from the default RUN terminal (T31) and will show the state of T31. However this terminal may be used as a programmable terminal in the event of a shortage of digital inputs. In this case 308)INTERNAL RUN IP must be disconnected from the RUN terminal and set HIGH to allow the drive to run. CONFIGURATION 193 13.11 CONFIGURATION / JUMPER CONNECTIONS This menu defines the JUMPER connection PINs using GET FROM and GOTO windows CONFIGURATION JUMPER CONNECTIONS 2 3 GET FROM GO TO JUMPER CONNECTION JUMPER CONNECTIONS JUMPER 16 3 4 JUMPER CONNECTIONS JUMPER 1 3 4 JUMPER CONNECTIONS JUMPER 2 3 4 JUMPER CONNECTIONS JUMPER 3 3 4 JUMPER CONNECTIONS JUMPER X 3 4 JUMPER CONNECTIONS JUMPER 15 3 4 There are 16 uncommitted JUMPERS 13.11.1 JUMPER CONNECTIONS / Make jumper GET FROM source connection JUMPER X GET FROM 4 Defines the source PIN for connection using JUMPER X. GET FROM PIN) Description of function PARAMETER GET FROM RANGE PIN 000 to 720 DEFAULT 400 13.11.2 JUMPER CONNECTIONS / Make jumper GOTO destination connection JUMPER X GOTO 4 Defines the destination PIN for connection using a JUMPER X. GOTO PIN) Description of function PARAMETER GOTO RANGE PIN 000 to 720 See 13.3.4 JUMPER connections for a description of the type of connections possible. DEFAULT 400 194 CONFIGURATION 13.12 CONFIGURATION / BLOCK OP CONFIG This menu is used to connect block diagrams. CONFIGURATION BLOCK OP CONFIG BLOCK OP CONFIG PRESET SPEED GOTO BLOCK OP CONFIG LATCH GOTO BLOCK OP CONFIG FILTER1 GOTO BLOCK OP CONFIG FILTER2 GOTO BLOCK OP CONFIG BATCH COUNTER GOTO BLOCK OP CONFIG INTERVAL TIMER GOTO 2 3 3 BLOCK OP CONFIG 3 RESERVED FOR FUTURE BLOCK OP CONFIG 3 RUN MODE RAMPS GOTO BLOCK OP CONFIG MOTORISED POT GOTO 3 BLOCK OP CONFIG REF EXCH SLAVE GOTO 3 BLOCK OP CONFIG SUMMER 1 GOTO 3 BLOCK OP CONFIG SUMMER 2 GOTO 3 BLOCK OP CONFIG PID 1 GOTO 3 BLOCK OP CONFIG PID 2 GOTO 3 3 3 3 3 3 BLOCK OP CONFIG 3 PARAMETER PROFL GOTO BLOCK OP CONFIG 3 RESERVED FOR FUTURE BLOCK OP CONFIG 3 RESERVED FOR FUTURE BLOCK OP CONFIG DIAMETER CALC GOTO 3 BLOCK OP CONFIG TAPER CALC GOTO 3 BLOCK OP CONFIG 3 RESERVED FOR FUTURE BLOCK OP CONFIG 3 T/COMP +CUR LIM GOTO BLOCK OP CONFIG 3 RESERVED FOR FUTURE BLOCK OP CONFIG 3 T/COMP -CUR LIM GOTO BLOCK OP CONFIG 3 RESERVED FOR FUTURE CONFIGURATION 195 13.12.1 BLOCK OP CONFIG / Block outputs GOTO BLOCK OP CONFIG (Description) GOTO 3 (Description) GOTO PIN) Description of function Defines the destination PIN for connection from the block output PARAMETER (Description) GOTO RANGE PIN 000 to 720 DEFAULT 400 13.12.2 Other GOTO windows Not all of the GOTO connection windows are found in this menu. Some blocks have them contained within their own menus. These include the following :Input/output terminals. Multi - function blocks 1 - 8 Jumpers Comparators C/O switches These functions occur in multiples and have few other parameters to program. Therefore as an aid in assisting the user to remember the particular unit in use at the time of connection, each one contains its own GOTO window. The application blocks have many parameters to adjust and it is convenient to define their individual connections within this BLOCK DIAGRAM menu. Connecting the GOTO to a PIN other than 400)Block disconnect, causes activation of the block. All GET FROM windows are found within their block menus. 13.13 CONFIGURATION / FIELDBUS CONFIG This section outlines the FIELDBUS CONFIG menu. It is used to select parameters for transmitting to, or receiving from, the host controller using for example PROFIBUS protocol. BLOCK OP CONFIG FIELDBUS CONFIG 2 3 For a full description refer to the SERIAL COMMS manual. (Download from www.sprint-electric.com) FIELDBUS CONFIG BIT-PACKED GOTO 3 FIELDBUS CONFIG JUMPER 1 3 4 FIELDBUS CONFIG JUMPER 2 to 8 3 FIELDBUS CONFIG BIT-PACKED GETFROM 3 FIELDBUS CONFIG JUMPER 9 to 16 3 Other protocols may be used depending on which comms option card is fitted to the PL/X. Do not confuse FIELDBUS CONFIG jumpers with CONFIGURATION /JUMPER CONNECTIONS. They are independantly useable tools. It was convenient for the designers to use the same nomenclature. Each parameter selected for transmission from the PL/X is configured using a GET FROM. Each parameter selected for receiving by the PL/X is configured using a GOTO. There is also “DATA ON DEMAND” providing a roaming read/write facility to any PIN. 196 CONFIGURATION There are many advantages to providing FIELDBUS configuration on the PL/X itself, rather than relying on the host system to control the configuration. 1) Any PL/X parameter is available for selection as a source by each one of 8 GET FROMs (1 word each), + one group of 8 way bit packed logic value GET FROMs (1 word). Any legal PL/X parameter is available for selection as a target by each one of 8 GOTOs (1 word each), + one group of 8 way bit packed logic value GOTOs (1 word). 2) The PL/X GOTO conflict checker automatically checks to see if the GOTO connections are accidently configured by the user to another PL/X GOTO. 3) Reconfiguring the FIELDBUS for any PL/X, without stopping the master or other PL/X units, is possible. 4) The FIELDBUS configuration for each PL/X is held within the unit itself and is also retained in the parameter exchange file. 3 FIELDBUS configurations can be saved in each PL/X by using the 3 recipe pages. 13.14 CONFIGURATION / DRIVE PERSONALITY PIN numbers used 677 to 680 This menu is used to modify or monitor various aspects of the PL/X personality. CONFIGURATION DRIVE PERSONALITY DIGITAL IP CONFIG 2 3 3 1) PASSIVE MOTOR SET contains all the windows used by the CHANGE PARAMETERS reduced menu in ascending PIN order to set the passive reduced values for motor 1 or 2. 2) RECIPE PAGE is used to set the target page for a PARAMETER SAVE operation. There are 3 separate pages that each allow a total instrument to be stored. To re-call any page requires the appropriate power up reset choice. 3) MAX CUR RESPONSE allows a super fast current response to be enabled. 4) ID ABCXRxxx MON, is used by the unit suppliers to identify the power chassis and is not intended to be used for any other purpose. A binary code is displayed. 5) Iarm BURDEN OHMS is used, along with the actual DRIVE PERSONALITY 3 680)Iarm BURDEN OHMS DRIVE PERSONALITY PASSIVE MOTOR SET 3 4 DRIVE PERSONALITY 677)RECIPE PAGE 3 DRIVE PERSONALITY 3 678)MAX CUR RESPONSE DRIVE PERSONALITY 3 679)ID ABCXRxxx MON burden, to derate the model armature current. 13.14.1 DRIVE PERSONALITY / PASSIVE MOTOR SET DRIVE PERSONALITY PASSIVE MOTOR SET 3 4 Allows viewing and alteration of the passive reduced menu. PASSIVE MOTOR SET 4 PIN)Description of parameter PARAMETER PASSIVE MOTOR SET RANGE Reduced menu parameters PIN XXX See 6.1.17 CALIBRATION / Motor 1 or 2 select PIN 20. The passive motor set parameters are the ones used in the REDUCED Menu. The PASSIVE MOTOR SET is also useful for a rapid review of the alterable parameters in the CHANGE PARAMETERS reduced menu, or setting these parameters for a second system while the existing system is running a motor. See 11.1 DISPLAY FUNCTIONS / Reduced menu enable. The power up default function (See 5.1.3 Restoring the drive parameters to the default condition) is applied to both sets of values. However each set preserves its prevailing CALIBRATION parameters. See chapter 15. PIN number tables to identify the members of the CHANGE PARAMETERS reduced menu. CONFIGURATION 197 13.14.2 DRIVE PERSONALITY / Recipe page PIN 677 DRIVE PERSONALITY 677)RECIPE PAGE 3 677)RECIPE PAGE *****NORMAL RESET**** Sets the recipe page for the PARAMETER SAVE function. PARAMETER RECIPE PAGE RANGE DEFAULT NORMAL, 2, 3 or 4-KEY RESET NORMAL RESET PIN 677 If left unchanged, the window will show which instrument recipe page has been called. To make a recipe permanently operative it must be SAVED in the NORMAL page.To re-call any page requires the appropriate power up reset choice. (Pressing keys during the application of the control supply). Selected page / (Type of POWER UP) SOURCE page DESTINATION FOR SAVE OPERATIONS NORMAL RESET / (No keys) NORMAL page PARAMETER SAVE overwrites NORMAL page 2-KEY RESET / (Up/Down) Page 2 PARAMETER SAVE overwrites page 2 3-KEY RESET / (Up/Down/Right) Page 3 PARAMETER SAVE overwrites page 3 4-KEY ROM RESET / (All 4 keys) Factory Defaults PARAMETER SAVE overwrites NORMAL page Note. Any parameters that are memorised during a power off sequence will be saved on the selected page. After a 2, 3, or 4 key power up reset, the display confirms the type of reset, and asks for LEFT KEY TO RESTART. The left key must be pressed within 15 seconds otherwise the unit reverts to the NORMAL page. Note. If when SAVING, the message AUTHORISATION NEEDED appears, then this means that the page is LOCKED and is read only. Please refer to your supplier or system integrator, he may have installed a special recipe in this particular page that prevents itself from being over-written. Each page may have its own password, but be aware you might overwrite the password when saving parameters from a different recipe page. For this reason it is recommended that the same password is used in each page. PC running PILOT+ Contains recipes. 13.14.2.1 Recipe page block diagram See also 5.3 Archiving PL/X recipes. DRIVE BLOCK DIAGRAM AND POWER CONTROL RS232 PORT1 ASCII COMMS to PILOT+ VOLATILE MEMORY. This holds the working set of drive parameters and internal connections SAVE SAVE SAVE Recipe Page NORMAL RESET Recipe Page 2-KEY RESET Recipe Page 3-KEY RESET Recipe Page 4-KEY ROM RESET Non-volatile memory Non-volatile memory Non-volatile memory With LOCK facility (+USER CALIBRATION) Factory defaults RS232 PORT1 / PARAMETER EXCHANGE to/from host computer Archived configuration file in PILOT+. Contains recipe source 13.14.3 DRIVE PERSONALITY / Maximum 198 CONFIGURATION current response PIN 678 DRIVE PERSONALITY 3 678)MAX CUR RESPONSE When enabled, this activates a super fast current response. 678)MAX CUR RESPONSE DISABLED PARAMETER MAX CUR RESPONSE RANGE ENABLED or DISABLED DEFAULT DISABLED PIN 678 The PL/X is capable of providing a super fast current response. When enabled, the current loop algorithim is internally adjusted to provide a very rapid response, with no dead band when switching bridges. When enabled, it is important that the speed and current control terms are carefully set for optimum performance otherwise current overshoots or noisy feedback signals may cause instability. When disabled, the current response is similar to a standard performance DC controller, which in most cases is completely acceptable, also the PL/X is more tolerant of poor feedback/control term settings. 13.14.4 DRIVE PERSONALITY / Armature current burden resistance PIN 680 DRIVE PERSONALITY 3 680)Iarm BURDEN OHMS This value must be the same as the actual BURDEN Ohms. 680)Iarm BURDEN OHMS XXX.XX PARAMETER Iarm BURDEN OHMS RANGE 0.00 to 320.00 DEFAULT According to MODEL PIN 680 The burden resistors are on the lower edge of the power board to the right of the 8 way terminal block. (R100//R101 100% parallel back pair) or (R102//R103 50% parallel front pair) selected by jumper. Formula. Combined value of BURDEN OHMS = 2000/max model amps. For PL/X 5 - 145. Combined value of BURDEN OHMS = 4000/max model amps. For PL/X 185 - 225. To Iarm input channel With jumper in this 50% position R102 and R103 are in parallel with R104. Result = 50% current. (Total Resistance is twice the 100% value) Effective burden value may be measured between this pad and 0V. This is also usable to observe armature current. With jumper in this 100% position R100 and R101 are in parallel with R104. Result = 100% current. R100 R 1 0 4 With jumper parked on one pin, only R104. is connected Result = small motor current. 330R gives 6A (5 - 50 models). 82R gives 24A (65 - 145 models). 150R gives 24A (185- 265 models) R101 R102 R103 I 0V Note. After parameter 680)Iarm BURDEN OHMS has been altered, it will only apply after the following steps:1) Save the new value using the PARAMETER SAVE function. 2) Turn the unit control supply off then back on again. 3) Adjust- 2)RATED ARM AMPS parameter in the CALIBRATION menu, first to its maximum setting (100%), and then to its minimum setting (33%), (Note that the values are 100% Amps, 33% Amps, of new ratings with changed burden). Finally return it to the desired value for your motor. 4) Save the new desired 2)RATED ARM AMPS parameter with another PARAMETER SAVE. CONFIGURATION 199 13.14.4.1 50% / 100% rating select The burden resistors AND a selection jumper are on the power board to the right of the 8 way terminal block. The left hand position of the jumper sets the actual burden resistance to twice the standard value and hence reduces the model rating to 50%. (Higher burden values give lower model ratings). Using this with DRIVE PERSONALITY / 680)Iarm BURDEN OHMS provides a 6 - 1 calibration range. To measure the actual burden resistance use an ohmmeter across the pad marked I and the right hand end of the front resistor (R103) 0V. The pad marked I is a square pad adjacent to terminal 48. The jumper has a third operating mode. If the jumper is parked on one pin, then the actual burden resistance will be high to allow the use of small test motors. Model Left hand jumper position Right hand jumper position Parked jumper position Amps and Actual Burden Ohms PL/X 5 - 50 50% of max model rating 100% of max model rating 6 Amps max 330R PL/X 65 - 145 50% of max model rating 100% of max model rating 24 Amps max 82R PL/X 185 - 265 50% of max model rating 100% of max model rating 24 Amps max 150R See also 4.5.4 PASSIVE MOTOR defaults / Using passive motor menu for small test motors. This is used to test small motors without changing the actual burden resistor value. Note. When using the parked position for small test motors, you may choose to set CONFIGURATION / DRIVE PERSONALITY / 680)Iarm BURDEN OHMS to the parked value, or leave it at the prevailing model rating. If you set it to the parked value in the normal way, then the armature current calibration range of the PL/X will reflect the parked position for small motors. If you leave it set to the prevailing model rating then the PL/X parameters will assume the normal full ratings despite the actual current being scaled to the parked position range for small motors. This may be useful if the configuration involves armature current related parameters that need testing at full value despite the fact that only a small current is flowing. E.g. A PLX50 is calibrated for 110Amps. The jumper is parked, and a 6 Amp motor is used to test the unit without altering 680)Iarm BURDEN OHMS. At 100% current, 6 Amps will be flowing in the armature, but 110Amps will be displayed on 135)ARM CUR AMPS MON. Table of burden resistor values for models with jumper selection. R104 = 6A or 24Amp depending on model, R103 // R102 // R104 = 50%, R101 // R100 // R104= 100%. Fixed as shown for R103 // R102 // R104 R101 // R100 // R104 Amps Theoretical Burden (Rt) Also 680)Iarm BURDEN small motors 50% 100% OHMS 1% 0.6W 1% 0.6W 100% or 50% R104 ohms R103 // R102 ohms R101 // R101 ohms 12 166.66 319.95 6Amps / 330 10,500 // empty 680 // 680 24 83.33 167.46 6Amps / 330 680 // 680 220 // 220 36 55.55 110.44 6Amps / 330 332 // 332 66.5 // empty 51 39.21 78.21 6Amps / 330 205 // 205 88.7 // 88.7 72 27.77 55.35 6Amps / 330 66.5 // empty 60.4 // 60.4 99 20.20 40.68 6Amps / 330 46.4 // empty 43 // 43 123 16.26 32.46 6Amps / 330 36 // empty 34 // 34 155 205 270 330 12.90 9.75 7.41 6.06 25.68 19.48 14.76 11.96 24Amps 24Amps 24Amps 24Amps / / / / 82 82 82 82 37.4 // empty 51.1 // 51.1 36 // 36 28 // 28 430 9.30 18.50 24Amps / 150 42.2 // 530 7.54 14.95 24Amps / 150 33.2 // 630 6.35 12.55 24Amps / 150 27.4 // See 13.14.4 DRIVE PERSONALITY / Armature current burden resistance 30.1 // 30.1 22.1 // 22.1 16.2 // 16.2 13 // 13 42.2 19.6 // 19.6 33.2 15.8 // 15.8 27.4 13.3 // 13.3 PIN 680 for burden formula. 200 CONFIGURATION 13.14.4.2 WARNING about changing BURDEN OHMS It is important that the parameter 680)Iarm BURDEN OHMS, is set as closely as possible to the actual resistance used on the power board. DO NOT ALLOW THE MODEL RATING TO EXCEED THE VALUES IN THE RATING TABLE AND ON THE RATING LABEL FOUND UNDER THE UPPER END CAP. FAILURE TO HEED THIS WARNING WILL INVALIDATE ANY WARRANTY, AND VIOLATE APPROVAL STANDARDS. NO LIABILITY IS ACCEPTED BY THE MANUFACTURER AND/OR DISTRIBUTOR FOR FAULTS CAUSED BY RERATING OF THE PRODUCT. 13.14.4.3 Changing control or power cards Whenever it is necessary to replace either the control card or the power assembly, or transfer a control card to a new power assembly then 680)Iarm BURDEN OHMS and the actual BURDEN OHMS must be re-checked and 680)Iarm BURDEN OHMS changed if necessary according to the above procedures. See13.14.4 Removing the control card First remove the plastic cover from the unit. To do this remove the end caps, then remove the 4 corner fixing screws that retain the cover. When removing the cover please take care not to stress the display and key connection ribbons. Unplug the ribbons from the control card to completely remove the top cover. The plugs are keyed to ensure correct reconnection. Then remove the two retaining screws at the lower corners of the control card. Lift the lower edge of the control card up. The card hinges on the upper pair of plastic retainers. The only resisting force is due to the 2 X 20 interconnect pins in their sockets just above terminals T17 to T30. Once the pins have fully withdrawn from their sockets, hinge the card gently away to an angle of about 30 degrees. At this point the upper hinges are open and the card can be eased out of them. Side view. First lift up control card to about 30 degrees then withdraw it from hinges. Pair of hinges at top edge with release gap at about 30 degrees. Control card hinged away from normal plane by about 30 degrees To re-assemble, perform the above procedure in reverse order. The control card is guided by the hinges back onto the interconnect pins. It is not possible to screw the control card flat unless the interconnect pins are all correctly located. WARNING. During IC insertion avoid bending the control card and causing damage. This is best achieved by removing the control card and supporting it on a suitable surface. Special attention must be paid to providing support to the card in the area of the IC being inserted, to avoid stressing the surrounding components. CONFIGURATION 201 13.15 CONFLICT HELP MENU CONFIGURATION CONFLICT HELP MENU DIGITAL IP CONFIG 2 3 3 CONFLICT HELP MENU NUMBER OF CONFLICTS This menu is used as an aid to find accidental user connections of more than one GOTO to any PIN. 3 CONFLICT HELP MENU 3 MULTIPLE GOTO ON PIN There is an automatic conflict check when the ENABLE GOTO, GETFROM is set to DISABLED. (This is done at the end of a configuration session). If a conflict is found, the display will give the alarm message GOTO CONFLICT. See 13.3.7 CONFIGURATION / ENABLE GOTO, GETFROM. 13.15.1 CONFLICT HELP MENU / Number of conflicts CONFLICT HELP MENU NUMBER OF CONFLICTS 3 Shows the number of GOTO connections in conflict. NUMBER OF CONFLICTS 0 PARAMETER NUMBER OF CONFLICTS RANGE 0 to 50 Note, there will be at least 2 conflicts for each conflict PIN. Removing one GOTO from the conflict PIN will reduce the conflict number by at least 2. This window has a branch hopping facility to the MULTIPLE GOTO ON PIN window. 13.15.2 CONFLICT HELP MENU / Multiple GOTO conflict PIN identifier CONFLICT HELP MENU 3 MULTIPLE GOTO ON PIN Shows the next PIN with more than 1 GOTO connected MULTIPLE GOTO ON PIN 400 PARAMETER MULTIPLE GOTO ON PIN RANGE 0 to 720 Note, there will be at least 2 conflicts for each conflict PIN. Removing one GOTO from the conflict PIN will reduce the conflict number by 2. The number 400 is block disconnect and indicates no conflicts. This window has a branch hopping facility to the NUMBER OF CONFLICTS window. Installation 203 14 Installation 14 Installation......................................................................................... 203 14.1 Product rating table.................................................................................................... 14.2 Product rating labels ................................................................................................... 14.3 Semiconductor fuse ratings ........................................................................................... 14.3.1 Proprietary AC semi-conductor fuses ............................................................................ 14.3.2 Stock AC semi-conductor fuses ................................................................................... 14.3.3 Proprietary DC semi-conductor fuses ............................................................................ 14.3.4 Stock DC semi-conductor fuses ................................................................................... 14.4 PL/X family cover dimensions ........................................................................................ 14.5 Mechanical dimensions PL/X 5 - 50.................................................................................. 14.6 Mechanical dimensions PL/X 65 - 145............................................................................... 14.7 Mechanical dimensions PL/X 185 - 265 ............................................................................. 14.8 Line reactors ............................................................................................................ 14.9 Wiring instructions ..................................................................................................... 14.9.1 Wiring diagram for AC supply to L1/2/3 different to EL1/2/3. (E.g. Low voltage field)............... 14.10 Terminal tightening torques .......................................................................................... 14.11 Installation guide for EMC ............................................................................................. 14.11.1 3-phase power supply port ....................................................................................... 14.11.2 Earthing and screening guidelines .............................................................................. 14.11.3 Earthing diagram for typical installation ...................................................................... 14.11.4 Guidelines when using filters .................................................................................... 14.12 Approvals UL, cUL, CE ................................................................................................. 14.12.1 CE Immunity ........................................................................................................ 14.12.2 CE Emissions ........................................................................................................ 14.12.3 UL, cUL .............................................................................................................. 14.13 What to do in the event of a problem .............................................................................. 14.13.1 A simple clarification of a technical issue..................................................................... 14.13.2 A complete system failure ....................................................................................... Please also refer to Part 3 PL/X 275-980 for extra details of frame 4 and 5 high power drives. 204 204 204 205 205 206 206 207 208 209 210 212 213 213 214 215 215 215 216 217 217 217 217 217 218 218 218 204 Installation 14.1 Product rating table Model PL 2Q PLX 4Q Output power At At 500V 460V Max continuous Current (AMPS) Maximum field output current (DC Amps) Standard Option Main fuses max I 2t Maximum Auxiliary Fuse ratings Amp I 2t Line reac -tor type Cooling air flow and dissipation cfm watts 8 8 8 8 8 8 8 600 600 600 5000 5000 5000 11850 20 20 20 20 20 20 20 365 365 365 365 365 365 365 LR48 LR48 LR48 LR48 LR120 LR120 LR120 17 17 17 17 35 35 35 45 80 120 120 200 300 320 60000 60000 128000 128000 20 20 20 20 365 365 365 365 LR330 LR330 LR330 LR330 60 60 60 60 350 475 650 850 240000 240000 306000 50 50 50 5000 5000 5000 LR530 LR530 LR630 180 180 180 1000 1300 1600 PL/X5 PL/X10 PL/X15 PL/X20 PL/X30 PL/X40 PL/X50 Kw 5 10 15 20 30 40 50 HP 7 13 20 27 40 53 67 HP 7.5 15 20 30 40 60 75 Input AC 10 20 30 40 60 80 100 Output DC 12 24 36 51 72 99 123 PL/X65 PL/X85 PL/X115 PL/X145 65 85 115 145 90 115 155 190 100 125 160 200 124 164 216 270 155 205 270 330 16 16 16 16 PL/X185 PL/X225 PL 265 185 225 265 250 300 360 270 330 400 350 435 520 430 530 630 32 32 32 50 50 50 Please also refer to Part 3 PL/X 275-980 for extra details of frame 4 and 5 high power drives. Notes 1) Only use UL fuses for installations complying with UL codes. 2) 2Q models PL/5/10/15/20/30/40/50/145/225 have a regenerative stopping capability. 3) The PL/X 185/225/265 requires 3 auxiliary fuses, (max ratings 50A, I2t 5000), standard type CH00850A. 4) The standard auxiliary fuses in the above table are chosen for the I2t rating. When selecting alternative types the fuse current rating must be at least 1.25 X the field current rating of the motor. The I2t rating of the fuse must not exceed the figure in the table. 5) Please consider the total component dissipation within the enclosure when calculating the required air throughput. This includes the fuses, line reactors and other sources of dissipation. See 14.8 Line reactor and 14.3 Semiconductor fuse ratings for component dissipation ratings. 6) 35 Cubic feet per minute is approximately equivalent to 1 cubic metre per minute. 180 Cubic feet per minute is approximately equivalent to 6 cubic metres per minute. 7) The output power rating shown is at the 100% rating of the drive and is the power available at the shaft for a typical motor. The actual power available will depend on the efficiency of the motor. 8) The high power field output option is an extra cost facility and needs to be specified at the time of order. 14.2 Product rating labels The product rating labels are located on the unit under the upper end cap. The product serial number is unique and can be used by the manufacturer to identify all ratings of the unit. The power ratings and model type are also found here, along with any product standard labels applicable to the unit. 14.3 Semiconductor fuse ratings WARNING. All units must be protected by correctly rated semi-conductor fuses. Failure to do so will invalidate warranty. In general the input AC supply current per phase is 0.8 times the DC output current, and the fuse rating should be approx. 1.25 times the input AC current. The fuses specified in this table have been rated to include the 150% overload capability and operate up to 50C ambient at the maximum drive rating. To select a fuse at other ratings (E.g. when using a motor rated at a lower power than the drive unit or operating at a reduced maximum current limit setting) select a fuse with a current rating closest to the armature current and with an I2t rating less than the maximum shown in the table. If a DC fuse is fitted in series with the armature it must be a DC rated semiconductor type with current rating 1.2 times the motor full load current, DC voltage rating suitable for the maximum armature voltage and with an I2t rating less than the maximum shown in the table. See 14.3.3 Proprietary DC semi-conductor fuses. Installation 205 The rated current for semiconductor fuses is normally given by the fuse manufacturers for copper conductors that have a current density in the order of 1.3 - 1.6 A/mm (IEC 269-4). This low utilisation results in extra copper costs during the installation of high current systems, but helps to prevent overheating of the fuses. Alternatively it is possible to use a fuse of a higher rating, and derate it for use in standard fuseholders and installations. This derating factor is only applied to large fuses for the models PL/X 185/225/265. Hence the fuses in the table for these models have been selected with a further derating to approx. 80% in order that they may be used in a standard fuseholder. No derating is required for installations that do comply with IEC 269-4, and in this case a smaller fuse could be selected in accordance with the recommendations given above. 14.3.1 Proprietary AC semi-conductor fuses Model PL 2Q PLX 4Q Main fuses max I 2t PL/X5 PL/X10 PL/X15 PL/X20 PL/X30 PL/X40 PL/X50 Max cont Current (AMPS) IP OP AC DC 10 12 20 24 30 36 40 51 60 72 80 99 100 123 PL/X65 PL/X85 PL/X115 PL/X145 124 164 216 270 PL/X185 LITTLEFUSE BUSS BUSS EU IR American style Up to 500V ac supply IR BS88 IR DIN Up to 500V ac supply Up to 500V ac supply L50S 12 L50S 25 L50S 40 L50S 50 L50S 80 L50S 100 L50S 125 Up to 500V ac supply FWH 12 FWH 25 FWH 40 FWH 50 FWH 80 FWH 100 FWH 125 Up to 500V ac supply 600 600 600 5000 5000 5000 11850 Up to 250V ac supply L25S 12 L25S 25 L25S 40 L25S 50 L25S 80 L25S 100 L25S 125 170L1013 170L1013 170M1564 170M1566 170M1567 170M1568 XL50F015 XL50F025 XL50F040 XL50F050 XL50F080 XL50F100 XL50F125 Up to 250V ac supply L350-12 L350-25 L350-40 L350-50 L350-80 L350-100 L350-125 155 205 270 330 60000 60000 128000 128000 L25S 175 L25S 225 L25S 275 L25S 350 L50S 175 L50S 225 L50S 275 L50S 350 FWH FWH FWH FWH 175 250 300 350 170M1569 170M3816 170M3816 170M3818 XL50F175 XL50F250 XL50F300 XL50F350 L350-180 T350-250 T350-315 T350-355 661RF00160 661RF00250 661RF00315 661RF00350 350 430 240000 L25S 450 L50S 450 FWH 450 170M5809 XL50F450 661RF00450 PL/X225 435 530 240000 L50S 550 FWH 600 170M5811 XL50F600 PL 265 520 630 306000 No fuse available No fuse available No fuse available FWH 700 170M5811 XL50F700 TT350 -500 TT350 -630 TT350 -710 FWH20A14F Please also refer to Part 3 PL/X 275-980 for extra details of frame 4 and 5 high power drives. 14.3.2 Stock AC semi-conductor fuses Model Output DC Amps I2t [A2s] Main Fuses Aux Fuses PartNo Holder I2t [A2s] PartNo Holder Fuse Kit Line Reactor PL/PLX5 12 90 CH01612A CP105004 55 CH01610A CP105004 FUSEKIT-PL5 LR48 PL/PLX10 24 500 CH00730A CP102053 55 CH01610A CP105004 FUSEKIT-PL10 LR48 PL/PLX15 36 750 CH00740A CP102053 55 CH01610A CP105004 FUSEKIT-PL15 LR48 PL/PLX20 51 770 CH00850A CP102054 55 CH01610A CP105004 FUSEKIT-PL20 LR48 PL/PLX30 72 2550 CH00880A CP102054 55 CH01610A CP105004 FUSEKIT-PL30 LR120 PL/PLX40 99 4650 CH008100 CP102054 55 CH01610A CP105004 FUSEKIT-PL40 LR120 PL/PLX50 123 8500 CH008125 CP102054 55 CH01610A CP105004 FUSEKIT-PL50 LR120 PL/PLX65 155 16000 CH008160 CP102054 245 CH01620A CP105004 FUSEKIT-PL65 LR330 PL/PLX85 205 28500 CH009250 CP102055 245 CH01620A CP105004 FUSEKIT-PL85 LR330 PL/PLX115 270 28500 CH009250 CP102055 245 CH01620A CP105004 FUSEKIT-PL115 LR330 PL/PLX145 330 135000 CH010550 CP102233# 245 CH01620A CP105004 FUSEKIT-PL145 LR330 PL/PLX185 430 135000 CH010550 CP102233# 750 CH00740A CP102053 FUSEKIT-PL185 LR530 PL/PLX225 530 135000 CH010550 CP102233# 750 CH00740A CP102053 FUSEKIT-PL225 LR530 PL265 630 300000 CH010700 CP102233# 750 CH00740A CP102053 FUSEKIT-PL265 LR650 Please also refer to Part 3 PL/X 275-980 for extra details of frame 4 and 5 high power drives.. 661RF0025 661RF0025 661RF0035 661RF0050 661RF0080 661RF00100 661RF00125 661RF2 630 661RF2 700 206 Installation 14.3.3 Proprietary DC semi-conductor fuses For PLX units used in applications in which regeneration occurs for most or all of the time, it is recommended to fit a DC side semi-conductor fuse. This will further protect the unit in the event of an unsequenced power loss when regeneration is taking place Note. It is not normally necessary to use DC fuses with the PL Models but if required then these fuses can be used. Example. A *PL model that allows regenerative stopping is employed on a site that suffers from a higher than normal amount of power brown outs or blackouts. Model PL 2Q PLX 4Q DC fuse max I 2t BUSSMAN EU Up to 500V DC PL/X5 PL/X10 PL/X15 PL/X20 PL/X30 PL/X40 PL/X50 Max cont Current (AMPS) IP OP AC DC 10 12 20 24 30 36 40 51 60 72 80 99 100 123 size 1 1 1 1 1 1 1 Ferraz Shawmut Up to 500V DC UL Rating I 2t 35A 360 35A 360 40A 460 60A 1040 80A 1900 100A 2900 125A 5000 600 600 600 5000 5000 5000 11850 Rating 16A 32A 40A 63A 80A 125A 160A I 2t 48 270 270 770 1250 3700 7500 Buss part no 170M1559 170M1562 170M3808 170M3810 170M3811 170M3813 170M3814 Ferraz part no A50QS35-4 A50QS35-4 A50QS40-4 A50QS60-4 A50QS80-4 A50QS100-4 A50QS150-4 size 1 1 1 1 1 1 1 PL/X65 PL/X85 PL/X115 PL/X145 124 164 216 270 155 205 270 330 60000 60000 128000 128000 200A 250A 315A 400A 15000 28500 46500 105000 170M3815 170M3816 170M3817 170M3819 1 1 1 1 200A 250A 350A 400A A50QS200-4 A50QS250-4 A50QS350-4 A50QS400-4 1 1 1 2 PL/X185 PL/X225 PL 265 350 435 520 430 530 630 240000 240000 306000 500A 550A 630A 145000 170M5810 190000 170M5811 275000 170M5812 2 2 2 500A 97000 A50QS500-4 600A 140000 A50QS600-4 Consult Ferraz Shawmut. 2 2 13000 24000 47000 61000 Please also refer to Part 3 PL/X 275-980 for extra details of frame 4 and 5 high power drives. 14.3.4 Stock DC semi-conductor fuses DC Fuses Model 2 2 I t [A s] PartNo Holder Fuse Kit PL/PLX5 48 CH00816A CP102054 FUSEKIT-PLX5 PL/PLX10 270 CH00832A CP102054 FUSEKIT-PLX10 PL/PLX15 270 CH00940A CP102906 FUSEKIT-PLX15 PL/PLX20 770 CH00963A CP102906 FUSEKIT-PLX20 PL/PLX30 1250 CH00980A CP102906 FUSEKIT-PLX30 PL/PLX40 3700 CH009125 CP102906 FUSEKIT-PLX40 PL/PLX50 7500 CH009160 CP102906 FUSEKIT-PLX50 PL/PLX65 15000 CH009200 CP102906 FUSEKIT-PLX65 PL/PLX85 28500 CH009250 CP102906 FUSEKIT-PLX85 PL/PLX115 46500 CH009315 CP102906 FUSEKIT-PLX115 PL/PLX145 105000 CH009400 CP102906 FUSEKIT-PLX145 PL/PLX185 145000 CH013500 CP102949 FUSEKIT-PLX185 PL/PLX225 190000 CH013550 CP102949 FUSEKIT-PLX225 - - - PL265 The above fuses are specified for operation up to 500V DC for armature circuit time constants up to 10mS. The table below gives maximum typical operating voltage for various time constants. (inductance/resistance) Please refer to the fuse manufacturers data for further information Maximum working DC voltage Maximum allowable time constant 500 10mS 450 20mS 400 30mS 380 40mS 360 50mS Installation 207 14.4 PL/X family cover dimensions Dimension in mm W H D Horizontal Mounting centres Vertical Mounting centres Footprint PL/X 5-50 216 296 175 174 PL/X65-145 216 384 218 174 PL/X185/265 216 384 412 174 224 386 386 258 410 410 See 14.5, 14.6 and 14.7 for unit footprint and busbar dimensions. Please also refer to Part 3 PL/X 275-980 for extra details of frame 4 and 5 high power drives. 208 Installation 14.5 Mechanical dimensions PL/X 5 - 50 Unit weight 5Kg Symbolic drawing shown with end caps removed 14.5.1.1 Mounting PL/X 5 - 50 Four corner slots are provided to mount the unit. Use M6 (1/4 in) screws. All mounting hole dimensions are +/- 2 mm. A substantial earth connection should be made to the busbar provided. Nominal cooling air throughput is specified in the rating table. (Use cool, clean, dry, filtered air). Do not block the heatsink fins. Allow at least 50mm (2 in) space above and below the unit. Ensure connections to power terminals are tight. Power terminal fastenings are M6. See 14.10 Terminal tightening torques. The units must be orientated vertically as shown. The dimensions on this drawing are for the footprint. Overall dimensions are Width 216 Height 296 Unit weight 5Kg Depth 175 Installation 209 14.6 Mechanical dimensions PL/X 65 - 145 Unit weight 11Kg Symbolic drawing shown with end caps removed AC busbar depth 112mm 3 AC power terminals Auxiliary terminals Control terminals International ground symbol (black on green background) identifies main equipment ground connection on heatsink 2 DC power terminals Main earth terminal Earth Stud depth 80mm Arm Busbar depth 103mm Overall depth 218mm 14.6.1.1 Mounting PL/X 65 - 145 Four corner slots are provided to mount the unit. Use M8 (5/16 in) screws. All mounting hole dimensions are +/- 2 mm. A substantial earth connection should be made to the busbar provided. Nominal cooling air throughput is specified in the rating table. (Use cool, clean, dry, filtered air). Do not block the heatsink fins. Allow at least 100mm (4 in) space above and below the unit. Ensure connections to power terminals are tight. Power terminal fastenings are M10 See 14.10 Terminal tightening torques. Mount the main contactor so as to avoid mechanical operating shock being transmitted to PL/X busbars. E. g. Ensure Line reactor is fitted between contactor and PL/X. The units must be orientated vertically as shown. The dimensions on this drawing are for the footprint. Overall dimensions are Width 216 Unit weight 11Kg Height 410 Depth 218 210 Installation 14.7 Mechanical dimensions PL/X 185 - 265 Unit weight 17Kg. Symbolic drawing shown with end caps removed 14.7.1.1 Mounting PL/X 185 - 265 Four corner slots are provided to mount the unit. Use M8 (5/16 in) screws. All mounting hole dimensions are +/- 2 mm. The dimensions on this drawing are for the footprint. A substantial earth connection should be made to the busbar provided. Nominal cooling air throughput is specified in the rating table. (Use cool, clean, dry, filtered air). Allow at least 100mm (4 in) space above and below the unit. Ensure connections to power terminals are tight. Power terminal fastenings are M10. See 14.10 Terminal tightening torques. Mount the main contactor so as to avoid mechanical operating shock being transmitted to PL/X busbars. E. g. Ensure Line reactor is fitted between contactor and PL/X. Busbar depth 187mm 3 AC power terminals Control terminals Auxiliary terminals 2 DC power terminals International ground symbol (black on green background) identifies main equipment ground connection on heatsink Earth Stud depth 47mm Arm Busbar depth 188mm Overall depth 314mm The units must be orientated vertically as shown. A template is provided to assist in cutting the venting aperture. These models require an additional 110V AC 50VA fused supply for the main fan. The connection terminals are at the top left hand corner of the unit. The first time the unit is used and the main contactor energised, confirm that the internal fan is operating. This will be evident by a strong airflow over the top and bottom busbars towards the front of the enclosure Unit weight 17Kg Installation 211 14.7.1.2 Venting models PL/X 185 - 265 using back panel aperture Use the template provided to assist in cutting the aperture in the back panel Roo f fans B a c k p la t e 1 0 0 m m m in e x t e n s io n This is the preferred method of mounting because it allows the maximum amount of cool air to flow over the heatsink of the drive. A ir f l o w For installations requiring a 50C internal enclosure ambient this method is necessary. The source of clean, filtered, cool, dry air for venting the unit must arrive at the bottom of the enclosure. It must then be able to flow freely to the rear of the backplate as shown. There must be no obstructions to the flow of air on its journey to the back aperture. There is a very powerful fan integral to the PL/X which will suck this air into the rear of the unit. After passing over the heatsink it is exhausted at the top and bottom of the unit. The exhaust air must then be extracted from the enclosure via roof mounted fans capable of a throughput rate specified in the rating table. Note, when calculating the required air throughput, it is necessary to consider the dissipation of all heat generating components. The dissipation in watts for the PL/X, main fuses and line reactors, is provided in the relevant sections. See 14.1 Product rating table. A ir f lo w D o or m ou nted a ir f ilt e r in t a k e A ir f lo w B a c k p la t e 1 0 0 m m m in e x t e n s io n m i n im u m g a p 5 0 m m 14.7.1.3 Venting models PL/X 185 - 265 using standoff pillars Ro of fan s This method of mounting may be the only practical technique in retrofit installations where cutting an aperture in the back panel is not possible. The unit is provided with a mounting kit consisting of four 50mm pillars. The maximum enclosure ambient temperature using this method is 35C. There must be no obstructions to the flow of air on its journey to the rear of the PL/X. B a c k p la t e D r iv e o n 5 0 m m s t a n d o f f p ill a r s A ir f lo w The reason for the reduced ambient rating is that some of the exhaust air may be recirculated over the heatsink, leading to a loss of efficiency. Any steps that can be taken to minimise this are advantageous. (The 35C rating applies to installations where there is not complete separation of the incoming air from the cooling air). A ir f l o w If it is possible to provide an air duct with an aperture area of greater than 180 sq. cm. that can transport air unimpeded to the rear of the PL/X, then this solution is as effective as the back panel aperture method described above. D o or m ou nted a ir f ilt e r in t a k e A ir f l o w 212 Installation 14.8 Line reactors Only use CSA/UL certified line reactors for installations complying with CSA/UL codes. These line reactors are not certified. Refer to supplier for certified alternatives. Model PL 2Q PLX 4Q Output power At At 460V 500V Max continuous Current (AMPS) Line reactor Type PL/X5 PL/X10 PL/X15 PL/X20 PL/X30 PL/X40 PL/X50 Kw 5 10 15 20 30 40 50 HP 7 13 20 27 40 53 67 HP 7.5 15 20 30 40 60 75 Input AC 10 20 30 40 60 80 100 Output DC 12 24 36 51 72 99 123 LR48 LR48 LR48 LR48 LR120 LR120 LR120 PL/X65 PL/X85 PL/X115 PL/X145 65 85 115 145 90 115 155 190 100 125 160 200 124 164 216 270 155 205 270 330 LR330 LR330 LR330 LR330 PL/X185 PL/X225 PL 265 185 225 265 250 300 360 270 330 400 350 435 520 430 530 630 LR530 LR530 LR630 Please also refer to Part 3 PL/X 275-980 for extra details of frame 4 and 5 high power drives. Installation 213 14.9 Wiring instructions Note. The PL/X controller is an open chassis component for use in a suitable enclosure. Only qualified personnel should install, commission and service this apparatus according to the safety codes in force. 1) All units must be protected by correctly rated semi-conductor fuses. (3 main fuses and 3 auxiliary fuses) Failure to do so will invalidate warranty. See 14.3 Semiconductor fuse ratings. A DC armature fuse for regenerative applications is highly recommended. See 14.3.3 Proprietary DC semi-conductor fuses. 2) Power wiring should utilise cables with a minimum rating of 1.25 X full load current. Control wiring should have a minimum cross-section of 0.75mm2 . Copper conductors must be rated 60C, or 75C over 100 Amps. 3) A substantial ground or earth connection should be made to the earth terminal on the drive identified by the international ground symbol. A control clean protective earth connection must be made to terminal 13. 4) A 3 phase contactor must be connected in the main AC supply with suitable voltage and current ratings. (AC1). The contactor is not required to switch current and is employed in the sequencing and carrying of power to the unit. The contactor coil must be provided with a suitable control supply which is applied by the controller to the contactor coil using terminals 45 and 46. If for safety reasons it is mandated that the contactor coil must be able to be de-energised externally to the drive, then it must be arranged that the CSTOP terminal 35 is opened at least 100mS prior to the opening of the main contactor. Failure to achieve this will prevent the armature current from being able to commutate to zero prior to supply removal and may result in damage to the unit. Failure to heed this warning will invalidate warranty. See 4.3 Main contactor wiring options, for advice on using DC side contactors, or other power sequencing options. 5) For contactor coils with a VA rating that exceeds the ratings of terminals 45 and 46, it is necessary to utilise a slave relay of suitable rating to drive the contactor coil. Note. If the users main contactor has a final closing time delay of greater than 75mS, then it is essential that an auxiliary normally open contact on the main contactor is inserted in series with the RUN input on T31, alternatively use contactor wiring method shown in 4.3.2. This will prevent the unit from trying to deliver power until the main contact has closed. 6) A 3 phase line reactor must be in series with the AC supply, between the contactor and power terminals. This also helps to avoid main contactor mechanical operating shock being transmitted to PL/X busbars. 7) The phase rotation of the 3 phase supply is not important. However it is essential that there is phase equivalence for L1 to EL1, L2 to EL2 and L3 to EL3. Particular care must be taken if L1/2/3 and EL1/2/3 are fed from different sides of a transformer. If the transformer is star delta then there will be a phase mismatch and the unit will fail to operate correctly. Only use star - star or delta - delta transformers. 8) For PLX units used in applications in which regeneration occurs for most or all of the time, it is recommended to also fit a DC side semi-conductor fuse. This will further protect the unit in the event of an unsequenced power loss when regeneration is taking place. 9) All connections to control terminals 1 to 36 must be referred to earth. 10) If it is necessary to perform high voltage or dielectric tests on the motor or wiring, then the drive unit must be disconnected first. Failure to do so will invalidate warranty. 14.9.1Wiring diagram for AC supply to L1/2/3 different to EL1/2/3. (E.g. Low voltage field) It is not uncommon for the armature voltage and the field voltage of motors to be sufficiently different to merit supplying them with different levels of AC voltage. This is particularly true for old motors. The PL/X is provided with independent control bridges and supply inputs for the armature (L1/2/3) and field (EL1/2/3). Normally the L1/2/3 and EL1/2/3 ports are fed with the same AC supply voltage, and if for example, the field voltage is lower than would normally be expected for the prevailing supply, then the control loop will phase back the output voltage accordingly. 214 Installation However when the difference becomes excessive it may be preferable to feed the 2 power ports from different supply voltages. The reason for this is usually to prevent high peak voltages from being imposed on a winding where the supply voltage is much higher than the winding rating. Also a winding that was designed to run at full voltage fully phased forward, will be subjected to a worse form factor when run continuously phased right back, leading to overheating. The wiring diagram below shows the preferred method of supplying the ports with different AC voltages. It uses a single phase isolated transformer from L2 / 3 levels to EL2 / 3 to suit field. E. g. The motor armature may be rated at 460V DC to be supplied from a 415V AC supply, and the field voltage may be rated at 100V DC, originally designed to be supplied from a rectified 110V AC supply. 3 phase supply at high voltage. E.g. 460V AC. Phased as per L1/2/3 EL1 and EL2 supplied with 460V AC. Phase equivalent to L1 and L2, and routed according to preferred contactor arrangement. EL2 has high and low voltage connections, made possible because the transformer secondary is floating. EL1 EL2 EL3 Isolated single phase step down transformer is fed from the phase equivalent of L2 and L3 provides 130V AC to EL2 and EL3. VA must be sufficient to supply required field current. EL2/3 semi-conductor fuses fitted on the secondary of the transformer. See note 5 The advantages of this method are: 1) Only requires low cost easily available single phase transformer. 2) The EL1/2 connections do not suffer any phase lags or leads because they are still connected as per standard schemes. This is important because the synchronisation is sensed through EL1/2. 3) This scheme works equally well for step up or down transformers. 4) The phase equivalence of EL1/2/3 must always relate to L1/2/3. 5) The inrush current of the transformer will probably blow the semi-conductor fuses. Hence they should be fitted on the secondary of the transformer for EL2/3. HRC fuses should be fitted in the primary feeds. 6) The field voltage required in the above example is 100V, probably originally designed to be operated from a rectified 110V supply. However with the ability to control the field current available within the PL/X, it is preferable to feed the field supply with a higher voltage, e.g. 130V. This provides the control loop with a supply margin in order to control more effectively. WARNING. The field to earth voltage of the motor must be rated for the voltage applied to EL2. 4) See 6.1.16 CALIBRATION / EL1/2/3 rated AC volts PIN 19 QUICK START. This must be set to the lower of the two AC voltages, which would be 130V AC in the above example. WARNING. 8.1.11.11 DRIVE TRIP MESSAGE / Supply phase loss. This detector may then be ineffective for loss of EL1. However 8.1.11.12 DRIVE TRIP MESSAGE / Synchronization loss will detect a loss on EL1. 5) See 4.3 Main contactor wiring options for details of wiring to L1/2/3 according to contactor requirements. 14.10 Terminal tightening torques Terminals Terminals 1 to 100 Model PL/X 5-265 Tightening torque 4 lb-in or 0.5 N-m EL1 EL2 EL3 F+ FEL1 EL2 EL3 F+ F- PL/X 5-145 PL/X 185-265 9 lb-in or 1.0 N-m 35 lb-in or 3.9 N-m L1 L2 L3 A+ APL/X 5-50 35 lb-in or 3.9 N-m L1 L2 L3 A+ APL/X 65-265 242 lb-in or 27 N-m Fan terminals PL/X 185-265 9 lb-in or 1.0 N-m Please also refer to Part 3 PL/X 275-980 for extra details of frame 4 and 5 high power drives. Installation 215 14.11 Installation guide for EMC Special consideration must be given to installations in member states of the European Union regarding noise suppression and immunity. According to IEC 1800-3 (EN61800-3) the drive units are classified as Basic Drive Modules (BDM) only for professional assemblers and for the industrial environment. Although CE Marking is made against the EMC Directive, application of EN 61800-3 means that no RF emission limits apply. The drive manufacturer is responsible for the provision of installation guidelines. The resulting EMC behaviour is the responsibility of the manufacturer of the system or installation. The units are also subject to the LOW VOLTAGE DIRECTIVE 73/23/EEC and are CE marked accordingly. Following the procedures outlined will normally be required for the drive system to comply with the European regulations, some systems may require different measures. Installers must have a level of technical competence to correctly install. Although the drive unit itself does not require control of RF emissions, it has been designed and tested to comply with the most stringent emissions and immunity requirements on all ports. 14.11.1 3-phase power supply port The 3-phase power supply port is subject to alternative guidelines, as described below. Compliance with emissions limits on this port may or may not be required depending on the environment. If required then compliance can be achieved by fitting a separate filter unit, contact supplier for details. EN61800-3 specifies 2 alternative operating environments. These are the domestic (1st environment) and industrial (2nd environment). There are no limits specified for conducted or radiated emissions in the Industrial environment, hence it is usual for the filter to be omitted in industrial systems. Definition of an industrial environment: Includes all establishments other than those directly connected to a low voltage power supply network which supplies buildings used for domestic purposes. In order to meet mains conducted emissions limits on this port for the 1st environment, a separate filter is required. Please refer to supplier for a suitable filter to meet the Class A (EN 61800-3 restricted distribution, domestic environment). 14.11.2 Earthing and screening guidelines Important points to note are: A separate earth conductor is taken from the motor housing and is run adjacent to the drive conductors right up to the main earth terminal on the drive. This conductor should not be grounded separately to any other earth point. The drive earth terminal should be separately taken to the cabinet star earth point or earth busbar, as should the 0V connection reference at Terminal 13. Motor drive and three-phase supply cables should be segregated from other cables in the cabinet, preferably by a distance of at least 300mm. Motor drive cables can be screened or armoured, especially if they pass near other sensitive apparatus, and the screening should be bonded to the motor housing and the point of entry of the cabinet using 360º gland techniques. It is understood that the bonding of both ends of the screening and earth conductors may result in significant earth current flow if the motors and control cabinet are in widely different locations, so that there are large earth potential differences. In these circumstances it is recommended that a separate parallel earth conductor (PEC), which may be a bonded metal conduit, is used alongside the drive cables to give a preferential route for this current. See IEC 61000-5-2 for more detail. Installation in conformance with this standard is regarded as good practice and will result in improved EMC of the whole system. WARNING Safety earthing always takes precedence over EMC earthing. M A IN IN P U T F IL T ER FU S ES , M A IN C ON TA C T ORS, L IN E R EA C T O R S B A C K PL A T E F IL T ER C A S E B O N D ED T O BA C K PL A T E C L EA N EA R T H FO R C ON TRO L S IG N A L S F IN C O M IN G S A F ET Y EA R T H D R IV E E A R T H S C O N N EC T E D T O S T A R PO IN T C H A S S IS EA R T H D R IV E 1 L1 L2 L3 T1 3 A C O N T R O L C A B IN ET F M OT OR C A BLE EA R T H S C O N N EC T ED D IR EC T L Y T O C H A S S IS EA R T H C H A S S IS EA R T H D R IV E 2 L1 L2 L3 T13 A O U T G O IN G M O T O R C A B L E T ER M IN A L S ( M O T O R EA R T H S IS O L A T ED , N O T EA R T H ED A T T H IS P O IN T ) M O T O R EA R T H S R U N A L O N G S ID E D R IV E C A B L ES IN C A B IN ET S EG R EG A T ED C O N D U IT > 3 0 0 m m F R O M O T H ER C A B L ES F O R M O T O R C A B L ES A N D S U P P L Y M OTOR 1 C O N T R O L A N D S IG N A L C A B L ES S H O U L D B E S C R EEN ED W IT H T H EIR S C R EEN C O N N EC T ED O N L Y A T T H E D R IV E M O D U L E, T O A 0 V T ER M IN A L M O T O R C A B L ES M U S T H A V E A S EP ER A T E IN T ER N A L EA R T H C O N D U C T ER T H A T IS B O N D ED A T O N E EN D T O T H E D R IV E C H A S S IS EA R T H A N D A T T H E O T H ER EN D T O T H E M O T O R C A S E. EX T ER N A L S C R EEN IN G O R A R M O U R IN G IS R EC O M M EN D ED A N D S H O U L D B E EA R T H B O N D ED A T B O T H EN D S D R IV E M O D U L ES S H O U L D B E S EG R EG A T ED B Y > 3 0 0 m m FR O M O T H ER A P P A R A T U S A N D S H O U L D B E A S C L O S E A S P O S S IB L E T O T H EIR O U T G O IN G C A B L E T ER M IN A L S M OTOR 2 216 Installation 14.11.3 Earthing diagram for typical installation Installation 217 14.11.4 Guidelines when using filters IM P O R T A N T S A F E T Y W A R N IN G S T h e A C s u p p ly f ilt e r s m u s t n o t b e u s e d o n s u p p lie s t h a t a r e u n - b a la n c e d o r f lo a t w it h re s p e c t t o e a rt h T h e d r i v e a n d A C f i lt e r m u s t o n l y b e u s e d w it h a p e rm a n e n t e a rt h c o n n e c t io n . N o p lu g s / s o c k e t s a r e a llo w e d in t h e A C s u p p ly T h e A C s u p p l y f i lt e r c o n t a i n s h ig h v o lt a g e c a p a c it o r s a n d s h o u l d n o t b e t o u c h e d f o r a p e rio d o f 2 0 s e c o n d s a f t e r t h e r e m o v a l o f t h e A C s u p p ly 1) The AC connections from the filter to the drive must be less than 0.3m or if longer correctly screened. 2) The AC filter, drive earth and motor cable screen should connect directly to the metal of the cabinet. 3) Do not run filtered and unfiltered AC supply cables together. 4) The AC input filter has earth leakage currents. RCD devices may need to be set at 5% of rated current. 5) The AC supply filter must have a good earth connection to the enclosure back plane. Take care with painted metal. Remove paint and ensure good connection. 14.12 Approvals UL, cUL, CE EMC Compliance statement for PL/X This apparatus complies with the protection requirements of the EMC Directive 89/336/EEC as follows: 14.12.1 CE Immunity The unit complies with the following standards: EN 50082-2-1995 - generic immunity standard - industrial environment EN 50082-1-.1997 - generic immunity standard - residential, commercial and light industry EN 61800-3:2004 and prA1: 2012 - Adjustable speed electrical power drive systems - EMC product standard including specific test methods - first and second environments Performance criteria: No change of state or stored data, temporary variation in analogue input or output level < I% 14.12.2 CE Emissions Control supply port and control signal port: Conducted and radiated emissions comply with the following standards-. EN 50081-2:1993 - generic emissions standard - industrial environment (EN 55011 Class A) EN 50081-1:1992 - generic emissions standard - industrial environment (EN 55022 Class B) EN 61800-3:2004 and prA1: 2012 - Adjustable speed electrical power drive systems - EMC product standard including specific test methods - first and second environments, restricted or unrestricted distribution. Mains harmonics: The control supply port active input power is less than 5OW with the class D waveshape and therefore meets EN 61000-3-2:1995 with no limits applied. 3-phase motor supply port: Class B (EN 61800-3 unrestricted distribution, industrial environment) limits. No filter required. In order to meet Class A (EN 61800-3 restricted distribution, domestic environment) mains conducted emissions limits on this port, a separate filter is required. Please refer to supplier. 14.12.3 UL, cUL The PL/X range frame 1, 2, 3 is UL and cUL listed. File number E168302. 218 Installation 14.13 What to do in the event of a problem If there is a problem with the PL/X that you cannot solve without assistance then it may be necessary for you to contact the equipment supplier for help. Problems can vary between :1) A simple clarification of a technical issue, to 2) A complete system failure. 14.13.1 A simple clarification of a technical issue Problems of the first variety can normally be resolved quickly by telephone, fax or email. When sending information about your enquiry please include the following information. a) The product serial number. This is found under the top end cap. b) The software version number (if possible). See 11.5 Remotely mounted display unit. If you are making a telephone enquiry please have this manual to hand at the time of the call. 14.13.2 A complete system failure For more serious problems of the 2nd variety it is necessary for you to provide the following information, or if making a telephone call, have the information to hand. The engineer providing assistance may ask you to send some or all of this to him. a) The product serial number. This is found under the top end cap. b) The software version number (if possible). See 11.4 DISPLAY FUNCTIONS / Software version. c) Wiring diagram of the PL/X installation with details of external signals connected to the PL/X. d) Machine schematic with details of intended function of motor being driven by the PL/X. e) All possible motor details. f) Precise description of fault condition including any alarm messages issued by the PL/X. g) If possible, any information about the operating conditions prior to, and at, the point of the failure. h) A menu listing or a list of parameters that have been changed from the default values. Or recipe file. i) Is the PL/X being commissioned for the first time. If so have you ticked the boxes in section 4.4 ESSENTIAL prestart checks. The engineer providing assistance is aware of the prime importance of providing a solution, and also understands, through experience, that you may be working in hostile conditions. WARNING Take careful note of all the information in section 2 Warnings, and in particular section 2.3 General Risks when performing measurements and investigating failures. This applies to electrical and mechanical systems. PIN number tables 219 15 PIN number tables 15.1 Numeric tables Key to PROPERTIES. R=in REDUCED MENU, P=Not changed by 4-key reset, S=STOP DRIVE TO ADJUST 15.1.1Change parameters 2 - 121 Property Paragraph Range Default R 6.1.2 6.1.3 6.1.4 6.1.5 6.1.6 6.1.7 6.1.8 6.1.9 6.1.10.1 6.1.10.2 6.1.10.3 6.1.10.4 6.1.11 6.1.12 6.1.13 6.1.14 6.1.15 6.1.16 6.1.17 6.2.2 6.2.3 6.2.4 6.2.5 6.2.6 6.2.7 6.2.8 6.2.9 6.2.10 6.2.11 6.2.12 6.2.13 6.2.14 6.2.15 6.2.16 Menu / Description Reserved c CALIBRATION / Current limit% PIN 3 QUICK START CALIBRATION / Rated field amps PIN 4 QUICK START CALIBRATION / Base rated motor rpm PIN 5 QUICK START CALIBRATION / Desired max rpm PIN 6 QUICK START CALIBRATION / Zero speed offset PIN 7 CALIBRATION / Max tacho volts PIN 8 CALIBRATION / Speed feedback type PIN 9 QUICK START ENCODER SCALING / Quadrature enable PIN 10 ENCODER SCALING / Encoder lines PIN 11 ENCODER SCALING / Motor / encoder speed ratio PIN 12 ENCODER SCALING / Encoder sign PIN 13 CALIBRATION / IR compensation PIN 14 CALIBRATION / Field current feedback trim PIN 15 CALIBRATION / Armature volts trim PIN 16 CALIBRATION / Analog tach trim PIN 17 CALIBRATION / Rated armature volts PIN 18 QUICK START CALIBRATION / EL1/2/3 Rated AC volts PIN 19 CALIBRATION / MOTOR 1 or 2 select PIN 20 RUN MODE RAMPS / Ramp output monitor PIN 21 RUN MODE RAMPS / Forward up time PIN 22 RUN MODE RAMPS / Forward down time PIN 23 RUN MODE RAMPS / Reverse up time PIN 24 RUN MODE RAMPS / Reverse down time PIN 25 RUN MODE RAMPS / Ramp input PIN 26 RUN MODE RAMPS / Forward minimum speed PIN 27 RUN MODE RAMPS / Reverse minimum speed PIN 28 RUN MODE RAMPS / Ramp automatic preset enable PIN 29 RUN MODE RAMPS / Ramp external preset enable PIN 30 RUN MODE RAMPS / Ramp preset value PIN 31 RUN MODE RAMPS / Ramp S profile % PIN 32 RUN MODE RAMPS / Ramp hold enable PIN 33 RUN MODE RAMPS / Ramping flag threshold PIN 34 RUN MODE RAMPS / Ramping flag PIN 35 R/P/S R/P R/P/S R/P/S R/P R/P R/P/S R/P/S R/P/S R/P/S R/P/S R/P/S R/P R/P R/P R/P R/P/S R/P/S R/P R R R R R 33% -100% 0 - 150.00% 0.1 –100% A 0 - 6000 rpm 0 - 6000 rpm 0 – +/-5.00% +/-200.00 V 0, 1, 2, 3, 4 0–1 1 – 6000 0 – 3.0000 0–1 0 – 100.00 % 1 – 1.1000 1 – 1.1000 1 – 1.1000 0 – 1000.0 V 0 – 1000.0 V 0-1 +/-100.00% 0.1 – 600.0 s 0.1 – 600.0 s 0.1 – 600.0 s 0.1 – 600.0 s +/-105.00% 0 - 105.00% 0 - -105.00% 0-1 0-1 +/-300.00% 0.0- 100.00% 0–1 0.0- 100.00% 0-1 R R R R R R R 6.3.2 6.3.2 6.3.3 6.3.3 6.3.4 6.3.5 6.3.6 JOG CRAWL SLACK JOG CRAWL SLACK JOG CRAWL SLACK JOG CRAWL SLACK JOG CRAWL SLACK JOG CRAWL SLACK JOG CRAWL SLACK +/-100.00% +/-100.00% +/-100.00% +/-100.00% +/-100.00% 0-1 0.1 – 600.0 s 6.4.2 6.4.3 6.4.3 6.4.4 6.4.4 6.4.5 6.4.5 6.4.6 6.4.7 6.4.8 MOTORISED POT MOTORISED POT MOTORISED POT MOTORISED POT MOTORISED POT MOTORISED POT MOTORISED POT MOTORISED POT MOTORISED POT MOTORISED POT 33% Amps 150.00% 25% Amps 1500 rpm 1500 rpm 0.00% 60.00 V 0 (AVF) Disabled 1000 1.0000 Non-invert 0.00% 1.0000 1.0000 1.0000 460.0 V 415.0 V MOTOR 1 0.00% 10.0 10.0 10.0 10.0 0.00% 0.00% 0.00% Enabled Disabled 0.00% 2.50% Disabled 0.50% LOW 0 5.00% -5.00% 5.00% -5.00% 10.00% Disabled 1.0 secs 0 0.00% 10.0 secs 10.0 secs Disabled Disabled 100.00% -100.00% Disabled 0.00% Disabled 0 / Jog speed 1 PIN 37 / Jog speed 2 PIN 38 / Slack speed 1 PIN 39 / Slack speed 2 PIN 40 / Crawl speed PIN 41 / Jog mode select PIN 42 / Jog/Slack ramp PIN 43 RAMP / Motor pot output monitor PIN 45 RAMP / MP Up time PIN 46 RAMP / MP Down time PIN 47 RAMP / MP Up command PIN 48 RAMP / MP Down command PIN 49 RAMP / MP Maximum clamp PIN 50 RAMP / MP Minimum clamp PIN 51 RAMP / MP preset enable PIN 52 RAMP / MP Preset value PIN 53 RAMP / MP memory boot up mode PIN 54 +/-300.00% 0.1 – 600.0 s 0.1 – 600.0 s 0-1 0-1 +/-300.00% +/-300.00% 0-1 +/-300.00% 0-1 PIN 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 220 R PIN number tables 6.5.2 6.5.3 6.5.4 6.5.5 6.5.6 STOP MODE STOP MODE STOP MODE STOP MODE STOP MODE R R R R R R 6.6.2 6.6.3 6.6.4 6.6.5 6.6.6 6.6.7 SPEED REF SUMMER / Internal speed reference 1 PIN 62 SPEED REF SUMMER / Auxiliary speed reference 2 PIN 63 SPEED REF SUMMER / Speed reference 3 monitor PIN 64 SPEED REF SUMMER / Ramped speed reference 4 PIN 65 SPEED REF SUMMER / Speed/ Current reference 3 sign PIN 66 SPEED REF SUMMER / Speed/ Current reference 3 ratio PIN 67 +/-105.00% +/-105.00% +/-105.00% +/-105.00% 0-1 +/-3.0000 R R R R 6.7.2 6.7.3 6.7.4 6.7.5 6.7.6 6.7.7.1 6.7.7.2 6.7.7.3 6.7.7.4 6.7.7.5 6.7.7.6 SPEED CONTROL / Max+ speed reference PIN 69 SPEED CONTROL / Max- speed reference PIN 70 SPEED CONTROL / Speed proportional gain PIN 71 SPEED CONTROL / Speed integral time constant PIN 72 SPEED CONTROL / Speed integral reset PIN 73 SPEED PI ADAPTION / Low break point PIN 74 SPEED PI ADAPTION / High break point PIN 75 SPEED PI ADAPTION / Low point proportional gain PIN 76 SPEED PI ADAPTION / Low integral time constant PIN 77 SPEED PI ADAPTION / Integral % during ramp PIN 78 SPEED PI ADAPTION / Adapt input enable PIN 79 0 - 105.00% 0 - -105.00% 0 – 200.00 .001-30.000s 0-1 0 – 100.00% 0 – 100.00% 0 - 200 .001-30.000s 0 – 100.00% 0-1 R S S 6.8.2 6.8.3.1 6.8.3.2 6.8.4.1 6.8.4.2 6.8.4.3 6.8.4.4 6.8.5 6.8.6 6.8.7 6.8.8 6.8.9 6.8.10 6.8.11 6.8.12 6.8.13 6.8.14 CURRENT CONTROL / Current clamp scaler PIN 81 CURRENT OVERLOAD / Overload % target value PIN 82 CURRENT OVERLOAD / Overload ramp time PIN 83 I DYNAMIC PROFILE / I Profile enable PIN 84 I DYNAMIC PROFILE / Speed break point at high current PIN 85 I DYNAMIC PROFILE / Speed break point at low current PIN 86 I DYNAMIC PROFILE / Current limit at low current PIN 87 CURRENT CONTROL / Dual current clamps enable PIN 88 CURRENT CONTROL / Upper current clamp PIN 89 CURRENT CONTROL / Lower current clamp PIN 90 CURRENT CONTROL / Extra current reference PIN 91 CURRENT CONTROL / Autotune enable PIN 92 CURRENT CONTROL / Current amp proportional gain PIN 93 CURRENT CONTROL / Current amp integral gain PIN 94 CURRENT CONTROL / Discontinuous current point PIN 95 CURRENT CONTROL / 4-quadrant mode enable PIN 96 CURRENT CONTROL / Speed bypass current demand enable PIN 97 0 - 150.00% 0 - 105.00% 0 – 20.0 s 0-1 0 - 105.00% 0 - 105.00% 0 - 150.00% 0-1 +/-100.00% +/-100.00% +/-300.00% 0-1 0 – 200.00 0 – 200.00 0 – 200.00% 0-1 0-1 6.9.2 6.9.3 6.9.4 6.9.5 6.9.6.1 6.9.6.2 6.9.6.3 6.9.6.4 6.9.6.5 6.9.6.6 6.9.6.7 6.9.6.8 6.9.7 6.9.8 6.9.9 6.9.10 6.10.2 6.10.3 6.10.4 6.10.5 6.10.6 6.10.7 6.10.8 6.10.9.2 FIELD CONTROL / Field enable PIN 99 FIELD CONTROL / Voltage output % PIN 100 FIELD CONTROL / Field proportional gain PIN 101 FIELD CONTROL / Field integral gain PIN 102 WEAKENING MENU / Field weakening enable PIN 103 WEAKENING MENU / Field weakening proportional gain PIN 104 WEAKENING MENU / Field weakening integral TC PIN 105 WEAKENING MENU / Field weakening derivative TC PIN 106 WEAKENING MENU / Field weakening feedback deriv TC PIN 107 WEAKENING MENU / Field weakening feedback int TC PIN 108 WEAKENING MENU / Spillover armature voltage % PIN 109 WEAKENING MENU / Minimum field current % PIN 110 FIELD CONTROL / Standby field enable PIN 111 FIELD CONTROL / Standby field value PIN 112 FIELD CONTROL / Field quench delay PIN 113 FIELD CONTROL / Field reference PIN 114 ZERO INTERLOCKS / Standstill enable PIN 115 ZERO INTERLOCKS / Zero reference start enable PIN 116 ZERO INTERLOCKS / Zero interlocks speed level PIN 117 ZERO INTERLOCKS / Zero interlocks current level PIN 118 ZERO INTERLOCKS / At zero reference flag PIN 119 ZERO INTERLOCKS / At zero speed flag PIN 120 ZERO INTERLOCKS / At standstill flag PIN 121 SPINDLE ORIENTATE / Zero speed lock PIN 122 0 -1 0 - 100.00% 0 - 1000 0 - 1000 0-1 0 - 1000 0 – 20000 ms 10 – 5000 ms 10 – 5000 ms 10 – 5000 ms 0 – 100.00% 0 – 100.00% 0-1 0 – 100.00% 0 – 600.0 s 0 – 100.00% 0-1 0-1 0 – 100.00% 0 – 100.00% 0-1 0-1 0-1 0 – 100.00 R S R R R R/S R/S R/P S R R R RAMP / Stop ramp time PIN 56 RAMP / Stop time limit PIN 57 RAMP / Live delay mode PIN 58 RAMP / Drop-out speed PIN 59 RAMP / Drop-out delay PIN 60 0.1 – 600.0 s 0.0 – 600.0 s 0-1 0 – 100.00% 0.1 – 600.0 s 10.0 secs 60.0 secs Disabled 2.00% 1.0 secs 0 0.00% 0.00% 0.00% 0.00% Non-invert 1.0000 0 105.00% -105.00% 15.00 1.000 s Disabled 1.00% 2.00% 5.00 1.000 secs 100.00% Enabled 0 150.00% 105.00% 20.0 secs Disabled 75.00% 100.00% 100.00% Disabled 100.00% -100.00% 0.00% Disabled 30.00 3.00 13.00% Enabled Disabled 0 Enabled 90.00% 10 100 Disabled 50 4000 ms 200 ms 100 ms 100 ms 100.00% 10.00% Disabled 25.00% 10.0 secs 100.00% Disabled Disabled 1.00% 1.50% Low Low Low 0.00 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 PIN number tables 221 15.1.2Diagnostics and alarms 123 - 183 Property R Paragraph 7.1.1 7.1.2 7.1.3 7.1.4 7.1.5 7.1.6 7.1.7 7.1.8 7.1.10 7.1.9 7.2.1 7.2.2 7.2.3 7.2.4 7.2.5 7.2.6 7.2.6 7.2.7 7.2.8 Menu / Description SPEED LOOP MONITOR / Total speed reference monitor PIN 123 SPEED LOOP MONITOR / Speed demand monitor PIN 124 SPEED LOOP MONITOR / Speed error monitor PIN 125 SPEED LOOP MONITOR / Armature volts monitor PIN 126 SPEED LOOP MONITOR / Armature volts % monitor PIN 127 SPEED LOOP MONITOR / Back emf % monitor PIN 128 SPEED LOOP MONITOR / Tachogenerator volts monitor PIN 129 SPEED LOOP MONITOR / Motor RPM monitor PIN 130 SPEED LOOP MONITOR / Speed feedback % monitor PIN 131 SPEED LOOP MONITOR / Encoder RPM monitor PIN 132 ARM I LOOP MONITOR / Arm current demand monitor PIN 133 ARM I LOOP MONITOR / Arm current % monitor PIN 134 ARM I LOOP MONITOR / Arm current amps monitor PIN 135 ARM I LOOP MONITOR / Upper current limit monitor PIN 136 ARM I LOOP MONITOR / Lower current limit monitor PIN 137 ARM I LOOP MONITOR / Actual upper limit monitor PIN 138 ARM I LOOP MONITOR / Actual lower limit monitor PIN 139 ARM I LOOP MONITOR / Overload limit monitor PIN 140 ARM I LOOP MONITOR / At current limit flag PIN 141 Range +/-300.00% +/-300.00% +/-300.00% +/-1250.0V +/-300.00% +/-300.00% +/-220.00 V +/- 7500 rpm +/-300.00% +/- 7500 rpm +/- 150.00% +/- 150.00% +/-3000.0 A +/-150.00% +/-150.00% +/-150.00% +/-150.00% 0 -150.00% 0-1 R R R 7.3.1 7.3.2 7.3.3 7.3.4 7.3.5 FIELD MONITOR / Field demand monitor PIN 143 FIELD MONITOR / Field current % monitor PIN 144 FIELD MONITOR / Field amps monitor PIN 145 FIELD MONITOR / Field firing angle monitor PIN 146 FIELD MONITOR / Field active monitor PIN 147 0 -100.00% 0 -125.00% 0 – 50.00 A 0 – 155 Deg 0-1 R R R 7.4.1 7.4.1 7.4.1 7.4.1 7.4.1 7.4.1 7.4.1 7.4.1 ANALOG IO MONITOR / UIP2 analogue ANALOG IO MONITOR / UIP3 analogue ANALOG IO MONITOR / UIP4 analogue ANALOG IO MONITOR / UIP5 analogue ANALOG IO MONITOR / UIP6 analogue ANALOG IO MONITOR / UIP7 analogue ANALOG IO MONITOR / UIP8 analogue ANALOG IO MONITOR / UIP9 analogue 7.4.2 7.4.2 7.4.2 7.5.1 7.5.2 7.5.3 7.5.4 7.5.5 7.5.6 7.5.7 7.7 7.8 8.1.1 8.1.2 8.1.3 8.1.4 8.1.5 8.1.6 8.1.7 8.1.8.1 8.1.8.2 8.1.8.3 8.1.9 8.1.9 8.1.10 ANALOG IO MONITOR / AOP1 analogue output monitor PIN 159 ANALOG IO MONITOR / AOP2 analogue output monitor PIN 160 ANALOG IO MONITOR / AOP3 analogue output monitor PIN 161 DIGITAL IO MONITOR / UIP2 to 9 digital input monitor PIN 162 DIGITAL IO MONITOR / DIP1-4 and DIO1-4 dig IP monitor PIN 163 DIGITAL IO MONITOR / DOP1-3 + Control IPs dig OP mon PIN 164 DIGITAL IO MONITOR / +Armature bridge flag PIN 165 DIGITAL IO MONITOR / Drive start flag PIN 166 DIGITAL IO MONITOR / Drive run flag PIN 167 DIGITAL IO MONITOR / Internal running mode monitor PIN 168 DIAGNOSTICS / EL1/2/3 RMS monitor PIN 169 DIAGNOSTICS / DC KILOWATTS monitor PIN 169 MOTOR DRIVE ALARMS / Speed fb mismatch trip enable PIN 171 MOTOR DRIVE ALARMS / Speed fb mismatch tolerance PIN 172 MOTOR DRIVE ALARMS / Field loss trip disable PIN 173 MOTOR DRIVE ALARMS / Dig OP short circuit trip enable PIN 174 MOTOR DRIVE ALARMS / Missing pulse trip enable PIN 175 MOTOR DRIVE ALARMS / Reference exhange trip enable PIN 176 MOTOR DRIVE ALARMS / Overspeed delay time PIN 177 STALL TRIP MENU / Stall trip enable PIN 178 STALL TRIP MENU / Stall current level PIN 179 STALL TRIP MENU / Stall delay time PIN 180 MOTOR DRIVE ALARMS / Active trip monitor PIN 181 MOTOR DRIVE ALARMS / Stored trip monitor PIN 182 MOTOR DRIVE ALARMS / External trip reset enable PIN 183 R R R R R R R R R R R R R R R R R R R R R R R input monitor input monitor input monitor input monitor input monitor input monitor input monitor input monitor PIN PIN PIN PIN PIN PIN PIN PIN 150 151 152 153 154 155 156 157 +/+/+/+/+/+/+/+/- 30.730 30.730 30.730 30.730 30.730 30.730 30.730 30.730 +/-11.300 V +/-11.300 V +/-11.300 V 0/1 times 8 0/1 times 8 0/1 times 8 0-1 0-1 0-1 1 of 8 modes 0- 1000.0 V +/-3000.0Kw 0-1 0 -100.00% 0-1 0-1 0-1 0-1 0.1 – 600.0 s 0-1 0 -150.00% 0.1 – 600.0 s 0000 - FFFF 0000 - FFFF 0-1 Default 0.00% 0.00% 0.00% 0.0 V 0.00% 0.00% 0.00 V 0 rpm 0.00% 0 rpm 0.00% 0.00% 0.00 Amps 0.00% 0.00% 0.00% 0.00% 0.00% Low 0 0.00% 0.00% 0.00 Amps 0 Deg disabled 0 0 0.000 V 0.000 V 0.000 V 0.000 V 0.000 V 0.000 V 0.000 V 0.000 V 0 0.000 V 0.000 V 0.000 V 00000000 00000000 00000000 Low Low Low Stop 0.0 V 0.0 Enabled 50.00% Enabled Disabled Enabled Disabled 5.00 secs Enabled 95.00% 10.0 secs 0000 0 Enabled PIN 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 222 PIN number tables 15.1.3Serial links 187 - 249 Property Paragraph Menu R S 10.1.2 10.1.3 10.3.1 10.3.2 10.3.3 10.3.4 10.2.5 10.2.5 10.2.5 10.2.5 RS232 PORT1 / Port1 Baud rate PIN 187 PORT1 FUNCTION / Port1 function mode PIN 188 PORT1 REF EXCHANGE / Ref exchange slave ratio PIN 189 PORT1 REF EXCHANGE / Ref exchange slave sign PIN 190 PORT1 REF EXCHANGE / Ref exchange slave monitor PIN 191 PORT1 REF EXCHANGE / Ref exchange master monitor PIN 192 PORT 1 COMMS LINK / Port 1 group ID PIN 193 PORT 1 COMMS LINK / Port 1 unit ID PIN 194 PORT 1 COMMS LINK / Port 1 error code PIN 195 PORT 1 COMMS LINK / Port 1 DOP3 RTS mode PIN 196 300 - 57600 1 of 4 modes +/-3.0000 0-1 +/-300.00% +/-300.00% 0-7 0 - 15 1-8 0-1 Default 0 0 0 9600 Param exch 1.0000 Non-invert 0.00% 0.00% 0 0 1 Disabled Serial Comms FIELDBUS CONFIG / Fieldbus data control PIN 199 FBUS ON-LINE MON (Hidden pin) 00 - 11 0-1 00 Low 0-1 +/-15,000 +/-30,000 20-655.37 Hz 0-1 Disabled 0 0 0 Hz Low PIN 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 to 239 240 241 242 243 244 Default Disabled 1.0000 0.00% Disabled 1.0000 0.00% Disabled 1.0000 0.00% Disabled Disabled Enabled 0.00% Non invert Enabled 0.00% Non invert Enabled 0.00% Non invert 0 Disabled Enabled 0.00% Non invert 0.01% 0.00% Disabled Enabled 0.00% Non invert 0.01% 0.00% PIN 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 S / Description Range RESERVED 6.10.9.3 6.10.9.4 6.10.9.5 6.10.9.6 6.10.9.7 SPINDLE SPINDLE SPINDLE SPINDLE SPINDLE ORIENTATE ORIENTATE ORIENTATE ORIENTATE ORIENTATE / Marker enable PIN 240 / Marker offset PIN 241 / Position reference PIN 242 / Marker frequency monitor PIN 243 / In position flag PIN 244 15.1.4Configuration 251 - 400 Property Paragraph 13.4.1 13.4.2.1 13.4.2.2 13.4.2.3 13.4.2.1 13.4.2.2 13.4.2.3 13.4.2.1 13.4.2.2 13.4.2.3 13.4.3 13.7.1.1 13.7.1.2 13.7.1.3 13.7.1.1 13.7.1.2 13.7.1.3 13.7.1.1 13.7.1.2 13.7.1.3 Menu / Description ANALOG OUTPUTS / Iarm o/p rectify enable PIN 250 AOP1 (T10) SETUP / AOP1 Dividing factor PIN 251 AOP1 (T10) SETUP / AOP1 Offset PIN 252 AOP1 (T10) SETUP / AOP1 Rectifier mode enable PIN 253 AOP2 (T11) SETUP / AOP2 Dividing factor PIN 254 AOP2 (T11) SETUP / AOP2 Offset PIN 255 AOP2 (T11) SETUP / AOP2 Rectifier mode enable PIN 256 AOP3 (T12) SETUP / AOP3 Dividing factor PIN 257 AOP3 (T12) SETUP / AOP3 Offset PIN 258 AOP3 (T13) SETUP / AOP3 Rectifier mode enable PIN 259 ANALOG OUTPUTS / Scope output select on AOP3 PIN 260 DOP1 (T22) SETUP / DOP1 Output value rectifier enable PIN 261 DOP1 (T22) SETUP / DOP1 OP comparator threshold . PIN 262 DOP1 (T22) SETUP / DOP1 Output inversion mode PIN 263 DOP2 (T23) SETUP / DOP2 Output value rectifier enable PIN 264 DOP2 (T23) SETUP / DOP2 OP comparator threshold PIN 265 DOP2 (T23) SETUP / DOP2 Output inversion mode PIN 266 DOP3 (T24) SETUP / DOP3 Output value rectifier enable PIN 267 DOP3 (T24) SETUP / DOP3 OP comparator threshold PIN 268 DOP3 (T24) SETUP / DOP3 Output inversion mode PIN 269 Range 0-1 +/- 3.0000 +/-100.00% 0-1 +/- 3.0000 +/-100.00% 0-1 +/- 3.0000 +/-100.00% 0-1 0-1 0-1 +/-300.00% 0-1 0-1 +/-300.00% 0-1 0-1 +/-300.00% 0-1 S 13.6.1.1 13.6.1.2 13.6.1.3 13.6.1.4 13.6.1.7 13.6.1.8 13.6.1.1 13.6.1.2 13.6.1.3 13.6.1.4 13.6.1.7 13.6.1.8 DIO1 (T18) DIO1 (T18) DIO1 (T18) DIO1 (T18) DIO1 (T18) DIO1 (T18) DIO2 (T19) DIO2 (T19) DIO2 (T19) DIO2 (T19) DIO2 (T19) DIO2 (T19) 0-1 0-1 +/-300.00% 0-1 +/-300.00% +/-300.00% 0-1 0-1 +/-300.00% 0-1 +/-300.00% +/-300.00% S SETUP / DIO1 Output mode enable PIN 271 SETUP / DIO1 Output value rectify enable PIN 272 SETUP / DIO1 OP comparator threshold PIN 273 SETUP / DIO1 Output inversion mode PIN 274 SETUP / DIO1 Input high value PIN 275 SETUP / DIO1 Input low value PIN 276 SETUP / DIO2 Output mode enable PIN 277 SETUP / DIO2 Output value rectify enable PIN 278 SETUP / DIO2 OP comparator threshold PIN 279 SETUP / DIO2 Output inversion mode PIN 280 SETUP / DIO2 Input high value PIN 281 SETUP / DIO2 Input low value PIN 282 PIN number tables S S 223 13.6.1.1 13.6.1.2 13.6.1.3 13.6.1.4 13.6.1.7 13.6.1.8 13.6.1.1 13.6.1.2 13.6.1.3 13.6.1.4 13.6.1.7 13.6.1.8 DIO3 (T20) DIO3 (T20) DIO3 (T20) DIO3 (T20) DIO3 (T20) DIO3 (T20) DIO4 (T21) DIO4 (T21) DIO4 (T21) DIO4 (T21) DIO4 (T21) DIO4 (T21) SETUP / DIO3 Output mode enable PIN 283 SETUP / DIO3 Output value rectify enable PIN 284 SETUP / DIO3 OP comparator threshold PIN 285 SETUP / DIO3 Output inversion mode PIN 286 SETUP / DIO3 Input high value PIN 287 SETUP / DIO3 Input low value PIN 288 SETUP / DIO4 Output mode enable PIN 289 SETUP / DIO4 Output value rectify enable PIN 290 SETUP / DIO4 OP comparator threshold PIN 291 SETUP / DIO4 Output inversion mode PIN 292 SETUP / DIO4 Input high value PIN 293 SETUP / DIO4 Input low value PIN 294 13.8.2 13.8.2 13.8.2 13.8.2 13.8.2 13.8.2 13.8.2 13.8.2 STAGING POSTS / Digital post 1 STAGING POSTS / Digital post 2 STAGING POSTS / Digital post 3 STAGING POSTS / Digital post 4 STAGING POSTS / Analog post 1 STAGING POSTS / Analog post 2 STAGING POSTS / Analog post 3 STAGING POSTS / Analog post 4 13.9.1 13.9.2 13.9.3 13.9.4 SOFTWARE SOFTWARE SOFTWARE SOFTWARE 13.5.2.1 13.5.2.2 13.5.2.1 13.5.2.2 13.5.2.1 13.5.2.2 13.5.2.1 13.5.2.2 13.5.3.1 13.5.3.2 13.3.1.1 13.3.1.2 13.3.1.3 13.3.1.4 13.3.1.5 13.3.1.9 13.3.1.10 13.3.1.11 13.3.1.12 13.3.1.13 13.3.1.1 13.3.1.2 13.3.1.3 13.3.1.4 13.3.1.5 13.3.1.9 13.3.1.10 13.3.1.11 13.3.1.12 13.3.1.13 13.3.1.1 13.3.1.2 13.3.1.3 13.3.1.4 13.3.1.5 13.3.1.9 13.3.1.10 13.3.1.11 13.3.1.12 13.3.1.13 13.3.1.1 13.3.1.2 13.3.1.3 DIP1 (T14) SETUP / DIP1 Input high value PIN 310 DIP1 (T14) SETUP / DIP1 Input low value PIN 311 DIP2 (T15) SETUP / DIP2 Input high value PIN 312 DIP2 (T15) SETUP / DIP2 Input low value PIN 313 DIP3 (T16) SETUP / DIP3 Input high value PIN 314 DIP3 (T16) SETUP / DIP3 Input low value PIN 315 DIP4 (T17) SETUP / DIP4 Input high value PIN 316 DIP4 (T17) SETUP / DIP4 Input low value PIN 317 RUN INPUT SETUP / RUN input HI value PIN 318 RUN INPUT SETUP / RUN input LO value PIN 319 UIP2 (T2) SETUP / UIP2 Input range PIN 320 UIP2 (T2) SETUP / UIP2 Input offset PIN 321 UIP2 (T2) SETUP / UIP2 Linear scaling factor PIN 322 UIP2 (T2) SETUP / UIP2 Max clamp level PIN 323 UIP2 (T2) SETUP / UIP2 Min clamp level PIN 324 UIP2 (T2) SETUP / UIP2 Digital IP, high value for output 1 UIP2 (T2) SETUP / UIP2 Digital IP, low value for output 1 UIP2 (T2) SETUP / UIP2 Digital IP, high value for output 2 UIP2 (T2) SETUP / UIP2 Digital IP, low value for output 2 UIP2 (T2) SETUP / UIP2 Threshold PIN 329 UIP3 (T3) SETUP / UIP3 Input range PIN 330 UIP3 (T3) SETUP / UIP3 Input offset PIN 331 UIP3 (T3) SETUP / UIP3 Linear scaling factor PIN 332 UIP3 (T3) SETUP / UIP3 Max clamp level PIN 333 UIP3 (T3) SETUP / UIP3 Min clamp level PIN 334 UIP3 (T3) SETUP / UIP3 Digital IP, high value for output 1 UIP3 (T3) SETUP / UIP3 Digital IP, low value for output 1 UIP3 (T3) SETUP / UIP3 Digital IP, high value for output 2 UIP3 (T3) SETUP / UIP3 Digital IP, low value for output 2 UIP3 (T3) SETUP / UIP3 Threshold PIN 339 UIP4 (T4) SETUP / UIP4 Input range PIN 340 UIP4 (T4) SETUP / UIP4 Input offset PIN 341 UIP4 (T4) SETUP / UIP4 Linear scaling factor PIN 342 UIP4 (T4) SETUP / UIP4 Max clamp level PIN 343 UIP4 (T4) SETUP / UIP4 Min clamp level PIN 344 UIP4 (T4) SETUP / UIP4 Digital IP, high value for output 1 UIP4 (T4) SETUP / UIP4 Digital IP, low value for output 1 UIP4 (T4) SETUP / UIP4 Digital IP, high value for output 2 UIP4 (T4) SETUP / UIP4 Digital IP, low value for output 2 UIP4 (T4) SETUP / UIP4 Threshold PIN 349 UIP5 (T5) SETUP / UIP5 Input range PIN 350 UIP5 (T5) SETUP / UIP5 Input offset PIN 351 UIP5 (T5) SETUP / UIP5 Linear scaling factor PIN 352 PIN 296 PIN 297 PIN 298 PIN 299 PIN 300 PIN 301 PIN 302 PIN 303 0-1 0-1 +/-300.00% 0-1 +/-300.00% +/-300.00% 0-1 0-1 +/-300.00% 0-1 +/-300.00% +/-300.00% 0-1 0-1 0-1 0-1 +/-300.00% +/-300.00% +/-300.00% +/-300.00% TERMINALS / Anded run PIN 305 TERMINALS / Anded jog PIN 306 TERMINALS / Anded start PIN 307 TERMINALS / Internal run PIN 308 0000- PIN 325 PIN 326 PIN 327 PIN 328 PIN 335 PIN 336 PIN 337 PIN 338 PIN 345 PIN 346 PIN 347 PIN 348 1 1 1 1 +/-300.00% +/-300.00% +/-300.00% +/-300.00% +/-300.00% +/-300.00% +/-300.00% +/-300.00% +/-300.00% +/-300.00% 1 of 4 ranges +/-100.00% +/-3.0000 +/-300.00% +/-300.00% +/-300.00% +/-300.00% +/-300.00% +/-300.00% +/-30.000 V 1 of 4 ranges +/-100.00% +/-3.0000 +/-300.00% +/-300.00% +/-300.00% +/-300.00% +/-300.00% +/-300.00% +/-30.000 V 1 of 4 ranges +/-100.00% +/-3.0000 +/-300.00% +/-300.00% +/-300.00% +/-300.00% +/-300.00% +/-300.00% +/-30.000 V 1 of 4 ranges +/-100.00% +/-3.0000 Disabled Enabled 0.00% Non invert 0.01% 0.00% Disabled Enabled 0.00% Non invert 0.01% 0.00% 0 Low Low Low Low 0.00% 0.00% 0.00% 0.00% 0 High High High Low 0 0.01% 0.00% 0.01% 0.00% 0.01% 0.00% 0.01% 0.00% 0.01% 0.00% 10V range 0.00% 1.0000 100.00% -100.00% 0.01% 0.00% 0.01% 0.00% 6.000V 10V range) 0.00% 1.0000 100.00% -100.00% 0.01% 0.00% 0.01% 0.00% 6.000V 10V range 0.00% 1.0000 100.00% -100.00% 0.01% 0.00% 0.01% 0.00% 6.000V 10V range 0.00% 1.0000 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 224 PIN number tables 13.3.1.4 13.3.1.5 13.3.1.9 13.3.1.10 13.3.1.11 13.3.1.12 13.3.1.13 13.3.1.1 13.3.1.2 13.3.1.3 13.3.1.4 13.3.1.5 13.3.1.9 13.3.1.10 13.3.1.11 13.3.1.12 13.3.1.13 13.3.1.1 13.3.1.2 13.3.1.3 13.3.1.4 13.3.1.5 13.3.1.9 13.3.1.10 13.3.1.11 13.3.1.12 13.3.1.13 13.3.1.1 13.3.1.2 13.3.1.3 13.3.1.4 13.3.1.5 13.3.1.9 13.3.1.10 13.3.1.11 13.3.1.12 13.3.1.13 13.3.1.1 13.3.1.2 13.3.1.3 13.3.1.4 13.3.1.5 13.3.1.9 13.3.1.10 13.3.1.11 13.3.1.12 13.3.1.13 13.2.5 UIP5 (T5) SETUP / UIP5 Max clamp level PIN 353 UIP5 (T5) SETUP / UIP5 Min clamp level PIN 354 UIP5 (T5) SETUP / UIP5 Digital IP, high value for output 1 UIP5 (T5) SETUP / UIP5 Digital IP, low value for output 1 UIP5 (T5) SETUP / UIP5 Digital IP, high value for output 2 UIP5 (T5) SETUP / UIP5 Digital IP, low value for output 2 UIP5 (T5) SETUP / UIP5 Threshold PIN 359 UIP6 (T6) SETUP / UIP6 Input range PIN 360 UIP6 (T6) SETUP / UIP6 Input offset PIN 361 UIP6 (T6) SETUP / UIP6 Linear scaling factor PIN 362 UIP6 (T6) SETUP / UIP6 Max clamp level PIN 363 UIP6 (T6) SETUP / UIP6 Min clamp level PIN 364 UIP6 (T6) SETUP / UIP6 Digital IP, high value for output 1 UIP6 (T6) SETUP / UIP6 Digital IP, low value for output 1 UIP6 (T6) SETUP / UIP6 Digital IP, high value for output 2 UIP6 (T6) SETUP / UIP6 Digital IP, low value for output 2 UIP6 (T6) SETUP / UIP6 Threshold PIN 369 UIP7 (T7) SETUP / UIP7 Input range PIN 370 UIP7 (T7) SETUP / UIP7 Input offset PIN 371 UIP7 (T7) SETUP / UIP7 Linear scaling factor PIN 372 UIP7 (T7) SETUP / UIP7 Max clamp level PIN 373 UIP7 (T7) SETUP / UIP7 Min clamp level PIN 374 UIP7 (T7) SETUP / UIP7 Digital IP, high value for output 1 UIP7 (T7) SETUP / UIP7 Digital IP, low value for output 1 UIP7 (T7) SETUP / UIP7 Digital IP, high value for output 2 UIP7 (T7) SETUP / UIP7 Digital IP, low value for output 2 UIP7 (T7) SETUP / UIP7 Threshold PIN 379 UIP8 (T8) SETUP / UIP8 Input range PIN 380 UIP8 (T8) SETUP / UIP8 Input offset PIN 381 UIP8 (T8) SETUP / UIP8 Linear scaling factor PIN 382 UIP8 (T8) SETUP / UIP8 Max clamp level PIN 383 UIP8 (T8) SETUP / UIP8 Min clamp level PIN 384 UIP8 (T8) SETUP / UIP8 Digital IP, high value for output 1 UIP8 (T8) SETUP / UIP8 Digital IP, low value for output 1 UIP8 (T8) SETUP / UIP8 Digital IP, high value for output 2 UIP8 (T8) SETUP / UIP8 Digital IP, low value for output 2 UIP8 (T8) SETUP / UIP8 Threshold PIN 389 UIP9 (T9) SETUP / UIP9 Input range PIN 390 UIP9 (T9) SETUP / UIP9 Input offset PIN 391 UIP9 (T9) SETUP / UIP9 Linear scaling factor PIN 392 UIP9 (T9) SETUP / UIP9 Max clamp level PIN 393 UIP9 (T9) SETUP / UIP9 Min clamp level PIN 394 UIP9 (T9) SETUP / UIP9 Digital IP, high value for output 1 UIP9 (T9) SETUP / UIP9 Digital IP, low value for output 1 UIP9 (T9) SETUP / UIP9 Digital IP, high value for output 2 UIP9 (T9) SETUP / UIP9 Digital IP, low value for output 2 UIP9 (T9) SETUP / UIP9 Threshold PIN 399 Block disconnect PIN 400 100.00% -100.00% 0.01% 0.00% 0.01% 0.00% 6.000V 10V range 0.00% 1.0000 100.00% -100.00% 0.01% 0.00% 0.01% 0.00% 6.000V 10V range 0.00% 1.0000 100.00% -100.00% 0.01% 0.00% 0.01% 0.00% 6.000V 10V range 0.00% 1.0000 100.00% -100.00% 0.01% 0.00% 0.01% 0.00% 6.000V 10V range 0.00% 1.0000 100.00% -100.00% 0.01% 0.00% 0.01% 0.00% 6.000V 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 Menu / Description SUMMER 1 SUMMER 2 PID 1 PID 2 PARAMETER PROFILER REEL DIAMETER CALC TAPER TENSION TORQUE COMPENSATOR PRESET SPEED 16-BIT DEMULTIPLEX (bits 1-9) Armature overcurrent 535, Speed fbk mismatch 536, Overspeed 537, Armature overvolts 538, Field overcurrent 539, Field loss 540, Missing pulse 541, Stall trip 542, Thermistor on T30 543 MULTIFUNCTION 1 to 8 LATCH 16-BIT DEMULTIPLEX (bit 10) Heatsink overtemp FILTER 1 PIN 401 415 429 452 475 483 494 500 523 535 to 543 544 560 567 568 PIN 355 PIN 356 PIN 357 PIN 358 PIN 365 PIN 366 PIN 367 PIN 368 PIN 375 PIN 376 PIN 377 PIN 378 PIN 385 PIN 386 PIN 387 PIN 388 PIN 395 PIN 396 PIN 397 PIN 398 +/-300.00% +/-300.00% +/-300.00% +/-300.00% +/-300.00% +/-300.00% +/-30.000 V 1 of 4 ranges +/-100.00% +/-3.0000 +/-300.00% +/-300.00% +/-300.00% +/-300.00% +/-300.00% +/-300.00% +/-30.000 V 1 of 4 ranges +/-100.00% +/-3.0000 +/-300.00% +/-300.00% +/-300.00% +/-300.00% +/-300.00% +/-300.00% +/-30.000 V 1 of 4 ranges +/-100.00% +/-3.0000 +/-300.00% +/-300.00% +/-300.00% +/-300.00% +/-300.00% +/-300.00% +/-30.000 V 1 of 4 ranges +/-100.00% +/-3.0000 +/-300.00% +/-300.00% +/-300.00% +/-300.00% +/-300.00% +/-300.00% +/-30.000 V 15.1.5Application blocks 401 - 680 Paragraph Application manual Application manual Application manual Application manual Application manual Application manual Application manual Application manual Application manual Application manual Application manual Application manual Application manual Application manual PIN number tables 225 Application manual 16-BIT DEMULTIPLEX (bits 11 – 13) Short cct digital output 570, Bad reference Exch 571, Contactor lock out 572 Application manual Application manual FILTER 2 16-BIT DEMULTIPLEX (bits 14-16) User Alarm input (PIN 712) 575, Synchronization loss 576, Supply phase loss 577 Application manual Application manual Application manual Application manual BATCH COUNTER INTERVAL TIMER COMPARATOR 1 to 4 C/O SWITCH 1 to 4 S P 13.13.2 13.13.3 13.13 13.13.4 DRIVE PERSONALITY / Recipe page PIN 677 DRIVE PERSONALITY / Max current response PIN 678 DRIVE PERSONALITY / ID ABCXRxxx MON PIN 679 DRIVE PERSONALITY / Iarm BURDEN OHMS PIN 680 0-4 0-1 Binary value 1 to 327.67R Normal Reset Disabled By model By model 570 to 572 573 575 to 577 578 583 588 604 677 678 679 680 15.1.6Hidden pins 680 - 720 Paragraph 5.1.2 13.7.1.6 13.7.1.6 13.7.1.6 13.6.1.10 13.6.1.10 13.6.1.10 13.6.1.10 6.3 Apps manual 12.1.14 12.1.14 12.1.14 12.1.14 Apps manual Apps manual Apps manual 6.5.1.1 6.5.1.1 8.1.8 8.1.11.14 8.1.11.5 8.1.1 8.1.9 12.3 12.3 6.8.9 10.1.4.2 6.1.10.3 12.14.1 12.14.1 8.1.11.5 6.7.1 6.3 7.1.9 7.1.7 7.1.8 7.2.1 7.2.2 6.5.1.1 Menu / Description Power.SAVED ONCE MON PIN 681 DOP1 O/P BIN VAL PIN 682 DOP2 O/P BIN VAL PIN 683 DOP3 O/P BIN VAL PIN 684 DIO1 O/P BIN VAL PIN 685 DIO2 O/P BIN VAL PIN 686 DIO3 O/P BIN VAL PIN 687 DIO4 O/P BIN VAL PIN 688 IN JOG FLAG / In Jog mode process flag PIN 689 WEB BREAK FLAG PIN 690 SUM1 CH2 SUBTOT / Summer1 Ch2 subtotal monitor PIN 691 SUM1 CH1 SUBTOT / Summer1 Ch1 subtotal monitor PIN 692 SUM2 CH2 SUBTOT / Summer2 Ch2 subtotal monitor PIN 693 SUM2 CH1 SUBTOT / Summer2 Ch1 subtotal monitor PIN 694 WEB SPEED RECT. PIN 695 REEL SPEED RECT. PIN 696 UNFILTERED DIAMETER 697 HEALTHY FLAG / Healthy flag output PIN 698 READY FLAG / Ready flag output PIN 699 STALL WARNING / Stall warning PIN 700 REF XC WARNING / Reference exchange error warning PIN 701 THERMISTOR WARN / Thermistor overtemp warning PIN 702 SPEED FBK WARN / Speed feedback mismatch warning PIN 703 I LOOP OFF WARN / Current loop off warning PIN 704 LP FILTER INPUT / Low pass filter input PIN 705 LP FILTER OUTPUT / Low pass filter output PIN 706 AUTOTUNE MONITOR / Autotune in progress flag PIN 707 REMOTE PARAM RCV / Remote receive input PIN 708 MOTOR RPM % /Encoder RPM % mon PIN 709,(scaled by 12)MOT/ENC ratio) POSITION COUNT / Running position counter PIN 710 POS CNT DIVIDER / Position count divider input PIN 711 USER ALARM INPUT PIN 712 SPEED LOOP PI OP / Speed loop PI output monitor PIN 713 IN SLACK FLAG / In Slack mode process flag PIN 714 SPD FBK % UNF/ Unfiltered total speed feedback % mon PIN 715 TACHO % UNF / Unfiltered analog tacho % mon PIN 716 MOTOR RPM UNF / Unfiltered motor RPM monitor PIN 717 CUR DEMAND UNF / Unfiltered current demand monitor PIN 718 CUR FBK % UNF / Unfiltered current feedback % monitor PIN 719 SYSTEM RESET / System reset pulse output PIN 720 Range 0-1 0-1 0-1 0-1 0-1 0-1 0-1 0-1 0-1 0-1 +/-200.00% +/-200.00% +/-200.00% +/-200.00% 0 - 105.00% 0 - 105.00% 0 - 100.00% 0-1 0-1 0-1 0-1 0-1 0-1 0-1 0-1 0-1 +/-300.00% 0-1 +/-200.00% 0-1 +/-300.00% +/-300.00% +/-6000 +/-150.00% +/-150.00% 0-1 Default low low low low low low low low low low 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% low low low low low low low From GOTO To GETFROM low low 0 0 1 low 0.00% low 0.00% 0.00% 0 0.00% 0.00% low 0 PIN 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 226 Menu List 15.2 PRESS RIGHT KEY FOR Issue: 5.12 ENTRY MENU LEVEL 1 CHANGE PARAMETERS 2 RUN MODE RAMPS 3 ........21)RAMP OP MONITOR = 0.00 % ........22)FORWARD UP TIME = 10.0 SECS ........23)FORWARD DOWN TIME = 10.0 SECS ........24)REVERSE UP TIME = 10.0 SECS ........25)REVERSE DOWN TIME = 10.0 SECS ........26)RAMP INPUT = 0.00 % ........27)FORWARD MIN SPEED = 0.00 % ........28)REVERSE MIN SPEED = 0.00 % ........29)RAMP AUTO PRESET = ENABLED ........30)RAMP EXT PRESET = DISABLED ........31)RAMP PRESET VALUE = 0.00 % ........32)RAMP S-PROFILE % = 2.50 % ........33)RAMP HOLD = DISABLED ........34)RAMPING THRESHOLD = 0.50 % ........35)RAMPING FLAG = LOW JOG CRAWL SLACK 3 ........37)JOG SPEED 1 = 5.00 % ........38)JOG SPEED 2 = -5.00 % ........39)SLACK SPEED 1 = 5.00 % ........40)SLACK SPEED 2 = -5.00 % ........41)CRAWL SPEED = 10.00 % ........42)JOG MODE SELECT = LOW ........43)JOG/SLACK RAMP = 1.0 SECS MOTORISED POT RAMP 3 ........45)MP OP MONITOR = 0.00 % ........46)MP UP TIME = 10.0 SECS ........47)MP DOWN TIME = 10.0 SECS ........48)MP UP COMMAND = DISABLED ........49)MP DOWN COMMAND = DISABLED ........50)MP MAX CLAMP = 100.00 % ........51)MP MIN CLAMP = -100.00 % ........52)MP PRESET = DISABLED ........53)MP PRESET VALUE = 0.00 % ........54)MP MEMORY BOOT-UP = DISABLED STOP MODE RAMP 3 ........56)STOP RAMP TIME = 10.0 SECS ........57)STOP TIME LIMIT = 60.0 SECS ........58)LIVE DELAY MODE = DISABLED ........59)DROP-OUT SPEED = 2.00 % ........60)DROP-OUT DELAY = 1.0 SECS SPEED REF SUMMER 3 ........62)INT SPEED REF 1 = 0.00 % ........63)SPEED REF 2 = 0.00 % ........64)SPEED REF 3 MON = 0.00 % ........65)RAMPED SPD REF 4 = 0.00 % ........66)SPD/CUR REF3 SIGN = NON-INVERT ........67)SPD/CUR RF3 RATIO = 1.0000 SPEED CONTROL 3 ........69)MAX POS SPEED REF = 105.00 % ........70)MAX NEG SPEED REF = -105.00 % ........71)SPEED PROP GAIN = 15.00 ........72)SPEED INT T.C. = 1.000 SECS ........73)SPEED INT RESET = DISABLED SPEED PI ADAPTION 4 .......... 74)SPD ADPT LO BRPNT = 1.00 % .......... 75)SPD ADPT HI BRPNT = 2.00 % .......... 76)LO BRPNT PRP GAIN = 5.00 .......... 77)LO BRPNT INT T.C. = 1.000 SECS .......... 78)INT % DURING RAMP = 100.00 % .......... 79)SPD ADAPT ENABLE = ENABLED CURRENT CONTROL 3 ........81)CUR CLAMP SCALER = 150.00 % CURRENT OVERLOAD 4 .......... 82)O/LOAD % TARGET = 105.00 % .......... 83)O/LOAD RAMP TIME = 20.0 SECS I DYNAMIC PROFILE 4 .......... 84)I PROFILE ENABLE = DISABLED .......... 85)SPD BRPNT AT HI I = 75.00 % .......... 86)SPD BRPNT AT LO I = 100.00 % .......... 87)CUR LIMIT AT LO I = 100.00 % ........88)DUAL I CLAMP ENBL = DISABLED ........89)UPPER CUR CLAMP = 0.00 % # ........90)LOWER CUR CLAMP = 0.00 % # ........91)EXTRA CUR REF = 0.00 % ........92)AUTOTUNE ENABLE = DISABLED ........93)CUR PROP GAIN = 30.00 ........94)CUR INT GAIN = 3.00 ........95)CUR DISCONTINUITY = 13.00 % ........96)4-QUADRANT MODE = ENABLED ........97)SPD BYPASS CUR EN = DISABLED FIELD CONTROL 3 ........99)FIELD ENABLE = ENABLED ........100)FIELD VOLTS OP % = 90.00 % ........101)FIELD PROP GAIN = 10 ........102)FIELD INT GAIN = 100 FLD WEAKENING MENU 4 .......... 103)FLD WEAK ENABLE = DISABLED .......... 104)FLD WK PROP GAIN = 50 .......... 105)FLD WK INT TC ms = 4000 .......... 106)FLD WK DRV TC ms = 200 .......... 107)FLD WK FB DRV ms = 100 .......... 108)FLD WK FB INT ms = 100 .......... 109)SPILLOVER AVF % = 100.00 % .......... 110)MIN FLD CURRENT = 10.00 % ........111)STANDBY FLD ENBL = DISABLED ........112)STANDBY FLD CUR = 25.00 % ........113)FLD QUENCH DELAY = 10.0 SECS ........114)FIELD REFERENCE = 100.00 % ZERO INTERLOCKS 3 ........115)STANDSTILL ENBL = DISABLED ........116)ZERO REF START = DISABLED Menu list ........117)ZERO INTLK SPD % = 1.00 % ........118)ZERO INTLK CUR % = 1.50 % ........119)AT ZERO REF FLAG = HIGH ........120)AT ZERO SPD FLAG = HIGH ........121)AT STANDSTILL = HIGH SPINDLE ORIENTATE 4 .......... 122)ZERO SPEED LOCK = 0.00 .......... 240)MARKER ENABLE = DISABLED .......... 241)MARKER OFFSET = 0 .......... 242)POSITION REF = 0 .......... 243)MARKER FREQ MON = 0.00 Hz .......... 244)IN POSITION FLAG = LOW CALIBRATION 3 ........2)RATED ARM AMPS = 9.6 AMPS # ........3)CURRENT LIMIT(%) = 150.00 % ........4)RATED FIELD AMPS = 2.00 AMPS ........5)BASE RATED RPM = 1500 RPM ........6)DESIRED MAX RPM = 1500 RPM ........7)ZERO SPD OFFSET = 0.00 % ........8)MAX TACHO VOLTS = 60.00 VOLTS ........9)SPEED FBK TYPE = ARMATURE VOLTS ENCODER SCALING 4 .......... 10)QUADRATURE ENABLE = ENABLED .......... 11)ENCODER LINES = 1000 .......... 12)MOT/ENC SPD RATIO = 1.0000 .......... 13)ENCODER SIGN = NON-INVERT ........14)IR COMPENSATION = 0.00 % ........15)FIELD CUR FB TRIM = 1.0000 ........16)ARM VOLTS TRIM = 1.0000 ........17)ANALOG TACHO TRIM = 1.0000 ........18)RATED ARM VOLTS = 460.0 VOLTS ........19)EL1/2/3 RATED AC = 415.0 VOLTS ........20)MOTOR 1,2 SELECT = MOTOR 1 DIAGNOSTICS 2 SPEED LOOP MONITOR 3 ........123)TOTAL SPD REF MN = 0.00 % ........124)SPEED DEMAND MON = 0.00 % ........125)SPEED ERROR MON = 0.00 % ........126)ARM VOLTS MON = 0.0 VOLTS ........127)ARM VOLTS % MON = 0.00 % ........128)BACK EMF % MON = 0.00 % ........129)TACHO VOLTS MON = 0.00 VOLTS ........130)MOTOR RPM MON = 0 RPM ........132)ENCODER RPM MON = 0 RPM ........131)SPEED FBK MON = 0.00 % ARM I LOOP MONITOR 3 ........133)ARM CUR DEM MON = 0.00 % ........134)ARM CUR % MON = 0.00 % ........135)ARM CUR AMPS MON = 0.0 AMPS ........136)UPPER CUR LIM MN = 0.00 % ........137)LOWER CUR LIM MN = 0.00 % ........138)ACTUAL UPPER LIM = 0.00 % ........139)ACTUAL LOWER LIM = 0.00 % ........140)O/LOAD LIMIT MON = 150.00 % ........141)AT CURRENT LIMIT = LOW FLD I LOOP MONITOR 3 ........143)FIELD DEMAND MON = 0.00 % ........144)FIELD CUR % MON = 0.00 % ........145)FLD CUR AMPS MON = 0.00 AMPS ........146)ANGLE OF ADVANCE = 0 DEG ........147)FIELD ACTIVE MON = DISABLED ANALOG IO MONITOR 3 ........150)UIP2 (T2) MON = 0.000 VOLTS ........151)UIP3 (T3) MON = 0.000 VOLTS ........152)UIP4 (T4) MON = 0.000 VOLTS ........153)UIP5 (T5) MON = 0.000 VOLTS ........154)UIP6 (T6) MON = 0.000 VOLTS ........155)UIP7 (T7) MON = 0.000 VOLTS ........156)UIP8 (T8) MON = 0.000 VOLTS ........157)UIP9 (T9) MON = 0.000 VOLTS ........159)AOP1 (T10) MON = 0.000 VOLTS ........160)AOP2 (T11) MON = 0.000 VOLTS ........161)AOP3 (T12) MON = 0.000 VOLTS DIGITAL IO MONITOR 3 ........162)UIP 23456789 = 00000000 ........163)DIP 12341234 DIO = 00000000 ........164)DOP 123TRJSC CIP = 10110000 ........165)+ARM BRIDGE FLAG = LOW ........166)DRIVE START FLAG = LOW ........167)DRIVE RUN FLAG = LOW ........168)RUNNING MODE MON = STOP BLOCK OP MONITOR 3 ........21)RAMP OP MONITOR = 0.00 % ........45)MP OP MONITOR = 0.00 % ........192)REF XC MASTER MN = 0.00 % ........401)SUMMER1 OP MON = 0.00 % ........415)SUMMER2 OP MON = 0.00 % ........429)PID1 OP MONITOR = 0.00 % ........452)PID2 OP MONITOR = 0.00 % ........475)PROFILE Y OP MON = 0.00 % ........483)DIAMETER OP MON = 0.00 % ........494)TOTAL TENSION MN = 0.00 % ........500)TORQUE DEMAND MN = 0.00 % ........523)PRESET OP MON = 0.00 % ........560)LATCH OUTPUT MON = 0.00 % ........568)FILTER1 OP MON = 0.00 % ........573)FILTER2 OP MON = 0.00 % ........578)COUNTER COUNT = 0 ........583)TMR ELAPSED TIME = 0.0 SECS ......169)EL1/2/3 RMS MON = 0.0 VOLTS ......170)DC KILOWATTS MON = 0.0 MOTOR DRIVE ALARMS 2 ......171)SPD TRIP ENABLE = ENABLED ......172)SPEED TRIP TOL = 50.00 % ......173)FLD LOSS TRIP EN = ENABLED ......174)DOP SCCT TRIP EN = DISABLED ......175)MISSING PULSE EN = ENABLED ......176)REF EXCH TRIP EN = DISABLED ......177)OVERSPEED DELAY = 5.0 SECS STALL TRIP MENU 3 ........178)STALL TRIP ENBL = ENABLED ........179)STALL CUR LEVEL = 95.00 % ........180)STALL DELAY TIME = 10.0 SECS ......181)ACTIVE TRIP MON = 8100 ......182)STORED TRIP MON = 0000 ......183)EXT TRIP RESET = ENABLED SERIAL LINKS 2 RS232 PORT1 3 ........187)PORT1 BAUD RATE = 9600 ........188)PORT1 FUNCTION = PARAM EXCH SELECT PARAMETER EXCHANGE 4 DRIVE TRANSMIT 5 DRIVE RECEIVE 5 MENU LIST TO HOST 5 REFERENCE EXCHANGE 4 ..........189)REF XC SLV RATIO = 1.0000 ..........190)REF XC SLV SIGN = NON-INVERT ..........191)REF XC SLAVE MON = 0.00 % ..........192)REF XC MASTER MN = 0.00 % ..........GET FROM = 400)Block Disconnect PORT1 COMMS LINK 4 ..........193)PORT1 GROUP ID = 0 ..........194)PORT1 UNIT ID = 0 ..........195)PORT1 ERROR CODE = 0001 ..........196)P1 DOP3 RTS MODE = DISABLED DISPLAY FUNCTIONS 2 ......REDUCED MENU ENABLE = DISABLED PASSWORD CONTROL 3 ........ENTER PASSWORD = 0000 ........ALTER PASSWORD = 0000 ......LANGUAGE SELECT = 0 SOFTWARE VERSION APPLICATION BLOCKS 2 SUMMER 1 3 ........401)SUMMER1 OP MON = 0.00 % ........402)SUMMER1 SIGN1 = NON-INVERT ........403)SUMMER1 SIGN2 = NON-INVERT ........404)SUMMER1 RATIO1 = 1.0000 ........405)SUMMER1 RATIO2 = 1.0000 ........406)SUMMER1 DIVIDER1 = 1.0000 ........407)SUMMER1 DIVIDER2 = 1.0000 ........408)SUMMER1 INPUT1 = 0.00 % ........409)SUMMER1 INPUT2 = 0.00 % ........410)SUMMER1 INPUT3 = 0.00 % ........411)SUMMER1 DEADBAND = 0.00 % ........412)SUMMER1 OP INVRT = NON-INVERT ........413)SUMMER1 CLAMP = 105.00 % SUMMER 2 3 ........415)SUMMER2 OP MON = 0.00 % ........416)SUMMER2 SIGN1 = NON-INVERT ........417)SUMMER2 SIGN2 = NON-INVERT ........418)SUMMER2 RATIO1 = 1.0000 ........419)SUMMER2 RATIO2 = 1.0000 ........420)SUMMER2 DIVIDER1 = 1.0000 ........421)SUMMER2 DIVIDER2 = 1.0000 ........422)SUMMER2 INPUT1 = 0.00 % ........423)SUMMER2 INPUT2 = 0.00 % ........424)SUMMER2 INPUT3 = 0.00 % ........425)SUMMER2 DEADBAND = 0.00 % ........426)SUMMER2 OP INVRT = NON-INVERT ........427)SUMMER2 CLAMP = 105.00 % PID 1 3 ........429)PID1 OP MONITOR = 0.00 % ........430)PID1 INPUT1 = 0.00 % ........431)PID1 RATIO1 = 1.0000 ........432)PID1 DIVIDER1 = 1.0000 ........433)PID1 INPUT2 = 0.00 % ........434)PID1 RATIO2 = 1.0000 ........435)PID1 DIVIDER2 = 1.0000 ........436)PID1 PROP GAIN = 1.0 ........437)PID1 INTEGRAL TC = 5.00 SECS ........438)PID1 DERIV TC = 0.000 SECS ........439)PID1 FILTER TC = 0.100 SECS ........440)PID1 INT PRESET = DISABLED ........441)PID1 PRESET VAL = 0.00 % ........442)PID1 RESET = DISABLED ........443)PID1 POS CLAMP = 100.00 % ........444)PID1 NEG CLAMP = -100.00 % ........445)PID1 OUTPUT TRIM = 0.2000 ........446)PID1 PROFL MODE = 0 ........447)PID1 MIN PROP GN = 20.00 % ........448)PID1 X-AXIS MIN = 0.00 % ........PID1 X-AXIS GET FROM = 400)Block Disconnect ........449)PID1 PROFILED GN = 0.0 ........450)PID1 CLAMP FLAG = LOW ........451)PID1 ERROR MON = 0.00 % PID 2 3 ........452)PID2 OP MONITOR = 0.00 % ........453)PID2 INPUT1 = 0.00 % ........454)PID2 RATIO1 = 1.0000 ........455)PID2 DIVIDER1 = 1.0000 ........456)PID2 INPUT2 = 0.00 % ........457)PID2 RATIO2 = 1.0000 ........458)PID2 DIVIDER2 = 1.0000 ........459)PID2 PROP GAIN = 1.0 ........460)PID2 INTEGRAL TC = 5.00 SECS ........461)PID2 DERIV TC = 0.000 SECS ........462)PID2 FILTER TC = 0.100 SECS ........463)PID2 INT PRESET = DISABLED ........464)PID2 PRESET VAL = 0.00 % ........465)PID2 RESET = DISABLED ........466)PID2 POS CLAMP = 100.00 % Menu List ........467)PID2 NEG CLAMP = -100.00 % ........468)PID2 OUTPUT TRIM = 0.2000 ........469)PID2 PROFL MODE = 0 ........470)PID2 MIN PROP GN = 20.00 % ........471)PID2 X-AXIS MIN = 0.00 % ........PID2 X-AXIS GET FROM = 400)Block Disconnect ........472)PID2 PROFILED GN = 0.0 ........473)PID2 CLAMP FLAG = LOW ........474)PID2 ERROR MON = 0.00 % PARAMETER PROFILER 3 ........475)PROFILE Y OP MON = 0.00 % ........476)PROFILER MODE = 0 ........477)PROFLR Y AT Xmin = 0.00 % ........478)PROFLR Y AT Xmax = 100.00 % ........479)PROFILER Xmin = 0.00 % ........480)PROFILER Xmax = 100.00 % ........481)PROFLR X RECTIFY = ENABLED ........PRFL X-AXIS GET FROM = 400)Block Disconnect REEL DIAMETER CALC 3 ........483)DIAMETER OP MON = 0.00 % ........484)DIA WEB SPEED IP = 0.00 % ........485)DIA REEL SPD IP = 0.00 % ........486)DIAMETER MIN = 10.00 % ........487)DIA MIN SPEED = 5.00 % ........488)DIAMETER HOLD = DISABLED ........489)DIA FILTER TC = 5.00 SECS ........490)DIAMETER PRESET = DISABLED ........491)DIA PRESET VALUE = 10.00 % ........492)DIA WEB BRK THR. = 7.50 % ........493)DIA MEM BOOT-UP = DISABLED TAPER TENSION CALC 3 ........494)TOTAL TENSION MN = 0.00 % ........495)TENSION REF = 0.00 % ........496)TAPER STRENGTH = 0.00 % ........497)HYPERBOLIC TAPER = DISABLED ........498)TENSION TRIM IP = 0.00 % ........499)TAPERED TENS.MON = 0.00 % TORQUE COMPENSATOR 3 ........500)TORQUE DEMAND MN = 0.00 % ........501)TORQUE TRIM IP = 0.00 % ........502)STICTION COMP = 0.00 % ........503)STIC.WEB SPD THR = 5.00 % ........504)STATIC FRICTION = 0.00 % ........505)DYNAMIC FRICTION = 0.00 % ........506)FRICTION SIGN = NON-INVERT ........507)FIXED INERTIA = 0.00 % ........508)VARIABLE INERTIA = 0.00 % ........509)MATERIAL WIDTH = 100.00 % ........510)ACCEL LINE SPEED = 0.00 % ........511)ACCEL SCALER = 10.00 ........512)ACCEL INPUT/MON = 0.00 % ........513)ACCEL FILTER TC = 0.10 SECS ........514)TENSION DEM IP = 0.00 % ........515)TENSION SCALER = 1.0000 ........516)TORQUE MEM SEL = DISABLED ........517)TORQUE MEM INPUT = 0.00 % ........518)TENSION ENABLE = ENABLED ........519)OVER/UNDERWIND = ENABLED ........520)INERTIA COMP MON = 0.00 % PRESET SPEED 3 ........523)PRESET OP MON = 0.00 % ........524)PRESET SEL1(LSB) = LOW ........525)PRESET SELECT 2 = LOW ........526)PRESET SEL3(MSB) = LOW ........527)PR.VALUE FOR 000 = 0.00 % ........528)PR.VALUE FOR 001 = 0.00 % ........529)PR.VALUE FOR 010 = 0.00 % ........530)PR.VALUE FOR 011 = 0.00 % ........531)PR.VALUE FOR 100 = 0.00 % ........532)PR.VALUE FOR 101 = 0.00 % ........533)PR.VALUE FOR 110 = 0.00 % ........534)PR.VALUE FOR 111 = 0.00 % MULTI-FUNCTION 1 3 ........544)MULTIFUN1 MODE = C/O SWITCH or JUMPER ........545)MULTIFUN1 OP SEL = DISABLED ........GET FROM = 400)Block Disconnect ........AUX GET FROM = 400)Block Disconnect ........GOTO = 400)Block Disconnect MULTI-FUNCTION 2 3 ........546)MULTIFUN2 MODE = C/O SWITCH or JUMPER ........547)MULTIFUN2 OP SEL = DISABLED ........GET FROM = 400)Block Disconnect ........AUX GET FROM = 400)Block Disconnect ........GOTO = 400)Block Disconnect MULTI-FUNCTION 3 3 ........548)MULTIFUN3 MODE = C/O SWITCH or JUMPER ........549)MULTIFUN3 OP SEL = DISABLED ........GET FROM = 400)Block Disconnect ........AUX GET FROM = 400)Block Disconnect ........GOTO = 400)Block Disconnect MULTI-FUNCTION 4 3 ........550)MULTIFUN4 MODE = C/O SWITCH or JUMPER ........551)MULTIFUN4 OP SEL = DISABLED ........GET FROM = 400)Block Disconnect ........AUX GET FROM = 400)Block Disconnect ........GOTO = 400)Block Disconnect MULTI-FUNCTION 5 3 ........552)MULTIFUN5 MODE = C/O SWITCH or JUMPER ........553)MULTIFUN5 OP SEL = DISABLED ........GET FROM = 400)Block Disconnect ........AUX GET FROM = 400)Block Disconnect ........GOTO = 400)Block Disconnect MULTI-FUNCTION 6 3 ........554)MULTIFUN6 MODE = C/O SWITCH or JUMPER ........555)MULTIFUN6 OP SEL = DISABLED ........GET FROM = 400)Block Disconnect ........AUX GET FROM = 400)Block Disconnect ........GOTO = 400)Block Disconnect MULTI-FUNCTION 7 3 ........556)MULTIFUN7 MODE = C/O SWITCH or JUMPER ........557)MULTIFUN7 OP SEL = DISABLED ........GET FROM = 400)Block Disconnect 227 ........AUX GET FROM = 400)Block Disconnect ........GOTO = 400)Block Disconnect .MULTI-FUNCTION 8 3 ........558)MULTIFUN8 MODE = C/O SWITCH or JUMPER ........559)MULTIFUN8 OP SEL = DISABLED ........GET FROM = 400)Block Disconnect ........AUX GET FROM = 400)Block Disconnect ........GOTO = 400)Block Disconnect LATCH 3 ........560)LATCH OUTPUT MON = 0.00 % ........561)LATCH DATA IP = LOW ........562)LATCH CLOCK IP = LOW ........563)LATCH SET IP = LOW ........564)LATCH RESET IP = LOW ........565)LATCH HI VALUE = 0.01 % ........566)LATCH LO VALUE = 0.00 % FILTER 1 3 ........568)FILTER1 OP MON = 0.00 % ........569)FILTER1 TC = 1.000 SECS ........GET FROM = 400)Block Disconnect FILTER 2 3 ........573)FILTER2 OP MON = 0.00 % ........574)FILTER2 TC = 1.000 SECS ........GET FROM = 400)Block Disconnect BATCH COUNTER 3 ........578)COUNTER COUNT = 0 ........579)COUNTER CLOCK = LOW ........580)COUNTER RESET = LOW ........581)COUNTER TARGET = 32000 ........582)COUNTER>=TARGET = LOW INTERVAL TIMER 3 ........583)TMR ELAPSED TIME = 0.0 SECS ........584)TIMER RESET = LOW ........585)TIMER INTERVAL = 5.0 SECS ........586)TMR EXPIRED FLAG = LOW COMPARATOR 1 3 ........588)COMP1 INPUT 1 = 0.00 % ........589)COMP1 INPUT 2 = 0.00 % ........590)COMP1 WINDOW SEL = DISABLED ........591)COMP1 HYSTERESIS = 0.50 % ........GOTO = 400)Block Disconnect COMPARATOR 2 3 ........592)COMP2 INPUT 1 = 0.00 % ........593)COMP2 INPUT 2 = 0.00 % ........594)COMP2 WINDOW SEL = DISABLED ........595)COMP2 HYSTERESIS = 0.50 % ........GOTO = 400)Block Disconnect COMPARATOR 3 3 ........596)COMP3 INPUT 1 = 0.00 % ........597)COMP3 INPUT 2 = 0.00 % ........598)COMP3 WINDOW SEL = DISABLED ........599)COMP3 HYSTERESIS = 0.50 % ........GOTO = 400)Block Disconnect COMPARATOR 4 3 ........600)COMP4 INPUT 1 = 0.00 % ........601)COMP4 INPUT 2 = 0.00 % ........602)COMP4 WINDOW SEL = DISABLED ........603)COMP4 HYSTERESIS = 0.50 % ........GOTO = 400)Block Disconnect C/O SWITCH 1 3 ........604)C/O SW1 CONTROL = LOW ........605)C/O SW1 HI VALUE = 0.01 % ........606)C/O SW1 LO VALUE = 0.00 % ........GOTO = 400)Block Disconnect C/O SWITCH 2 3 ........607)C/O SW2 CONTROL = LOW ........608)C/O SW2 HI VALUE = 0.01 % ........609)C/O SW2 LO VALUE = 0.00 % ........GOTO = 400)Block Disconnect C/O SWITCH 3 3 ........610)C/O SW3 CONTROL = LOW ........611)C/O SW3 HI VALUE = 0.01 % ........612)C/O SW3 LO VALUE = 0.00 % ........GOTO = 400)Block Disconnect C/O SWITCH 4 3 613)C/O SW4 CONTROL = LOW 614)C/O SW4 HI VALUE = 0.01 % 615)C/O SW4 LO VALUE = 0.00 % GOTO = 400)Block Disconnect 16-BIT DEMULTIPLEX 3 ........GET FROM = 400)Block Disconnect ........535)DEMULX O/P BIT1 = LOW ........536)DEMULX O/P BIT2 = LOW ........537)DEMULX O/P BIT3 = LOW ........538)DEMULX O/P BIT4 = LOW ........539)DEMULX O/P BIT5 = LOW ........540)DEMULX O/P BIT6 = LOW ........541)DEMULX O/P BIT7 = LOW ........542)DEMULX O/P BIT8 = LOW ........543)DEMULX O/P BIT9 = LOW ........567)DEMULX O/P BIT10 = LOW ........570)DEMULX O/P BIT11 = LOW ........571)DEMULX O/P BIT12 = LOW ........572)DEMULX O/P BIT13 = LOW ........575)DEMULX O/P BIT14 = LOW ........576)DEMULX O/P BIT15 = LOW ........577)DEMULX O/P BIT16 = LOW CONFIGURATION 2 ......ENABLE GOTO,GETFROM = DISABLED UNIVERSAL INPUTS 3 UIP2 (T2) SETUP 4 ..........320)UIP2 IP RANGE = 0 ..........321)UIP2 IP OFFSET = 0.00 % ..........322)UIP2 CAL RATIO = 1.0000 ..........323)UIP2 MAX CLAMP = 100.00 % ..........324)UIP2 MIN CLAMP = -100.00 % ..........UIP ANALOG GOTO = 63)SPEED REF 2 ..........UIP DIGITAL OP1 GOTO = 400)Block Disconnect ..........UIP DIGITAL OP2 GOTO = 400)Block Disconnect ..........325)UIP2 HI VAL OP1 = 0.01 % ..........326)UIP2 LO VAL OP1 = 0.00 % ..........327)UIP2 HI VAL OP2 = 0.01 % ..........328)UIP2 LO VAL OP2 = 0.00 % ..........329)UIP2 THRESHOLD = 6.000 VOLTS UIP3 (T3) SETUP 4 ..........330)UIP3 IP RANGE = 0 ..........331)UIP3 IP OFFSET = 0.00 % ..........332)UIP3 CAL RATIO = 1.0000 ..........333)UIP3 MAX CLAMP = 100.00 % ..........334)UIP3 MIN CLAMP = -100.00 % ..........UIP ANALOG GOTO = 400)Block Disconnect ..........UIP DIGITAL OP1 GOTO = 400)Block Disconnect ..........UIP DIGITAL OP2 GOTO = 400)Block Disconnect ..........335)UIP3 HI VAL OP1 = 0.01 % ..........336)UIP3 LO VAL OP1 = 0.00 % ..........337)UIP3 HI VAL OP2 = 0.01 % ..........338)UIP3 LO VAL OP2 = 0.00 % ..........339)UIP3 THRESHOLD = 6.000 VOLTS UIP4 (T4) SETUP 4 ..........340)UIP4 IP RANGE = 0 ..........341)UIP4 IP OFFSET = 0.00 % ..........342)UIP4 CAL RATIO = 1.0000 ..........343)UIP4 MAX CLAMP = 100.00 % ..........344)UIP4 MIN CLAMP = -100.00 % ..........UIP ANALOG GOTO = 26)RAMP INPUT ..........UIP DIGITAL OP1 GOTO = 400)Block Disconnect ..........UIP DIGITAL OP2 GOTO = 400)Block Disconnect ..........345)UIP4 HI VAL OP1 = 0.01 % ..........346)UIP4 LO VAL OP1 = 0.00 % ..........347)UIP4 HI VAL OP2 = 0.01 % ..........348)UIP4 LO VAL OP2 = 0.00 % ..........349)UIP4 THRESHOLD = 6.000 VOLTS UIP5 (T5) SETUP 4 ..........350)UIP5 IP RANGE = 0 ..........351)UIP5 IP OFFSET = 0.00 % ..........352)UIP5 CAL RATIO = 1.0000 ..........353)UIP5 MAX CLAMP = 100.00 % ..........354)UIP5 MIN CLAMP = -100.00 % ..........UIP ANALOG GOTO = 90)LOWER CUR CLAMP ..........UIP DIGITAL OP1 GOTO = 400)Block Disconnect ..........UIP DIGITAL OP2 GOTO = 400)Block Disconnect ..........355)UIP5 HI VAL OP1 = 0.01 % ..........356)UIP5 LO VAL OP1 = 0.00 % ..........357)UIP5 HI VAL OP2 = 0.01 % ..........358)UIP5 LO VAL OP2 = 0.00 % ..........359)UIP5 THRESHOLD = 6.000 VOLTS UIP6 (T6) SETUP 4 ..........360)UIP6 IP RANGE = 0 ..........361)UIP6 IP OFFSET = 0.00 % ..........362)UIP6 CAL RATIO = 1.0000 ..........363)UIP6 MAX CLAMP = 100.00 % ..........364)UIP6 MIN CLAMP = -100.00 % UIP ANALOG GOTO = 89)UPPER CUR CLAMP ..........UIP DIGITAL OP1 GOTO = 400)Block Disconnect ..........UIP DIGITAL OP2 GOTO = 400)Block Disconnect ..........365)UIP6 HI VAL OP1 = 0.01 % ..........366)UIP6 LO VAL OP1 = 0.00 % ..........367)UIP6 HI VAL OP2 = 0.01 % ..........368)UIP6 LO VAL OP2 = 0.00 % ..........369)UIP6 THRESHOLD = 6.000 VOLTS UIP7 (T7) SETUP 4 ..........370)UIP7 IP RANGE = 0 ..........371)UIP7 IP OFFSET = 0.00 % ..........372)UIP7 CAL RATIO = 1.0000 ..........373)UIP7 MAX CLAMP = 100.00 % ..........374)UIP7 MIN CLAMP = -100.00 % ..........UIP ANALOG GOTO = 400)Block Disconnect ..........UIP DIGITAL OP1 GOTO = 52)MP PRESET ..........UIP DIGITAL OP2 GOTO = 400)Block Disconnect ..........375)UIP7 HI VAL OP1 = 0.01 % ..........376)UIP7 LO VAL OP1 = 0.00 % ..........377)UIP7 HI VAL OP2 = 0.01 % ..........378)UIP7 LO VAL OP2 = 0.00 % ..........379)UIP7 THRESHOLD = 6.000 VOLTS UIP8 (T8) SETUP 4 ..........380)UIP8 IP RANGE = 0 ..........381)UIP8 IP OFFSET = 0.00 % ..........382)UIP8 CAL RATIO = 1.0000 ..........383)UIP8 MAX CLAMP = 100.00 % ..........384)UIP8 MIN CLAMP = -100.00 % ..........UIP ANALOG GOTO = 400)Block Disconnect ..........UIP DIGITAL OP1 GOTO = 48)MP UP COMMAND ..........UIP DIGITAL OP2 GOTO = 400)Block Disconnect ..........385)UIP8 HI VAL OP1 = 0.01 % ..........386)UIP8 LO VAL OP1 = 0.00 % ..........387)UIP8 HI VAL OP2 = 0.01 % ..........388)UIP8 LO VAL OP2 = 0.00 % ..........389)UIP8 THRESHOLD = 6.000 VOLTS UIP9 (T9) SETUP 4 ..........390)UIP9 IP RANGE = 0 ..........391)UIP9 IP OFFSET = 0.00 % ..........392)UIP9 CAL RATIO = 1.0000 ..........393)UIP9 MAX CLAMP = 100.00 % ..........394)UIP9 MIN CLAMP = -100.00 % ..........UIP ANALOG GOTO = 400)Block Disconnect ..........UIP DIGITAL OP1 GOTO =49)MP DOWN COMMAND ..........UIP DIGITAL OP2 GOTO = 400)Block Disconnect ..........395)UIP9 HI VAL OP1 = 0.01 % ..........396)UIP9 LO VAL OP1 = 0.00 % ..........397)UIP9 HI VAL OP2 = 0.01 % ..........398)UIP9 LO VAL OP2 = 0.00 % ..........399)UIP9 THRESHOLD = 6.000 VOLTS ANALOG OUTPUTS 3 ........250)Iarm OP RECTIFY = DISABLED AOP1 (T10) SETUP 4 .......... 251)AOP1 DIVIDER = 1.0000 .......... 252)AOP1 OFFSET = 0.00 % .......... 253)AOP1 RECTIFY EN = DISABLED .......... GET FROM = 715)SPD FBK % UNF AOP2 (T11) SETUP 4 .......... 254)AOP2 DIVIDER = 1.0000 .......... 255)AOP2 OFFSET = 0.00 % .......... 256)AOP2 RECTIFY EN = DISABLED .......... GET FROM = 123)TOTAL SPD REF MN 228 AOP3 (T12) SETUP 4 .......... 257)AOP3 DIVIDER = 1.0000 .......... 258)AOP3 OFFSET = 0.00 % .......... 259)AOP3 RECTIFY EN = DISABLED .......... GET FROM = 718)CUR DEMAND UNF ........260)SCOPE OP SELECT = DISABLED DIGITAL INPUTS 3 DIP1 (T14) SETUP 4 .......... 310)DIP1 IP HI VALUE = 0.01 % .......... 311)DIP1 IP LO VALUE = 0.00 % .......... GOTO = 400)Block Disconnect DIP2 (T15) SETUP 4 .......... 312)DIP2 IP HI VALUE = 0.01 % .......... 313)DIP2 IP LO VALUE = 0.00 % .......... GOTO = 400)Block Disconnect DIP3 (T16) SETUP 4 .......... 314)DIP3 IP HI VALUE = 0.01 % .......... 315)DIP3 IP LO VALUE = 0.00 % .......... GOTO = 400)Block Disconnect DIP4 (T17) SETUP 4 .......... 316)DIP4 IP HI VALUE = 0.01 % .......... 317)DIP4 IP LO VALUE = 0.00 % .......... GOTO = 400)Block Disconnect RUN IP SETUP 4 .......... 318)RUN IP HI VALUE = 0.01 % .......... 319)RUN IP LO VALUE = 0.00 % .......... GOTO = 308)INTERNAL RUN IP DIGITAL IN/OUTPUTS 3 DIO1 (T18) SETUP 4 .......... 271)DIO1 OP MODE = DISABLED .......... 272)DIO1 RECTIFY EN = ENABLED .......... 273)DIO1 THRESHOLD = 0.00 % .......... 274)DIO1 INVERT MODE = NON-INVERT .......... GET FROM = 400)Block Disconnect .......... GOTO = 116)ZERO REF START .......... 275)DIO1 IP HI VALUE = 0.01 % .......... 276)DIO1 IP LO VALUE = 0.00 % DIO2 (T19) SETUP 4 .......... 277)DIO2 OP MODE = DISABLED .......... 278)DIO2 RECTIFY EN = ENABLED .......... 279)DIO2 THRESHOLD = 0.00 % .......... 280)DIO2 INVERT MODE = NON-INVERT .......... GET FROM = 400)Block Disconnect .......... GOTO = 42)JOG MODE SELECT .......... 281)DIO2 IP HI VALUE = 0.01 % .......... 282)DIO2 IP LO VALUE = 0.00 % DIO3 (T20) SETUP 4 .......... 283)DIO3 OP MODE = DISABLED .......... 284)DIO3 RECTIFY EN = ENABLED .......... 285)DIO3 THRESHOLD = 0.00 % .......... 286)DIO3 INVERT MODE = NON-INVERT .......... GET FROM = 400)Block Disconnect .......... GOTO = 33)RAMP HOLD .......... 287)DIO3 IP HI VALUE = 0.01 % .......... 288)DIO3 IP LO VALUE = 0.00 % DIO4 (T21) SETUP 4 .......... 289)DIO4 OP MODE = DISABLED .......... 290)DIO4 RECTIFY EN = ENABLED .......... 291)DIO4 THRESHOLD = 0.00 % .......... 292)DIO4 INVERT MODE = NON-INVERT .......... GET FROM = 400)Block Disconnect .......... GOTO = 88)DUAL I CLAMP ENBL .......... 293)DIO4 IP HI VALUE = 0.01 % .......... 294)DIO4 IP LO VALUE = 0.00 % DIGITAL OUTPUTS 3 DOP1 (T22) SETUP 4 .......... 261)DOP1 RECTIFY EN = ENABLED .......... 262)DOP1 THRESHOLD = 0.00 % .......... 263)DOP1 INVERT MODE = NON-INVERT .......... GET FROM = 120)AT ZERO SPD FLAG DOP2 (T23) SETUP 4 .......... 264)DOP2 RECTIFY EN = ENABLED .......... 265)DOP2 THRESHOLD = 0.00 % .......... 266)DOP2 INVERT MODE = NON-INVERT .......... GET FROM = 35)RAMPING FLAG DOP3 (T24) SETUP 4 .......... 267)DOP3 RECTIFY EN = ENABLED .......... 268)DOP3 THRESHOLD = 0.00 % .......... 269)DOP3 INVERT MODE = NON-INVERT .......... GET FROM = 698)HEALTHY FLAG STAGING POSTS 3 ........296)DIGITAL POST 1 = LOW ........297)DIGITAL POST 2 = LOW ........298)DIGITAL POST 3 = LOW ........299)DIGITAL POST 4 = LOW ........300)ANALOG POST 1 = 0.00 % ........301)ANALOG POST 2 = 0.00 % ........302)ANALOG POST 3 = 0.00 % ........303)ANALOG POST 4 = 0.00 % SOFTWARE TERMINALS 3 ........305)ANDED RUN = HIGH ........306)ANDED JOG = HIGH ........307)ANDED START = HIGH ........308)INTERNAL RUN IP = LOW JUMPER CONNECTIONS 3 JUMPER 1 4 ..........GET FROM = 400)Block Disconnect ..........GOTO = 400)Block Disconnect JUMPER 2 4 ..........GET FROM = 400)Block Disconnect ..........GOTO = 400)Block Disconnect JUMPER 3 4 ..........GET FROM = 400)Block Disconnect ..........GOTO = 400)Block Disconnect JUMPER 4 4 ..........GET FROM = 400)Block Disconnect ..........GOTO = 400)Block Disconnect JUMPER 5 4 ..........GET FROM = 400)Block Disconnect ..........GOTO = 400)Block Disconnect JUMPER 6 4 ..........GET FROM = 400)Block Disconnect Menu List ..........GOTO = 400)Block Disconnect JUMPER 7 4 ..........GET FROM = 400)Block Disconnect ..........GOTO = 400)Block Disconnect JUMPER 8 4 ..........GET FROM = 400)Block Disconnect ..........GOTO = 400)Block Disconnect JUMPER 9 4 ..........GET FROM = 400)Block Disconnect ..........GOTO = 400)Block Disconnect JUMPER 10 4 ..........GET FROM = 400)Block Disconnect ..........GOTO = 400)Block Disconnect JUMPER 11 4 ..........GET FROM = 400)Block Disconnect ..........GOTO = 400)Block Disconnect JUMPER 12 4 ..........GET FROM = 400)Block Disconnect ..........GOTO = 400)Block Disconnect JUMPER 13 4 ..........GET FROM = 400)Block Disconnect ..........GOTO = 400)Block Disconnect JUMPER 14 4 ..........GET FROM = 400)Block Disconnect ..........GOTO = 400)Block Disconnect JUMPER 15 4 ..........GET FROM = 400)Block Disconnect ..........GOTO = 400)Block Disconnect JUMPER 16 4 ..........GET FROM = 400)Block Disconnect ..........GOTO = 400)Block Disconnect BLOCK OP CONFIG 3 ........RUN MODE RAMPS GOTO = 65)RAMPED SPD REF 4 ........MOTORISED POT GOTO = 62)INT SPEED REF 1 ........REF EXCH SLAVE GOTO = 400)Block Disconnect ........SUMMER1 GOTO = 400)Block Disconnect ........SUMMER2 GOTO = 400)Block Disconnect ........PID1 GOTO = 400)Block Disconnect ........PID2 GOTO = 400)Block Disconnect ........PARAMETER PROFL GOTO = 400)Block Disconnect ........DIAMETER CALC GOTO = 400)Block Disconnect ........TAPER CALC GOTO = 400)Block Disconnect ........T/COMP +CUR LIM GOTO = 400)Block Disconnect ........T/COMP -CUR LIM GOTO = 400)Block Disconnect ........PRESET SPEED GOTO = 400)Block Disconnect ........LATCH GOTO = 400)Block Disconnect ........FILTER1 GOTO = 400)Block Disconnect ........FILTER2 GOTO = 400)Block Disconnect ........BATCH COUNTER GOTO = 400)Block Disconnect ........INTERVAL TIMER GOTO = 400)Block Disconnect FIELDBUS CONFIG 3 c JUMPER 1 4 ..........GET FROM = 400)Block Disconnect JUMPER 2 4 ..........GET FROM = 400)Block Disconnect JUMPER 3 4 ..........GET FROM = 400)Block Disconnect JUMPER 4 4 ..........GET FROM = 400)Block Disconnect JUMPER 5 4 ..........GET FROM = 400)Block Disconnect JUMPER 6 4 ..........GET FROM = 400)Block Disconnect JUMPER 7 4 ..........GET FROM = 400)Block Disconnect JUMPER 8 4 ..........GET FROM = 400)Block Disconnect BIT-PACKED GETFROM JUMPER 1 4 ..........GET FROM = 400)Block Disconnect JUMPER 2 4 ..........GET FROM = 400)Block Disconnect JUMPER 3 4 ..........GET FROM = 400)Block Disconnect JUMPER 4 4 ..........GET FROM = 400)Block Disconnect JUMPER 5 4 ..........GET FROM = 400)Block Disconnect JUMPER 6 4 ..........GET FROM = 400)Block Disconnect JUMPER 7 4 ..........GET FROM = 400)Block Disconnect JUMPER 8 4 ..........GET FROM = 400)Block Disconnect JUMPER 9 4 ..........GOTO = 400)Block Disconnect JUMPER 10 4 ..........GOTO = 400)Block Disconnect JUMPER 11 4 ..........GOTO = 400)Block Disconnect JUMPER 12 4 ..........GOTO = 400)Block Disconnect JUMPER 13 4 ..........GOTO = 400)Block Disconnect JUMPER 14 4 ..........GOTO = 400)Block Disconnect JUMPER 15 4 ..........GOTO = 400)Block Disconnect JUMPER 16 4 ..........GOTO = 400)Block Disconnect BIT-PACKED GOTO JUMPER 1 4 ..........GOTO = 400)Block Disconnect JUMPER 2 4 ..........GOTO = 400)Block Disconnect JUMPER 3 4 ..........GOTO = 400)Block Disconnect JUMPER 4 4 ..........GOTO = 400)Block Disconnect JUMPER 5 4 ..........GOTO = 400)Block Disconnect JUMPER 6 4 ..........GOTO = 400)Block Disconnect JUMPER 7 4 ..........GOTO = 400)Block Disconnect JUMPER 8 4 ..........GOTO = 400)Block Disconnect 199)FBUS DATA CONTRL = 00000000 ............If FIRE ANGLE BSTOP = 155 ............FLD CUR SAMPLE DELAY = 20 ............TEST SWITCH = DISABLED ............PPDET AMPLITUDE COMP = 250 ............PPDET INTERVAL COMP = 400 ............TEST VARIABLE = 230 ............SCAN Ia DEMAND LEVEL = 4 ............SCAN TIME-OUT = 10 ............EMF CALC Ia FB LEVEL = 7 ............ZERO Ia DETECT LEVEL = 6 ............Iarm FBK CALIBRATION = ENABLED ............Ia AVE NULL ADJUST = 2 # ............Ia INST NULL ADJUST = 0 ............Ia FEEDFORWARD GAIN = 1.00 ............AOP3 USER CONFIGURED = ENABLED ............GLOBAL HLTH OVERRIDE = 0000 ............HIGH B/W TACH SAMPLE = DISABLED ............LP FILTER LAG = 0.20 SECS ............DISPLAY AVERAGE LAG = 0.50 SECS ............DISPLAY REFRESH TIME = 1080 ............OP-MODE STEP NUMBER = 3 ............uP EXECUTION TIME = 9829 ............PLL ERROR MONITOR = 0 CONFLICT HELP MENU 3 ........NUMBER OF CONFLICTS = 0 ........MULTIPLE GOTO ON PIN = 400 PARAMETER SAVE 2 Index 229 16 Index ALARMS Digital OP short circuit trip enable PIN 174........ 25, 139, 146 DRIVE TRIP MESSAGE.......................................... 32, 143 Field loss trip enable PIN 173 .............................139, 144 menu............................................................ 17, 136 Missing pulse trip enable PIN 175 ............. 44, 140, 145, 221 Overspeed delay time PIN 177......................140, 144, 221 Reference exchange trip enable PIN 176................140, 146 Speed feedback mismatch tolerance PIN 172 ..........138, 139 Speed feedback mismatch trip enable PIN 171. 18, 63, 64, 65, 137, 145 Stall current level PIN 179 ..........................100, 141, 221 Stall time PIN 180 ................................................141 Stall trip enable PIN 178........................ 18, 141, 145, 221 STALL TRIP MENU ..................................................141 Trip monitors PINS 181 / 182 ...................................142 Trip reset enable PIN 183 .................................143, 221 ANALOG OUTPUTS AOP1/2/3 Dividing factor PINs 251 / 254 / 257.............179 AOP1/2/3 Make output GET FROM source connection ........179 AOP1/2/3 Offset PINs 252 / 255 / 258 .......................179 AOP1/2/3 Rectify mode enable PINs 253 / 256 / 259 .....179 AOP1/2/3/4 SETUP ................................................178 Scope output select PIN 260 ........................130, 180, 188 Analogue inputs...................................... 25, 26, 130, 165 Analogue tachogenerator input........................... 27, 63, 64 APPLICATION BLOCKS............................... 3, 165, 168, 226 APPLICATION BLOCKS Activating blocks ...................................................166 Application blocks PIN table......................................166 General rules .......................................................165 Logic levels .........................................................166 Order of processing ................................................165 Sample times .......................................................165 Approvals UL, cUL, CE .............................................. 217 Archiving PL/X recipes.. 56, 154, 155, 156, 157, 160, 168, 197 Basic speed or torque control.......................................34 Block Disconnect PIN 400 ........................................ 171 Branch hopping between monitor windows ......................47 Breakdown.........................................................3, 218 CALIBRATION Analog tacho trim PIN 17 ......................................... 69 Armature volts trim PIN 16................................. 68, 219 Base rated motor rpm PIN 5................................ 62, 219 Block diagram ....................................................... 60 Current limit (%) PIN 3 ............................................ 61 Desired max rpm PIN 6 ................................ 17, 62, 219 EL1/2/3 rated AC volts PIN 19 ....................... 69, 145, 214 Encoder lines PIN 11 ........................................ 67, 219 ENCODER SCALING ............................. 26, 64, 65, 116, 180 Encoder sign PIN 13 ......................................... 67, 219 Field current feedback trim PIN 15 ................. 68, 106, 219 IR compensation PIN 14............................... 68, 109, 219 Max tacho volts PIN 8 ....................................... 63, 219 Motor / encoder speed ratio PIN 12................. 67, 124, 219 Motor 1 or 2 select PIN 20................... 44, 48, 70, 163, 196 Quadrature enable PIN 10 .................................. 66, 219 Rated armature amps PIN 2 ...................................... 60 Rated armature volts PIN 18 ............................... 69, 219 Rated field amps PIN 4 .......................... 44, 61, 112, 219 Speed feedback type PIN 9.........17, 27, 63, 64, 66, 118, 219 Zero speed offset PIN 7..................................... 62, 219 CE Emissions.......................................................... 217 CE Immunity .......................................................... 217 CHANGE PARAMETERS CALIBRATION................................................ 42, 43, 59 STOP MODE RAMP .................................35, 38, 39, 71, 85 CHANGE PARAMETERS / CURRENT CONTROL ................43, 97 CHANGE PARAMETERS / FIELD CONTROL 17, 29, 61, 62, 69, 106 CHANGE PARAMETERS / JOG CRAWL SLACK .................71, 77 CHANGE PARAMETERS / MOTORISED POT RAMP..................81 CHANGE PARAMETERS / RUN MODE RAMPS ....... 43, 71, 90, 122 CHANGE PARAMETERS / SPEED CONTROL.............. 90, 92, 161 CHANGE PARAMETERS / SPEED REF SUMMER ..................... 90 CHANGE PARAMETERS / ZERO INTERLOCKS............... 113, 147 COMMISSIONING ESSENTIAL pre-start checks ........................ 16, 17, 41, 218 MECHANICAL ENGINEERING.........................................41 POWER ENGINEERING ...............................................41 Quick start calibration ......................................... 42, 43 Quick start calibration step by step...............................43 Quick start current loop AUTOTUNE ..............................43 Configurable connections ................................... 161, 169 Configurable connections Connecting linear values with different units ................. 189 Connecting logic values with different messages ............. 189 Connecting PINs with different units ..................... 169, 189 Connecting to multi-state logic parameters ................... 190 CONFIGURATION. 134, 151, 166, 168, 171, 172, 178, 180, 183, 186, 188, 191, 193, 194, 195, 196, 199, 201, 227 CONFIGURATION / ANALOG OUTPUTS ............................178 CONFIGURATION / BLOCK OP CONFIG ..................... 134, 194 CONFIGURATION / DIGITAL IN/OUTPUTS .........................183 CONFIGURATION / DIGITAL INPUTS ...............................180 CONFIGURATION / DIGITAL OUTPUTS.............................186 CONFIGURATION / FIELDBUS CONFIG ................151, 171, 195 CONFIGURATION / JUMPER CONNECTIONS.......................193 CONFIGURATION / SOFTWARE TERMINALS.......................191 CONFIGURATION / STAGING POSTS ........................ 171, 188 CONFIGURATION menu....................................... 166, 168 CONFLICT HELP MENU.............. 149, 166, 169, 172, 201, 228 CONFLICT HELP MENU Multiple GOTO conflict PIN identifier........................... 201 Number of conflicts ............................................... 201 Conflicting GOTO connections .....................................166 Contactor Contactor drop out ............................................. 40, 87 control ...................................................... 35, 38, 86 Drop-out delay PIN 60 .................................89, 116, 220 Drop-out speed PIN 59.......................................89, 220 Live delay mode PIN 58 ...............................89, 116, 220 Speed profile when stopping.......................................87 Stop ramp time PIN 56 ............................ 22, 71, 88, 220 Stop time limit PIN 57 .......................................88, 220 Contactor control questions and answers ........................ 35 Control terminal default functions ........................... 16, 27 Control terminals ..................................................... 29 Control terminals overview. ........................................ 25 Crawl speed PIN 41 ...........................................79, 219 CURRENT CONTROL 4 quadrant mode enable PIN 96................................ 105 Autotune enable PIN 92 .............. 17, 44, 100, 103, 147, 220 Block diagram .............................................. 97, 98, 99 Current amp integral gain PIN 94 ....................44, 104, 220 Current amp proportional gain PIN 93 ..............44, 104, 220 Current clamp scaler PIN 81........................... 44, 98, 220 CURRENT OVERLOAD ................................................98 current reference PIN 91.................................. 103, 220 current reference enable PIN 97...........................90, 105 Discontinuous current point PIN 95............44, 103, 105, 220 Dual current clamps enable PIN 88 ...................... 102, 220 I DYNAMIC PROFILE ................................................ 101 I DYNAMIC PROFILE / Profile current for low current limit PIN 87................................................................. 102 I DYNAMIC PROFILE / Speed break point for high current limit PIN 85 ............................................................ 102 I DYNAMIC PROFILE / Speed break point for low current limit PIN 86 ............................................................ 102 Lower current clamp PIN 90 .............................. 103, 220 O/LOAD % TARGET set to 105% ....................................99 Overload % target PIN 82..................................... 61, 99 Overload ramp time PIN 83 ...........................99, 100, 220 230 overload table ..................................................... 100 overloads greater than 150% .......................... 60, 100, 141 Profile enable PIN 84 ............................................ 101 Set current loop control terms manually.................. 17, 105 Upper current clamp PIN 89 .............................. 103, 220 DIAGNOSTIC summary windows .................................... 48 DIAGNOSTICS... 25, 43, 47, 64, 67, 68, 69, 121, 122, 125, 128, 130, 131, 133, 134, 221, 226 DIAGNOSTICS ANALOG IO MONITOR.............................................. 130 AOP1/2/3 analogue output monitor PINs 159, 160, 161 .... 130 ARM I LOOP MONITOR ............................................. 125 Armature bridge flag PIN 165............................. 132, 221 Armature current % monitor PIN 134 .......................... 126 Armature current amps monitor PIN 135 ..................... 126 Armature current demand monitor PIN 133 .................. 126 Armature volts % monitor PIN 127 ....................... 123, 221 Armature volts monitor PIN 126.......................... 123, 221 Back emf % monitor PIN 128.............................. 123, 221 BLOCK OP MONITOR ......................................... 133, 134 Current limit flag PIN 141................................. 127, 221 Current limit monitor (lower) PIN 137 ................... 126, 221 Current limit monitor (upper) PIN 136 ................... 126, 221 Current limits (prevailing upper/ lower) PINs 138 / 139 .. 127 DC KILOWATTS MON PIN 170................................... 134 DIGITAL IO MONITOR ......................................... 25, 131 DIP1 to 4 and DIO1 to 4 digital input monitor PIN 163 131, 183 DOP1 to 3 + Control IPs digital monitor PIN 164 ............. 132 EL1/2/3 RMS MON PIN 169 ................................ 69, 134 Encoder RPM monitor PIN 132 ....................... 65, 124, 221 Field active monitor PIN 147 ................................... 129 Field current % monitor PIN 144 ............................... 128 Field current amps monitor PIN 145........................... 128 Field demand monitor PIN 143 ................................. 128 Field firing angle of advance monitor PIN 146 ......... 108, 129 FLD I LOOP MONITOR......................................... 43, 128 Overload limit monitor PIN 140 .......................... 127, 221 RPM monitor PIN 130 ...................................... 124, 221 Run flag PIN 167.................................................. 132 Running mode monitor PIN 168 ................................ 132 Speed demand monitor PIN 124.......................... 123, 221 Speed error monitor PIN 125 ............................. 123, 221 Speed feedback % monitor PIN 131 ...................... 124, 221 SPEED LOOP MONITOR ....................................... 64, 122 Speed reference monitor PIN 123.............................. 122 Start flag PIN 166 ................................................ 132 Tachogenerator volts monitor PIN 129 ............. 63, 124, 221 UIP2 to 9 analogue input monitor PINs 150 to 157 ........... 130 UIP2 to 9 digital input monitor PIN 162 ................. 131, 221 DIGITAL IN/OUTPUTS DIO1/2/3/4 Input high value PINs 275 / 281 / 287 / 293 .. 185 DIO1/2/3/4 Input low value PINs 276 / 282 / 288 / 294... 186 DIO1/2/3/4 Internal output result PINs 685/6/7/8 ........... 186 DIO1/2/3/4 Make input GOTO destination connection . 185, 186 DIO1/2/3/4 Make output GET FROM source connection...... 185 DIO1/2/3/4 OP comp threshold PINs 273 / 279 / 285 / 290 184 DIO1/2/3/4 OP inversion PINs 274 / 280 / 286 / 291 ....... 184 DIO1/2/3/4 OP val rectify enable PINs 272/ 278 / 284 /290 ................................................................... 184 DIO1/2/3/4 Output mode enable PINs 271 / 277 / 283 / 289 ................................................................... 184 DIGITAL IN/OUTPUTS / DIOX SETUP ...............................183 DIGITAL INPUTS DIP inputs for encoder signals. .................................. 180 DIP1/2/3/4 Input high value PINs 310 / 312 / 314 / 318 .. 181 DIP1/2/3/4 Input low value PINs 311 / 313 / 315 / 317 ... 181 DIP1/2/3/4 Make input value GOTO destination connection 181 RUN INPUT SETUP ................................................. 182 RUN INPUT SETUP / Make input value GOTO destination connection ...................................................... 182 RUN INPUT SETUP / RUN input HI value PIN 318....... 182, 223 RUN INPUT SETUP / RUN input LO value PIN 319 ...... 182, 223 DIGITAL INPUTS / DIPX SETUP......................................181 Digital inputs and outputs ................... 25, 30, 183, 185, 186 Digital outputs .................................................... 25, 26 DIGITAL OUTPUTS Index DOP1/2/3 Internal output result PINs 682/3/4 ................188 DOP1/2/3 Make output GET FROM source connection ........187 DOP1/2/3 OP comparator threshold PINs 262 / 265 / 268..187 DOP1/2/3 OP val rectifiy enable PINs 261 / 264 / 267......187 DOP1/2/3 Output inversion enable PINs 263 / 266 / 269 ...187 DIGITAL OUTPUTS / DOPX SETUP ................................. 186 Dimensions Line reactor dimensions.....................................204, 212 Mechanical dimensions PL/X 185 - 265..........................210 Mechanical dimensions PL/X 5 - 50 ..............................208 Mechanical dimensions PL/X 65 - 145 ...........................209 PL/X family cover dimensions ....................................207 DISPLAY FUNCTIONS ... 17, 44, 47, 48, 70, 149, 153, 160, 163, 164, 168, 196, 218, 226 DISPLAY FUNCTIONS / PASSWORD CONTROL... 17, 47, 149, 153, 160, 163, 168 DRIVE PERSONALITY...........................................196, 199 DRIVE PERSONALITY Armature current burden resistance PIN 680 ... 42, 47, 58, 60, 104, 148, 149, 198, 199 Maximum current response PIN 678.............. 21, 27, 97, 198 PASSIVE MOTOR SET .......................................... 70, 196 Recipe page PIN 677 .... 17, 27, 47, 56, 58, 70, 148, 155, 157, 158, 159, 163, 164, 197 Recipe page block diagram .......................................197 Eeprom transfer between units............ 18, 21, 150, 158, 159 Encoder inputs .........................................................26 ENTRY MENU .......................................... 43, 47, 48, 226 FIELD CONTROL Block diagram ......................................................107 Field enable PIN 99.........................................108, 220 Field integral gain PIN 102 ................................108, 220 Field proportional gain PIN 101...........................108, 220 Field reference input PIN 114...................................112 Field weakening derivative time constant PIN 106 ..........110 Field weakening enable PIN 103................................110 Field weakening feedback derivative time constant PIN 107 ....................................................................111 Field weakening feedback integral time constant PIN 108 .111 Field weakening integral time constant PIN 105 .............110 Field weakening proportional gain PIN 104 ...................110 FLD WEAKENING MENU .............................. 17, 64, 68, 109 Minimum field current % PIN 110 .......................... 18, 111 Quench delay PIN 113............................................112 Spillover armature voltage % PIN 109..........................111 Standby field current PIN 112...................................112 Standby field enable PIN 111 .............................112, 220 Voltage output % PIN 100..................................108, 220 File transfer using PL PILOT .................................150, 159 Full menu diagram (Application blocks and configuration)........................... 53 (Block OP and Fieldbus configs, Drive personality and Conflict Help) .............................................................. 55 (Change parameters continued) .................................. 50 (Change parameters) ............................................... 49 (Configuration continued) ......................................... 54 (Diagnostics) ......................................................... 51 (Motor drive alarms, serial links and display functions) ....... 52 Fuses (European stock fuses) ..................................... 205 Fuses (proprietary).................................................. 205 General requirements ................................................25 GET FROM window .................................................. 170 GOTO window ..................................................121, 170 GOTO, GETFROM Enable .....................................172, 201 Hidden parameters.................................................. 171 Iarm output rectify enable PIN 250........................ 27, 178 Incrementing and decrementing parameter values. ............47 Installation.................................................. 23, 34, 215 Installation 3-phase power supply port........................................215 AC supply to L1/2/3 different to EL1/2/3. .... 37, 107, 108, 213 Earthing and screening guidelines .......................... 18, 215 Earthing diagram for typical installation .......................216 Guidelines when using filters................................ 18, 217 Mounting PL/X 185 - 265 ..........................................210 Mounting PL/X 5 - 50 ..............................................208 Index Mounting PL/X 65 - 145 ...........................................209 Terminal tightening torques ............... 41, 208, 209, 210, 214 Venting models PL/X 185 - 265 using back panel aperture...211 Venting models PL/X 185 - 265 using standoff pillars .........211 Wiring instructions .................................................213 Installation guide for EMC.......................................... 215 Introduction ............................................................20 JOG CRAWL SLACK / Block diagram ................................78 Jog mode select PIN 42 ............................ 30, 77, 80, 219 Jog speed 1 / 2 PINs 37 / 38 .......................................79 Jog/Slack ramp PIN 43 .........................................71, 80 JUMPER connections ..........................................171, 193 JUMPER CONNECTIONS Make jumper GET FROM source connection ....................193 Make jumper GOTO destination connection....................193 Key functions...........................................................46 Language select...................................................... 164 Main contactor isolating AC stack and auxiliary supplies.......37 Main contactor isolating AC stack supply..........................37 Main contactor isolating DC armature ........................16, 38 Main Contactor operation.................................. 16, 35, 43 Main contactor wiring options ............... 34, 37, 88, 213, 214 Maintenance, Changing control or power cards .........159, 200 Menu list .............................................................. 226 Mode of operation.....................................................20 Model current rating 50% / 100% rating select ............................... 44, 149, 199 changing BURDEN OHMS ...................................... 18, 200 135 MOTORISED POT RAMP Block diagram ....................................................... 82 MP Maximum / minimum clamps PINs 50 / 51................. 83 MP memory boot up PIN 54 ...................................... 84 MP output monitor PIN 45 ........................................ 82 MP preset PIN 52................................................... 83 MP Preset value PIN 53 ..................................... 84, 219 MP Up / Down command PINs 48 / 49 .......................... 83 MP Up / Down time PINs 46 / 47 ................................ 82 Numeric tables....................................................... 219 Overview of features .................................................21 PASSWORD CONTROL Alter password......................................................164 Enter password .....................................................164 PIN number tables................................... 21, 70, 196, 219 PL PILOT configuration tool.................................160, 168 Power up windows ....................................................47 Product rating labels................................................ 204 Product rating table......................................41, 146, 204 Pushbuttons for simple STOP / START (Coast to stop) .....31, 39 Pushbuttons for STOP / START (With ramp to stop)... 30, 39, 40 RAMPS Block diagram ......................................... 71, 72, 73, 75 Forward down time PIN 23 ................................. 73, 219 Forward minimum speed PIN 27 ........................... 74, 219 Forward up time PIN 22 .................................... 73, 219 Ramp automatic preset PIN 29 .................................. 75 Ramp external preset PIN 30 .................................... 75 Ramp hold enable PIN 33 ................................... 75, 219 Ramp input PIN 26........................................... 74, 219 Ramp output monitor PIN 21.......................... 73, 76, 219 Ramp preset value PIN 31 .................................. 75, 219 Ramp S-profile % PIN 32 ..................................... 71, 75 Ramping flag PIN 35........................... 73, 76, 94, 95, 219 Ramping threshold PIN 34 ........................................ 76 Reverse down time PIN 25.................................. 73, 219 Reverse minimum speed PIN 28 ........................... 74, 219 Reverse up time PIN 24 ..................................... 73, 219 Record of bug fixes.................................................. 234 Record of modifications ............................................ 233 Reduced menu enable ........................................163, 196 Regenerative stopping with PL models .......................22, 88 Remotely mounted display unit...... 21, 48, 159, 160, 164, 218 Restoring the drive parameters to the default condition 17, 27, 47, 58, 70, 163, 196 Risks .............................................................. 15, 218 SELF TEST MESSAGE............. 18, 32, 148, 149, 150, 156, 159 231 SELF TEST MESSAGE Authorisation needed ............................................. 149 Data corruption ..........................................18, 148, 156 Disable GOTO, GETFROM ......................................... 148 Enable GOTO, GETFROM.......................................... 149 Enter password .................................................... 149 GOTO CONFLICT ................................................... 149 Integral armature current cal fail ............................... 148 Internal error code ............................................32, 149 Memory version error ....................................... 150, 159 Memory write error ............................................... 150 Proportional armature current cal fail ......................... 148 Self cal tolerance.................................................. 148 Stop drive to adjust parameter.................................. 149 Semiconductor fuse ratings .............................. 18, 41, 204 SERIAL LINKS Drive transmit................................................ 154, 158 PARAMETER EXCHANGE / Drive receive .................. 156, 158 PARAMETER EXCHANGE / Drive to drive.................. 153, 158 PARAMETER EXCHANGE / menu list to host .................... 157 parameter exchange rules relating to software version..... 150, 154, 156, 158, 159, 164 Parameter exchange using ASCII COMMS ................. 159, 168 PARAMETER EXCHANGE with a locked recipe page 3. .. 149, 155 PL PILOT and SCADA......................................... 160, 168 Receiving parameter data file from a PC ...................... 156 Reference exchange master GET FROM ........................ 162 Reference exchange master monitor PIN 192 ................ 162 Reference exchange slave monitor PIN 191 .................. 162 Reference exchange slave ratio PIN 189 ...................... 162 Reference exchange slave sign PIN 190 ....................... 162 RS232 PORT1 / Connection pinouts .18, 153, 154, 156, 157, 161 RS232 PORT1 / PARAMETER EXCHANGE ....................18, 154 RS232 PORT1 / Port1 Baud rate PIN 187 .......... 153, 158, 222 RS232 PORT1 / Port1 function PIN 188........................ 153 RS232 PORT1 / PORT1 REF EXCHANGE.................... 140, 161 Transmitting a menu list to a PC. ............................... 157 Transmitting SERIAL LINKS parameter data file to a PC ................ 154, 155, 156, 157 USB ports ............................................... 153, 160, 168 Signal test pins ..................................................27, 105 Slack speed 1 / 2 PINs 39 / 40..................................... 79 Small test motors .......................................... 44, 70, 199 SOFTWARE TERMINALS Anded jog PIN 306 ......................................... 191, 223 Anded run PIN 305 ......................................... 191, 223 Anded start PIN 307 ....................................... 192, 223 Internal run input PIN 308 ................................ 182, 192 Software version ................................................48, 164 Software version number of the unit. ................. 21, 48, 168 Speed / current reference 3 monitor PIN 64 ..................220 SPEED CONTROL Block diagram ........................................ 27, 85, 93, 105 High break point PIN 75 .....................................95, 220 Integral % during ramp PIN 78 ......................... 76, 95, 220 Low break point PIN 74 .....................................95, 220 Low breakpoint integral time constant PIN 77 .................95 Low breakpoint proportional gain PIN 76 .......................95 Max negative speed reference PIN 70 ...........................93 Max positive speed reference PIN 69............................93 Speed integral reset enable PIN 73 ..............................94 Speed integral time constant PIN 72 ......................94, 220 Speed loop adaption enable PIN 79......................... 92, 96 Speed proportional gain PIN 71 .....17, 44, 64, 65, 92, 93, 220 SPEED CONTROL / SPEED PI ADAPTION............................ 94 SPEED REF SUMMER / Block diagram............................... 90 Speed reference (Ramped) 4 PIN 65 .......................91, 220 Speed reference 1 PIN 62............................... 82, 91, 220 Speed reference 2 PIN 63....................................91, 220 Speed/Current Reference 3 ratio PIN 67........................ 92 Speed/Current Reference 3 sign PIN 66......................... 91 SPINDLE ORIENTATE Block diagram ...................................................... 117 Marker enable PIN 240 .................................... 118, 222 Marker frequency monitor PIN 243 ...................... 120, 222 Marker offset PIN 241 ..................................... 119, 222 232 Marker specification............................................... 118 position flag PIN 244....................................... 120, 222 Position reference PIN 242 ............................... 120, 222 Spindle orientate operation...................................... 117 Zero speed lock PIN 122................................... 118, 220 STAGING POSTS / Digital / analog 1/2/3/4 PINs 296 to 303 .190 STOP MODE RAMP Block diagram ....................................................... 85 Supply loss shutdown.......................... 31, 32, 69, 145, 149 Supply voltages required for all models .......................... 22 Technical Data...................................................22, 105 Tips for using the manual ........................................... 21 TRIP MESSAGE Armature overcurrent............................................. 143 Armature overvolts ................................................ 143 Autotune quit ................................................ 103, 147 Bad reference exchange .................................... 146, 161 Cannot autotune............................................. 103, 147 Contactor lock out........................................... 146, 147 Field loss............................................................ 144 Field overcurrent .................................................. 143 Heatsink overtemp ................................................ 146 Missing pulse ....................................................... 145 Overspeed .................................................... 140, 144 Short circuit digital outputs................................. 25, 146 Speed feedback mismatch........................................ 145 Stall trip ............................................................ 145 Supply phase loss .............................. 32, 47, 69, 145, 214 Synchronization loss......................................... 146, 214 Thermistor on T30 ................................................. 144 Index User trip.............................................................144 UL, cUL ................................................................ 217 UNIVERSAL INPUTS 4-20mA loop input SETUP .................................... 27, 175 Analog GOTO destination connection ...........................176 Block diagram ......................................................174 Digital input, high value for output 1 PIN 3(2)5 to 3(9)5....177 Digital input, high value for output 2 PIN 3(2)7 to 3(9)7....177 Digital input, low value for output 1 PIN 3(2)6 to 3(9)6.....177 Digital input, low value for output 2 PIN 3(2)8 to 3(9)8.....177 Digital output 1 GOTO destination connection.................176 Digital output 2 GOTO destination connection.................176 Input offset PIN 3(2)1 to 3(9)1..................................174 Input range PIN 3(2)0 to 3(9)0 ..................................174 Linear scaling ratio PIN 3(2)2 to 3(9)2.........................175 Maximum clamp level PIN 3(2)3 to 3(9)3 ......................175 Minimum clamp level PIN 3(2)4 to 3(9)4 ......................175 Threshold PIN 3(2)9 to 3(9)9 ....................................177 Warnings .................................................... 13, 16, 218 ZERO INTERLOCKS Block diagram ......................................................114 SPINDLE ORIENTATE ...................... 64, 65, 66, 89, 114, 116 Standstill enable PIN 115 ..................................114, 220 standstill flag PIN 121......................................115, 220 Zero interlocks current level PIN 118....................115, 220 Zero interlocks speed level PIN 117......................114, 220 zero reference flag PIN 119 ...............................115, 220 Zero reference start enable PIN 116.....................114, 220 zero speed flag PIN 120....................................115, 220 PIN number tables The description of every parameter can be located by using the tables in chapter 15. They are listed in numeric order under convenient headings. The tables contain a cross reference to each parameter paragraph. Please also refer to Part 3 PL/X 275-980 for extra details of frame 4 and 5 high power drives. Record of modifications 233 16.1 Record of modifications Manual Version 6.00a Description of change Reason for change Add new sub-menu for 16 BIT DEMULTIPLEX Improved functionality Paragraph reference 12 Date April 2017 Software version 6.13 234 Record of modifications 16.2 Record of bug fixes See Apps manual for bug fixes relevant to applications blocks topics. Manual Version 6.00a Function with Bug Comments Refer to supplier Paragraph reference Date Software version 6.13 17 Changes to product since manual publication Any new features that affect the existing functioning of the unit, that have occurred since the publication of the manual, will be recorded here using an attached page. 04/04/17 235 Sprint Electric Limited Peregrine House Ford, Arundel, BN18 0DF, UK Tel. Fax. Email. +44 (0)1243 558080 +44 (0)1243 558099 [email protected] www.sprint-electric.com 1 PL / PLX Digital DC Drive Part 2 APPLICATION BLOCKS Part 1 PL / PLX Digital DC Drive Part 2 Application Blocks Part 3 High Power Modules PL / PLX 275 - 980 HG102635 V6.00a 2 Contents 3 NOTE. These instructions do not purport to cover all details or variations in equipment, or to provide for every possible contingency to be met in connection with installation, operation, or maintenance. Should further information be desired or should particular problems arise which are not covered sufficiently for the purchaser's purposes, the matter should be referred to the local Supplier sales office. The contents of this instruction manual shall not become part of or modify any prior or existing agreement, commitment, or relationship. The sales contract contains the entire obligation of Sprint Electric Ltd. The warranty contained in the contract between the parties is the sole warranty of Sprint Electric Ltd. Any statements contained herein do not create new warranties or modify the existing warranty. IMPORTANT MESSAGE This is a version 6.00 applications manual. Units with software version 6.10 upwards contain all the functions described. Part 2 Application Blocks describes the application blocks available in the PL/X. The application blocks are normally dormant and may be activated by using the GOTO function. Please refer to section 13 CONFIGURATION in the main manual. The application blocks consist of various inputs, processing functions and outputs that are found to be useful in typical industrial motion control and process industries. 1 Table of contents 1 2 Table of contents .....................................................................................3 Warnings................................................................................................7 2.1 2.2 2.3 3 General Warnings.......................................................................................................... 7 Warnings and Instructions ............................................................................................... 8 General Risks ............................................................................................................... 9 APPLICATION BLOCKS............................................................................... 11 3.1 General rules ..............................................................................................................11 3.1.1 Sample times ............................................................................................................ 11 3.1.2 Order of processing .................................................................................................... 12 3.1.3 Logic levels .............................................................................................................. 12 3.1.4 Activating blocks........................................................................................................ 12 3.1.5 CONFLICT HELP MENU ................................................................................................. 12 3.2 APPLICATION BLOCKS / SUMMER 1, 2 ................................................................................14 3.2.1 SUMMER 1, 2 / Block diagram ........................................................................................ 15 3.2.2 SUMMER 1, 2 / Total output monitor PIN 401 / 415 ............................................................ 15 3.2.3 SUMMER 1, 2 / Sign 1 PIN 402 / 416 ............................................................................... 15 3.2.4 SUMMER 1, 2 / Sign 2 PIN 403 / 417 ............................................................................... 16 3.2.5 SUMMER 1, 2 / Ratio 1 PIN 404 / 418.............................................................................. 16 3.2.6 SUMMER 1, 2 / Ratio 2 PIN 405 / 419.............................................................................. 16 3.2.7 SUMMER 1, 2 / Divider 1 PIN 406 / 420 ........................................................................... 16 3.2.8 SUMMER 1, 2 / Divider 2 PIN 407 / 421 ........................................................................... 16 3.2.9 SUMMER 1, 2 / Input 1 PIN 408 / 422.............................................................................. 17 3.2.10 SUMMER 1, 2 / Input 2 PIN 409 / 423 ............................................................................ 17 3.2.11 SUMMER 1, 2 / Input 3 PIN 410 / 424 ............................................................................ 17 3.2.12 SUMMER 1, 2 / Deadband PIN 411 / 425 ......................................................................... 17 3.2.13 SUMMER 1, 2 / Output sign inverter PIN 412 / 426 ............................................................ 17 3.2.14 SUMMER 1, 2 / Symmetrical clamp PIN 413 / 427 .............................................................. 18 3.3 APPLICATION BLOCKS / PID 1, 2.......................................................................................19 4 Contents 3.3.1 PID 1, 2 / Block diagram .............................................................................................. 20 3.3.2 PID 1, 2 / PID output monitor PIN 429 / 452 ..................................................................... 21 3.3.3 PID 1, 2 / PID IP1 value PIN 430 / 453............................................................................. 21 3.3.4 PID 1, 2 / PID IP1 ratio PIN 431 / 454 ............................................................................. 21 3.3.5 PID 1, 2 / PID IP1 divider PIN 432 / 455........................................................................... 21 3.3.6 PID 1, 2 / PID IP2 value PIN 433 / 456............................................................................. 21 3.3.7 PID 1, 2 / PID IP2 ratio PIN 434 / 457 ............................................................................. 22 3.3.8 PID 1, 2 / PID IP2 divider PIN 435 / 458........................................................................... 22 3.3.9 PID 1, 2 / PID proportional gain PIN 436 / 459 .................................................................. 22 3.3.10 PID 1, 2 / PID integrator time constant PIN 437 / 460 ........................................................ 22 3.3.11 PID 1, 2 / PID derivative time constant PIN 438 / 461 ........................................................ 23 3.3.12 PID 1, 2 / PID derivative filter time constant PIN 439 / 462................................................. 23 3.3.13 PID 1, 2 / PID integrator preset PIN 440 / 463 ................................................................. 23 3.3.14 PID 1, 2 / PID integrator preset value PIN 441 / 464 .......................................................... 23 3.3.15 PID 1, 2 / PID reset PIN 442 / 465 ................................................................................ 24 3.3.16 PID 1, 2 / PID positive clamp level PIN 443 / 466.............................................................. 24 3.3.17 PID 1, 2 / PID negative clamp level PIN 444 / 467............................................................. 24 3.3.18 PID 1, 2 / PID output % trim PIN 445 / 468...................................................................... 24 3.3.19 PID 1, 2 / PID profile mode select PIN 446 / 469 .............................................................. 25 3.3.20 PID 1, 2 / PID minimum proportional gain PIN 447 / 470..................................................... 25 3.3.21 PID 1, 2 / PID Profile X axis minimum PIN 448 / 471 .......................................................... 25 3.3.22 PID 1, 2 / PID Profile X axis GET FROM ............................................................................ 26 3.3.23 PID 1, 2 / PID Profiled prop gain output monitor PIN 449 / 472............................................. 26 3.3.24 PID 1, 2 / PID clamp flag monitor PIN 450 / 473 ............................................................... 26 3.3.25 PID 1, 2 / PID error value monitor PIN 451 / 474 ............................................................... 26 3.4 APPLICATION BLOCKS / PARAMETER PROFILER ................................................................... 27 3.4.1 PARAMETER PROFILER / Block diagram ............................................................................. 27 3.4.1.1 Profile for Y increasing with X ................................................................................. 27 3.4.1.2 Profile for Y decreasing with X ................................................................................ 28 3.4.1.3 Examples of general profiles................................................................................... 28 3.4.2 PARAMETER PROFILER / Profile Y output monitor PIN 475 .................................................... 29 3.4.3 PARAMETER PROFILER / Profiler mode PIN 476.................................................................. 29 3.4.4 PARAMETER PROFILER / Profile Y at Xmin PIN 477.............................................................. 29 3.4.5 PARAMETER PROFILER / Profiler Y at Xmax PIN 478 ............................................................ 29 3.4.6 PARAMETER PROFILER / Profile X axis minimum PIN 479 ...................................................... 30 3.4.7 PARAMETER PROFILER / Profile X axis maximum PIN 480 ..................................................... 30 3.4.8 PARAMETER PROFILER / Profile X axis rectify PIN 481 ......................................................... 30 3.4.9 PARAMETER PROFILER / Profile X axis GET FROM................................................................. 30 3.5 APPLICATION BLOCKS / REEL DIAMETER CALC .................................................................... 31 3.5.1 REEL DIAMETER CALC / Block diagram .............................................................................. 32 3.5.2 REEL DIAMETER CALC / Diameter output monitor PIN 483 .................................................... 32 3.5.3 REEL DIAMETER CALC / Web speed input PIN 484............................................................... 32 3.5.4 REEL DIAMETER CALC / Reel speed input PIN 485............................................................... 32 3.5.5 REEL DIAMETER CALC / Minimum diameter input PIN 486 ..................................................... 33 3.5.6 REEL DIAMETER CALC / Diameter calculation min speed PIN 487 ............................................ 33 3.5.7 REEL DIAMETER CALC / Diameter hold enable PIN 488......................................................... 33 3.5.8 REEL DIAMETER CALC / Diameter filter time constant PIN 489 ............................................... 33 3.5.9 REEL DIAMETER CALC / Diameter preset enable PIN 490 ...................................................... 34 3.5.10 REEL DIAMETER CALC / Diameter preset value PIN 491....................................................... 34 3.5.11 REEL DIAMETER CALC / Diameter web break threshold PIN 492 ............................................ 34 3.5.12 REEL DIAMETER CALC / Diameter memory boot up PIN 493................................................. 34 3.6 APPLICATION BLOCKS / TAPER TENSION CALC .................................................................... 35 3.6.1 TAPER TENSION CALC / Block diagram.............................................................................. 35 3.6.1.1 Linear taper equation ........................................................................................... 35 3.6.1.2 Hyperbolic taper equation ..................................................................................... 35 3.6.1.3 Taper graphs showing tension versus diameter............................................................. 36 3.6.1.4 Taper graphs showing torque versus diameter ............................................................. 36 3.6.2 TAPER TENSION CALC / Total tension OP monitor PIN 494 .................................................... 36 3.6.3 TAPER TENSION CALC / Tension reference PIN 495............................................................. 36 3.6.4 TAPER TENSION CALC / Taper strength input PIN 496 .......................................................... 37 3.6.5 TAPER TENSION CALC / Hyperbolic taper enable PIN 497 ..................................................... 37 Contents 5 3.6.6 TAPER TENSION CALC / Tension trim input PIN 498 ............................................................ 37 3.6.7 TAPER TENSION CALC / Tapered tension monitor PIN 499 .................................................... 37 3.7 APPLICATION BLOCKS / TORQUE COMPENSATOR ..................................................................38 3.7.1 TORQUE COMPENSATOR / Block diagram........................................................................... 39 3.7.2 TORQUE COMPENSATOR / Torque demand monitor PIN 500 .................................................. 40 3.7.3 TORQUE COMPENSATOR / Torque trim input PIN 501 .......................................................... 40 3.7.4 TORQUE COMPENSATOR / Stiction compensation PIN 502..................................................... 40 3.7.5 TORQUE COMPENSATOR / Stiction web speed threshold PIN 503 ............................................ 40 3.7.6 TORQUE COMPENSATOR / Static friction compensation PIN 504 ............................................. 41 3.7.7 TORQUE COMPENSATOR / Dynamic friction compensation PIN 505.......................................... 41 3.7.8 TORQUE COMPENSATOR / Friction sign PIN 506 ................................................................. 42 3.7.9 TORQUE COMPENSATOR / Fixed mass inertia PIN 507.......................................................... 42 3.7.10 TORQUE COMPENSATOR / Variable mass inertia PIN 508..................................................... 42 3.7.11 TORQUE COMPENSATOR / Material width PIN 509 ............................................................. 43 3.7.12 TORQUE COMPENSATOR / Accel line speed input PIN 510 ................................................... 43 3.7.13 TORQUE COMPENSATOR / Accel scaler PIN 511 ................................................................ 44 3.7.14 TORQUE COMPENSATOR / Accel input/monitor PIN 512 ..................................................... 44 3.7.15 TORQUE COMPENSATOR / Accel filter time constant PIN 513 ............................................... 44 3.7.16 TORQUE COMPENSATOR / Tension demand input PIN 514................................................... 44 3.7.17 TORQUE COMPENSATOR / Tension scaler PIN 515 ............................................................. 45 3.7.18 TORQUE COMPENSATOR / Torqe memory select PIN 516..................................................... 45 3.7.19 TORQUE COMPENSATOR / Torque memory input PIN 517 .................................................... 45 3.7.20 TORQUE COMPENSATOR / Tension enable PIN 518 ............................................................ 45 3.7.21 TORQUE COMPENSATOR / Overwind/underwind PIN 519..................................................... 46 3.7.22 TORQUE COMPENSATOR / Inertia comp monitor PIN 520..................................................... 46 3.8 Centre winding block arrangement ..................................................................................47 3.9 APPLICATION BLOCKS / PRESET SPEED ..............................................................................48 3.9.1 PRESET SPEED / Block diagram....................................................................................... 49 3.9.2 PRESET SPEED / Preset speed output monitor PIN 523......................................................... 50 3.9.3 PRESET SPEED / Select bit inputs 1 lsb, 2, 3 msb PINs 524 / 525 / 526..................................... 50 3.9.4 PRESET SPEED / OP value of 000 to 111 PINs 527 to 534 ...................................................... 50 3.10 APPLICATION BLOCKS / MULTI-FUNCTION 1 to 8 .................................................................51 3.10.1 MULTI-FUNCTION / Block diagram ................................................................................. 51 3.10.2 MULTI-FUNCTION 1 to 8 / Function mode PINs 544/6/8, 550/2/4/6/8 .................................... 52 3.10.2.1 Sample and hold function ..................................................................................... 52 3.10.3 MULTI-FUNCTION 1 to 8 / Output select 1 to 8 PIN 545/7/9, 551/3/5/7/9 ................................ 52 3.10.4 MULTI-FUNCTION 1 to 8 / Main input GET FROM 1 to 8 ........................................................ 52 3.10.5 MULTI-FUNCTION 1 to 8 / Aux input GET FROM 1 to 8.......................................................... 53 3.10.6 MULTI-FUNCTION 1 to 8 / GOTO 1 to 8............................................................................ 53 3.11 APPLICATION BLOCKS / LATCH .......................................................................................54 3.11.1 LATCH / Block diagram............................................................................................... 54 3.11.2 LATCH / Latch output monitor PIN 560.......................................................................... 54 3.11.3 LATCH / Latch data input PIN 561................................................................................ 54 3.11.4 LATCH / Latch clock input PIN 562 ............................................................................... 55 3.11.5 LATCH / Latch set input PIN 563.................................................................................. 55 3.11.6 LATCH / Latch reset input PIN 564 ............................................................................... 55 3.11.7 LATCH / Latch output value for HI/LOW PINs 565 / 566 ..................................................... 55 3.12 APPLICATION BLOCKS / FILTER 1, 2 .................................................................................56 3.12.1 FILTER / Block diagram .............................................................................................. 56 3.12.2 FILTER 1, 2 / Filter output monitor PIN 568 / 573............................................................ 56 3.12.3 FILTER 1, 2 / Filter time constant PIN 569 / 574 ............................................................. 56 3.12.4 FIXED LOW PASS FILTER .............................................................................................. 57 3.13 APPLICATION BLOCKS / BATCH COUNTER ..........................................................................58 3.13.1 BATCH COUNTER / Block diagram.................................................................................. 58 3.13.2 BATCH COUNTER / Counter count monitor PIN 578 ........................................................... 58 3.13.3 BATCH COUNTER / Clock input PIN 579 ......................................................................... 59 3.13.4 BATCH COUNTER / Reset input PIN 580 ......................................................................... 59 3.13.5 BATCH COUNTER / Counter target number PIN 581 ........................................................... 59 3.13.6 BATCH COUNTER / Count equal or greater than target flag PIN 582....................................... 59 3.14 APPLICATION BLOCKS / INTERVAL TIMER ...........................................................................60 3.14.1 INTERVAL TIMER / Block diagram................................................................................... 60 6 Contents 3.14.2 INTERVAL TIMER / Time elapsed monitor PIN 583 ............................................................. 60 3.14.3 INTERVAL TIMER / Timer reset enable PIN 584................................................................. 60 3.14.4 INTERVAL TIMER / Time interval setting PIN 585 ............................................................... 61 3.14.5 INTERVAL TIMER / Timer expired flag PIN 586 ................................................................. 61 3.15 APPLICATION BLOCKS / COMPARATOR 1 to 4 ..................................................................... 62 3.15.1 COMPARATOR 1 / Block diagram.................................................................................... 62 3.15.2 COMPARATOR 1/2/3/4 / Input 1 PIN 588/592/596/600 ...................................................... 62 3.15.3 COMPARATOR 1/2/3/4 / Input 2 PIN 589/593/597/601 ...................................................... 62 3.15.4 COMPARATOR 1/2/3/4 / Window mode select PIN 590/594/598/602 ..................................... 63 3.15.5 COMPARATOR 1/2/3/4 / Hysteresis PIN 591/595/599/603 .................................................. 63 3.15.6 COMPARATOR 1/2/3/4 / Comparator GOTO..................................................................... 63 3.16 APPLICATION BLOCKS / C/O SWITCH 1 to 4 ....................................................................... 63 3.16.1 C/O SWITCH / Block diagram ....................................................................................... 63 3.16.1.1 C/O switch used as sample and hold function ............................................................ 64 3.16.2 C/O SWITCH 1/2/3/4 / Control PIN 604/607/610/613........................................................ 64 3.16.3 C/O SWITCH 1/2/3/4 / Inputs HI/LO PIN 605/608/611/614 / 606/609/612/615 ........................ 64 3.16.4 C/O SWITCH 1/2/3/4 / C/O switch GOTO ....................................................................... 64 3.17 APPLICATION BLOCKS / 16-BIT DEMULTIPLEX .................................................................... 65 4 5 6 7 8 PIN table for application blocks 401 – 680......................................................66 Index...................................................................................................70 Record of applications manual modifications ...................................................70 Record of application blocks bug fixes ...........................................................70 Changes to product since manual publication ...................................................70 Warnings 7 2 Warnings 2.1 General Warnings READ AND UNDERSTAND THIS MANUAL BEFORE APPLYING POWER TO THE PL/X DRIVE UNIT This manual describes the application blocks available in the PL/X. The PL/X motor drive controller is an open chassis component for use in a suitable enclosure Drives and process control systems are a very important part of creating better quality and value in the goods for our society, but they must be designed, installed and used with great care to ensure everyone's SAFETY. Remember that the equipment you will be using incorporates... High voltage electrical equipment Powerful rotating machinery with large stored energy Heavy components Your process may involve... Hazardous materials Expensive equipment and facilities Interactive components DANGER ELECTRIC SHOCK RISK Always use qualified personnel to design, construct and operate your systems and keep SAFETY as your primary concern. Thorough personnel training is an important aid to SAFETY and productivity. SAFETY awareness not only reduces the risk of accidents and injuries in your plant, but also has a direct impact on improving product quality and costs. If you have any doubts about the SAFETY of your system or process, consult an expert immediately. Do not proceed without doing so. HEALTH AND SAFETY AT WORK Electrical devices can constitute a safety hazard. It is the responsibility of the user to ensure the compliance of the installation with any acts or bylaws in force. Only skilled personnel should install and maintain this equipment after reading and understanding this instruction manual. If in doubt refer to the supplier. Note. The contents of this manual are believed to be accurate at the time of printing. The manufacturers, however, reserve the right to change the content and product specification without notice. No liability is accepted for omissions or errors. No liability is accepted for the installation or fitness for purpose or application of the PL/X motor drive unit. 8 Warnings 2.2 Warnings and Instructions WARNING Only qualified personnel who thoroughly understand the operation of this equipment and any associated machinery should install, start-up or attempt maintenance of this equipment. Non compliance with this warning may result in personal injury and/or equipment damage. Never work on any control equipment without first isolating all power supplies from the equipment. The drive and motor must be connected to an appropriate safety earth. Failure to do so presents an electrical shock hazard. CAUTION This equipment was tested before it left our factory. However, before installation and start-up, inspect all equipment for transit damage, loose parts, packing materials etc. This product conforms to IPOO protection. Due consideration should be given to environmental conditions of installation for safe and reliable operation. Never perform high voltage resistance checks on the wiring without first disconnecting the product from the circuit being tested. STATIC SENSITIVE This equipment contains electrostatic discharge (ESD) sensitive parts. Observe static control precautions when handling, installing and servicing this product. THESE WARNINGS AND INSTRUCTIONS ARE INCLUDED TO ENABLE THE USER TO OBTAIN MAXIMUM EFFECTIVENESS AND TO ALERT THE USER TO SAFETY ISSUES APPLICATION AREA: Industrial (non-consumer) "Motor speed control utilising DC motors". PRODUCT MANUAL: This manual is intended to provide a description of how the product works. It is not intended to describe the apparatus into which the product is installed. This manual is to be made available to all persons who are required to design an application, install, service or come into direct contact with the product. APPLICATIONS ADVICE: Applications advice and training is available from Sprint Electric. Warnings 9 2.3 General Risks INSTALLATION: THIS PRODUCT IS CLASSIFIED AS A COMPONENT AND MUST BE USED IN A SUITABLE ENCLOSURE Ensure that mechanically secure fixings are used as recommended. Ensure that cooling airflow around the product is as recommended. Ensure that cables and wire terminations are as recommended and clamped to required torque. Ensure that a competent person carries out the installation and commissioning of this product. Ensure that the product rating is not exceeded. APPLICATION RISK: ELECTROMECHANICAL SAFETY IS THE RESPONSIBILITY OF THE USER The integration of this product into other apparatus or systems is not the responsibility of the manufacturer or distributor of the product. The applicability, effectiveness or safety of operation of this equipment, or that of other apparatus or systems is not the responsibility of the manufacturer or distributor of the product. Where appropriate the user should consider some aspects of the following risk assessment. RISK ASSESSMENT: Under fault conditions or conditions not intended. 1. The motor speed may be incorrect. 2. The motor speed may be excessive. 3. The direction of rotation may be incorrect. 4. The motor may be energised. In all situations the user should provide sufficient guarding and/or additional redundant monitoring and safety systems to prevent risk of injury. NOTE: During a power loss event the product will commence a sequenced shut down procedure and the system designer must provide suitable protection for this case. MAINTENANCE: Maintenance and repair should only be performed by competent persons using only the recommended spares (or return to factory for repair). Use of unapproved parts may create a hazard and risk of injury. WHEN REPLACING A PRODUCT IT IS ESSENTIAL THAT ALL USER DEFINED PARAMETERS THAT DEFINE THE PRODUCT'S OPERATION ARE CORRECTLY INSTALLED BEFORE RETURNING TO USE. FAILURE TO DO SO MAY CREATE A HAZARD AND RISK OF INJURY. PACKAGING: The packaging is combustible and if disposed of incorrectly may lead to the generation of toxic fumes, which are lethal. WEIGHT: Consideration should be given to the weight of the product when handling. REPAIRS: Repair reports can only be given if the user makes sufficient and accurate defect reporting. Remember that the product without the required precautions can represent an electrical hazard and risk of injury, and that rotating machinery is a mechanical hazard. PROTECTIVE INSULATION: 1. All exposed metal insulation is protected by basic insulation and user bonding to earth i.e. Class 1. 2. Earth bonding is the responsibility of the installer. 3. All signal terminals are protected by basic insulation, and the user earth bonding. (Class 1). The purpose of this protection is to allow safe connection to other low voltage equipment and is not designed to allow these terminals to be connected to any un-isolated potential. APPLICATION BLOCKS 11 3 APPLICATION BLOCKS 1 2 Table of contents .....................................................................................3 Warnings................................................................................................7 2.1 2.2 2.3 3 General Warnings.......................................................................................................... 7 Warnings and Instructions ............................................................................................... 8 General Risks ............................................................................................................... 9 APPLICATION BLOCKS............................................................................... 11 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 3.10 3.11 3.12 3.13 3.14 3.15 3.16 3.17 4 5 6 7 8 General rules ..............................................................................................................11 APPLICATION BLOCKS / SUMMER 1, 2 ................................................................................14 APPLICATION BLOCKS / PID 1, 2.......................................................................................19 APPLICATION BLOCKS / PARAMETER PROFILER ....................................................................27 APPLICATION BLOCKS / REEL DIAMETER CALC .....................................................................31 APPLICATION BLOCKS / TAPER TENSION CALC .....................................................................35 APPLICATION BLOCKS / TORQUE COMPENSATOR ..................................................................38 Centre winding block arrangement ..................................................................................47 APPLICATION BLOCKS / PRESET SPEED ..............................................................................48 APPLICATION BLOCKS / MULTI-FUNCTION 1 to 8 .................................................................51 APPLICATION BLOCKS / LATCH .......................................................................................54 APPLICATION BLOCKS / FILTER 1, 2 .................................................................................56 APPLICATION BLOCKS / BATCH COUNTER ..........................................................................58 APPLICATION BLOCKS / INTERVAL TIMER ...........................................................................60 APPLICATION BLOCKS / COMPARATOR 1 to 4......................................................................62 APPLICATION BLOCKS / C/O SWITCH 1 to 4 ........................................................................63 APPLICATION BLOCKS / 16-BIT DEMULTIPLEX .....................................................................65 PIN table for application blocks 401 – 680 ..................................................... 66 Index .................................................................................................. 70 Record of applications manual modifications................................................... 70 Record of application blocks bug fixes........................................................... 70 Changes to product since manual publication .................................................. 70 3.1 General rules 3.1.1 Sample times When application blocks are being processed the workload on the internal microprocessor is increased. With no application blocks activated the time taken to perform all the necessary tasks (cycle time) is approximately 5mS. The input low time must be at least 50mS The input high time must be at least 50mS With all the application blocks activated the cycle time is approximately 10mS. In the future, the designers expect to add even more application blocks. It is not expected however that the typical cycle time will ever exceed 30mS. (Bear in mind that it would be highly unusual for all the application blocks to be activated). With this in mind it is recommended that the system designer takes care that external logic signals are stable long enough to be recognised. In order to achieve this, the logic input minimum dwell time has been specified at 50mS. It will of course be possible to operate with much lower dwell times than this for simpler installations where the cycle time is low. There is then the risk that a future re-configuration of the blocks by the user would increase the cycle time sufficiently to cause sampling problems. 12 APPLICATION BLOCKS 3.1.2 Order of processing It may be useful for system designers to know the order in which the blocks are processed within each cycle. 0) Analogue inputs 1) Motorised pot 2) Digital inputs 3) Reference exchange 4) Jumpers 5) Multi-function 6) Alarms 7) PID1, 2 8) Summer 1, 2 9) Run mode ramps 10) Diameter calc 11) Taper tension 12) Torque compensator 13) Zero interlocks 14) Speed control 15) Preset speed 16) Parameter profile 17) Latch 18) Batch counter 19) Interval timer 20) Filters 21) Comparators 22) C/O Switches 23) All terminal outputs 24) 16-Bit demultiplexer 3.1.3 Logic levels Logic inputs will recognise the value zero, (any units), as a logic low. All other numbers, including negative numbers, will be recognised as a logic high. 3.1.4 Activating blocks In order to activate a block it is necessary to configure its GOTO window to a PIN other than 400)Block disconnect. In the CONFIGURATION menu first enter the ENABLE GOTO, GETFROM window and set it to ENABLED. Then staying in the CONFIGURATION menu proceed to BLOCK OP CONFIG to find the appropriate GOTO. (Note, The GOTO windows for Multi function 1- 8, Comparator 1-4 and C/O switch 1-4 are contained within each block menu for convenience). After completing the connection return to the ENABLE GOTO, GETFROM window and set it to DISABLED. 3.1.5 CONFLICT HELP MENU CONFIGURATION CONFLICT HELP MENU DIGITAL IP CONFIG 2 3 3 CONFLICT HELP MENU NUMBER OF CONFLICTS 3 CONFLICT HELP MENU 3 MULTIPLE GOTO ON PIN If there has been an accidental connection of more than one GOTO to any PIN, then when the ENABLE GOTO, GETFROM is set to DISABLED, (this is done at the end of a configuration session), the automatic conflict checker will give the alarm message GOTO CONFLICT. This menu is provided to assist the user in locating the PIN with the GOTO conflict. Proceed to the CONFLICT HELP MENU in the CONFIGURATION menu (see product manual) to find the number of conflicting GOTO connections, and the target PIN that causes the conflict. One of the GOTO connections must be removed to avoid the conflict. This process is repeated until there are no conflicts. Note that this tool is extremely helpful. Without it there is the possibility that user GOTO configuration errors would cause multiple values to alternately appear at the conflict PIN resulting in unusual system behaviour. APPLICATION BLOCKS 13 APPLICATION BLOCKS menu The application blocks can be used to create complex control applications. ENTRY MENU LEVEL 1 APPLICATION BLOCKS 2 APPLICATION BLOCKS FILTER 2 APPLICATION BLOCKS BATCH COUNTER APPLICATION BLOCKS INTERVAL TIMER APPLICATION BLOCKS COMPARATORS 1 to 4 APPLICATION BLOCKS C/O SWITCH 1 to 4 2 3 APPLICATION BLOCKS 16-BIT DEMULTIPLEX 2 3 APPLICATION BLOCKS SUMMER 1 2 3 APPLICATION BLOCKS SUMMER 2 2 3 APPLICATION BLOCKS PID 1 2 3 APPLICATION BLOCKS PID 2 2 3 APPLICATION BLOCKS PARAMETER PROFILE 2 3 APPLICATION BLOCKS REEL DIAMETER CALC 2 3 APPLICATION BLOCKS TAPER TENSION CALC 2 3 2 3 2 3 2 3 2 3 APPLICATION BLOCKS 2 RESERVED FOR FUTURE APPLICATION BLOCKS 2 TORQUE COMPENSATOR 3 APPLICATION BLOCKS 2 RESERVED FOR FUTURE APPLICATION BLOCKS 2 RESERVED FOR FUTURE APPLICATION BLOCKS PRESET SPEED 2 3 APPLICATION BLOCKS 2 MULTI FUNCTION 1 to 8 3 APPLICATION BLOCKS 2 RESERVED FOR FUTURE APPLICATION BLOCKS LATCH 2 3 APPLICATION BLOCKS FILTER 1 2 3 APPLICATION BLOCKS 2 RESERVED FOR FUTURE APPLICATION BLOCKS 2 RESERVED FOR FUTURE 14 APPLICATION BLOCKS 3.2 APPLICATION BLOCKS / SUMMER 1, 2 PIN number range 401 to 427. APPLICATION BLOCKS SUMMER 1 2 3 Summer 1 and 2 are identical apart from the PIN numbers. The PIN numbers for both summers are in the section headings. There are 2 hidden PINs in each block for CH2 and CH1 subtotal outputs. SUMMER1: SUMMER2: Pins 691 Ch2 and 692 Ch1. Pins 693 Ch2 and 694 Ch1 This menu allows programming of a general purpose signal summing and scaling block. SUMMER 1 413)SUMMER1 CLAMP 3 SUMMER 1 401)SUMMER1 OP MON 3 SUMMER 1 402)SUMMER1 SIGN1 3 SUMMER 1 403)SUMMER1 SIGN2 3 SUMMER 1 404)SUMMER1 RATIO1 3 SUMMER 1 405)SUMMER1 RATIO2 3 SUMMER 1 3 406)SUMMER1 DIVIDER1 SUMMER 1 3 407)SUMMER1 DIVIDER2 SUMMER 1 408)SUMMER1 INPUT1 3 SUMMER 1 409)SUMMER1 INPUT2 3 SUMMER 1 410)SUMMER1 INPUT3 3 SUMMER 1 3 411)SUMMER1 DEADBAND SUMMER 1 3 412)SUMMER1 OP INVRT APPLICATION BLOCKS 15 3.2.1 SUMMER 1, 2 / Block diagram There are 2 identical independant SUMMER blocks PIN 411 PIN 408 Pin 692 dead band PIN 402 PIN 404 PIN 406 PIN 413 No display Subtotal output Summer 1 PIN 413 Input 1 PIN 410 PIN 412 Input 3 PIN 413 PIN 401 PIN 413 Output Summer 1 PIN 409 PIN 403 PIN 405 PIN 407 Input 2 PIN 413 PIN 413 PIN 425 PIN 422 No display Subtotal output Pin 691 PIN 412 GO TO Pin 694 dead band PIN 416 PIN 418 PIN 420 PIN 427 No display Subtotal output Summer 2 PIN 427 Input 1 PIN 424 PIN 426 Input 3 PIN 427 PIN 415 PIN 427 Output Summer 2 PIN 423 PIN 417 PIN 419 PIN 421 Input 2 PIN 427 PIN 427 No display Subtotal output Pin 693 PIN 426 GO TO 3.2.2 SUMMER 1, 2 / Total output monitor PIN 401 / 415 SUMMER 1 401)SUMMER1 OP MON 3 Monitors the final total output value of the summer block. 401)SUMMER1 OP MON 0.00% PARAMETER SUMMER1 OP MON RANGE +/-200.00% DEFAULT 0.00% PIN 401 3.2.3 SUMMER 1, 2 / Sign 1 PIN 402 / 416 SUMMER 1 402)SUMMER1 SIGN1 3 Used to invert the signal arriving at input 1. 402)SUMMER1 SIGN1 NON-INVERT PARAMETER SUMMER1 SIGN1 RANGE INVERT or NON-INVERT DEFAULT NON-INVERT PIN 402 16 APPLICATION BLOCKS 3.2.4 SUMMER 1, 2 / Sign 2 PIN 403 / 417 SUMMER 1 403)SUMMER1 SIGN2 3 Used to invert the signal arriving at input 2. 403)SUMMER1 SIGN2 NON-INVERT PARAMETER SUMMER1 SIGN 2 RANGE INVERT or NON-INVERT DEFAULT NON-INVERT PIN 403 DEFAULT 1.0000 PIN 404 DEFAULT 1.0000 PIN 405 DEFAULT 1.0000 PIN 406 DEFAULT 1.0000 PIN 407 3.2.5 SUMMER 1, 2 / Ratio 1 PIN 404 / 418 SUMMER 1 404)SUMMER1 RATIO1 3 Sets the ratio value for the signal arriving at input 1. 404)SUMMER1 RATIO1 1.0000 PARAMETER SUMMER1 RATIO1 RANGE +/-3.0000 3.2.6 SUMMER 1, 2 / Ratio 2 PIN 405 / 419 SUMMER 1 405)SUMMER1 RATIO2 3 Sets the ratio value for the signal arriving at input 2. 405)SUMMER1 RATIO2 1.0000 PARAMETER SUMMER1 RATIO2 RANGE +/-3.0000 3.2.7 SUMMER 1, 2 / Divider 1 PIN 406 / 420 SUMMER 1 3 406)SUMMER1 DIVIDER1 Sets divisor for signal arriving at IP1. A zero gives zero output 406)SUMMER1 DIVIDER1 1.0000 PARAMETER SUMMER1 DIVIDER1 RANGE +/-3.0000 3.2.8 SUMMER 1, 2 / Divider 2 PIN 407 / 421 SUMMER 1 3 407)SUMMER1 DIVIDER2 Sets divisor for signal arriving at IP2. A zero gives zero output 407)SUMMER1 DIVIDER2 1.0000 PARAMETER SUMMER1 DIVIDER2 RANGE +/-3.0000 APPLICATION BLOCKS 17 3.2.9 SUMMER 1, 2 / Input 1 PIN 408 / 422 SUMMER 1 408)SUMMER1 INPUT1 3 408)SUMMER1 INPUT1 0.00% PARAMETER SUMMER1 INPUT1 Sets value for input 1. RANGE +/-300.00% DEFAULT 0.00% PIN 408 DEFAULT 0.00% PIN 409 DEFAULT 0.00% PIN 410 DEFAULT 0.00% PIN 411 DEFAULT NON-INVERT PIN 412 3.2.10 SUMMER 1, 2 / Input 2 PIN 409 / 423 SUMMER 1 409)SUMMER1 INPUT2 3 409)SUMMER1 INPUT2 0.00% PARAMETER SUMMER1 INPUT2 Sets value for input 2. RANGE +/-300.00% 3.2.11 SUMMER 1, 2 / Input 3 PIN 410 / 424 SUMMER 1 410)SUMMER1 INPUT3 3 Sets value for input 3. 410)SUMMER1 INPUT3 0.00% PARAMETER SUMMER1 INPUT3 RANGE +/-300.00% 3.2.12 SUMMER 1, 2 / Deadband PIN 411 / 425 SUMMER 1 3 411)SUMMER1 DEADBAND Sets +/- % deadband width centred on 0.00% for input 1. 411)SUMMER1 DEADBAND 0.00% PARAMETER SUMMER1 DEADBAND RANGE 0.00 to 100.00% 3.2.13 SUMMER 1, 2 / Output sign inverter PIN 412 / 426 SUMMER 1 3 412)SUMMER1 OP INVRT Used to invert the output signal from the summing block. 412)SUMMER1 OP INVRT NON-INVERT PARAMETER SUMMER1 OP INVRT RANGE INVERT / NON-INVERT 18 APPLICATION BLOCKS 3.2.14 SUMMER 1, 2 / Symmetrical clamp PIN 413 / 427 SUMMER 1 413)SUMMER1 CLAMP 3 Sets the value of a symmetrical clamp for inputs 1, 2 and output 413)SUMMER1 CLAMP 105.00% PARAMETER SUMMER1 CLAMP RANGE 0.00 to 200.00% DEFAULT 105.00% The subtotal values after clamping for SUMMER1 are available on hidden PIN 692 (CH1) and 691 (CH2) The subtotal values after clamping for SUMMER2 are available on hidden PIN 694 (CH1) and 693 (CH2) PIN 413 APPLICATION BLOCKS 19 3.3 APPLICATION BLOCKS / PID 1, 2. There are 2 identical PID blocks. Pins 429 to 474 PID 1 451)PID1 ERROR MON 3 PID 1 429)PID1 OP MONITOR 3 PID 1 430)PID1 INPUT1 3 PID 1 431)PID1 RATIO1 3 PID 1 432)PID1 DIVIDER1 3 PID 1 433)PID1 INPUT2 3 PID 1 434)PID1 RATIO2 3 PID 1 435)PID1 DIVIDER2 3 PID 1 436)PID1 PROP GAIN 3 APPLICATION BLOCKS PID 1 2 3 PID 1 441)PID1 PRESET VAL 3 PID 1 442)PID1 RESET 3 PID 1 443)PID1 POS CLAMP 3 PID 1 444)PID1 NEG CLAMP 3 PID 1 445)PID1 OUTPUT TRIM 3 PID 1 446)PID1 PROFL MODE 3 PID 1 447)PID1 MIN PROP GN 3 PID 1 448)PID1 X-AXIS MIN 3 PID 1 437)PID1 INTEGRAL TC 3 PID 1 PID1 X-AXIS GET FROM 3 PID 1 438)PID1 DERIV TC 3 PID 1 449)PID1 PROFILED GN 3 PID 1 439)PID1 FILTER TC 3 PID 1 450)PID1 CLAMP FLAG 3 PID 1 440)PID1 INT PRESET 3 20 APPLICATION BLOCKS This block performs the function of a classical PID to allow insertion of an exterior control loop around the basic drive loops. Typical uses are, Dancer arm, loadcell tension, centre driven winding. Features:Independent adjustment and selection of P, I, D. Scaling of feedback and reference inputs. Adjustable filter. Preset mode on integral term. Output scaler with independent +/-limit clamps. Built in gain profiling option. 3.3.1 PID 1, 2 / Block diagram 2 identical independant PID blocks PID1 Gain profiler PIN PIN PIN PIN GET 446 447 448 449 FROM mode min X-axis Gain select P gain min OP PIN 441 PID Int preset PIN 429 PIN 440 GO TO Preset value PID output Release / Reset PIN 430 PIN 431 Input 1 val PIN 437 PIN 451 Error val PIN 432 I Prop gain PIN 434 PIN 435 PIN 436 Input 2 val Enable PIN 443 0% PIN 444 Filter PIN 438 Prop gain Trim Output P PIN 433 PIN 445 Time const. Time const. D PIN 439 Filter time Constant TF PIN 450 PIN 442 Clamp flag OP Reset PID2 Gain profiler PIN PIN PIN PIN GET 469 470 471 472 FROM mode min X-axis Gain select P gain min OP PIN 464 PID Int preset PIN 452 PIN 463 GO TO Preset value PID output Release / Reset PIN 453 PIN 454 Input 1 val PIN 460 PIN 474 Error val PIN 455 I Prop gain PIN 456 PIN 458 Input 2 val PIN 459 Enable PIN 466 0% PIN 467 Filter PIN 461 Prop gain Trim Output P PIN 456 PIN 468 Time const. Time const. D PIN 462 Filter time Constant TF PIN 473 PIN 465 Reset Clamp flag OP APPLICATION BLOCKS 21 3.3.2 PID 1, 2 / PID output monitor PIN 429 / 452 PID 1 429)PID1 OP MONITOR 3 This is the final output of the PID1 block. 429)PID1 OP MONITOR 0.00% PARAMETER PID1 OP MONITOR RANGE PIN 429 +/-300.00% This window has a branch hopping facility to 3.3.25 PID 1, 2 / PID error value monitor PIN 451 / 474 3.3.3 PID 1, 2 / PID IP1 value PIN 430 / 453 PID 1 430)PID1 INPUT1 3 Sets value for PID input 1. This is normally the PID reference. 430)PID1 INPUT1 0.00% PARAMETER PID1 INPUT1 RANGE +/-300.00% DEFAULT 0.00% PIN 430 DEFAULT 1.0000 PIN 431 DEFAULT 1.0000 PIN 432 DEFAULT 0.00% PIN 433 3.3.4 PID 1, 2 / PID IP1 ratio PIN 431 / 454 PID 1 431)PID1 RATIO1 3 Sets the scaling factor for the PID input 1 value. 431)PID1 RATIO1 1.0000 PARAMETER PID1 RATIO1 RANGE +/-3.0000 3.3.5 PID 1, 2 / PID IP1 divider PIN 432 / 455 PID 1 432)PID1 DIVIDER1 3 Sets divisor for IP1 signal channel. Zero gives zero output 432)PID1 DIVIDER1 1.0000 PARAMETER PID1 DIVIDER1 RANGE +/-3.0000 3.3.6 PID 1, 2 / PID IP2 value PIN 433 / 456 PID 1 433)PID1 INPUT2 3 Sets value for PID input 2. This is normally the PID reference. 433)PID1 INPUT2 0.00% PARAMETER PID1 INPUT2 RANGE +/-300.00% 22 APPLICATION BLOCKS 3.3.7 PID 1, 2 / PID IP2 ratio PIN 434 / 457 PID 1 434)PID1 RATIO2 3 Sets the scaling factor for the PID input 2 value. 434)PID1 RATIO2 1.0000 PARAMETER PID1 RATIO2 RANGE +/-3.0000 DEFAULT 1.0000 PIN 434 DEFAULT 1.0000 PIN 435 DEFAULT 1.0 PIN 436 3.3.8 PID 1, 2 / PID IP2 divider PIN 435 / 458 PID 1 435)PID1 DIVIDER2 3 Sets divisor for IP2 signal channel. Zero gives zero output 435)PID1 DIVIDER2 1.0000 PARAMETER PID1 DIVIDER2 RANGE +/-3.0000 3.3.9 PID 1, 2 / PID proportional gain PIN 436 / 459 PID 1 436)PID1 PROP GAIN 3 Sets the PID gain independently of the I and D time constants. 436)PID1 PROP GAIN 1.0 PARAMETER PID1 PROP GAIN RANGE 0.0 to 100.0 Proportional output = gain X (1 + DiffT/IntT) X error%. A higher gain usually provides a faster response. Normally the DiffT is much smaller than IntT, hence the equation then approximates to:Prop output = gain X error%. E. g. A gain of 10 and a step change in the error of 10% will result in a step change at the output of 100%. Note. The gain may be profiled using the PARAMETER PROFILE section within this menu. 3.3.10 PID 1, 2 / PID integrator time constant PIN 437 / 460 PID 1 437)PID1 INTEGRAL TC 3 Sets the PID integrator time constant. 437)PID1 INTEGRAL TC 5.00 SECS PARAMETER PID1 INTEGRAL TC RANGE 0.01 to 100.00 seconds DEFAULT 5.00 secs Note. Processes that take a long time to react will usually require a longer integrator time constant. When the PID output reaches the clamp limits the integrator is held at the prevailing condition. The clamp levels are also seperately applied to the internal integrator term result. See 3.3.16 and 3.3.17 . PID 1, 2 / PID negative clamp level PIN 444 / 467 PIN 437 APPLICATION BLOCKS 23 3.3.11 PID 1, 2 / PID derivative time constant PIN 438 / 461 PID 1 438)PID1 DERIV TC 3 Sets the PID derivative time constant. 438)PID1 DERIV TC 0.000 SECS PARAMETER PID1 DERIV TC RANGE 0.000 to 10.000 seconds DEFAULT 0.000 secs PIN 438 If the derivative time constant is set to 0.000, then the D term is effectively removed from the block. Loops that require a rapid response but suffer from overshoot normally benefit from a smaller derivative time constant. 3.3.12 PID 1, 2 / PID derivative filter time constant PIN 439 / 462 PID 1 439)PID1 FILTER TC 3 Sets the time constant of the PID output filter. 439)PID1 FILTER TC 0.100 SECS PARAMETER PID1 FILTER TC RANGE 0.000 to 10.000 seconds DEFAULT 0.100 secs PIN 439 The derivative of a noisy error signal can lead to unwanted output excursions. This filter time constant is typically set at DERIV TC/5 (See above). A time constant of 0.000 will turn the filter off. The filter is applied to the sum of the P, I and D terms. 3.3.13 PID 1, 2 / PID integrator preset PIN 440 / 463 PID 1 440)PID1 INT PRESET 3 Enables the integrator to be preset to the value in PIN 441. 440)PID1 INT PRESET DISABLED PARAMETER PID1 INT PRESET RANGE ENABLED or DISABLED DEFAULT DISABLED PIN 440 Note. The PID INT PRESET function operates independantly from the PID RESET function. If the integrator preset is permanently enabled then the I term is effectively removed from the block. 3.3.14 PID 1, 2 / PID integrator preset value PIN 441 / 464 PID 1 441)PID1 PRESET VAL 3 This integrator preset value is enabled by PID1 INT PRESET. 441)PID1 PRESET VAL 0.00% PARAMETER PID1 PRESET VAL RANGE +/-300.00% Note. The preset function is overidden by the PID RESET function. DEFAULT 0.00% PIN 441 24 APPLICATION BLOCKS 3.3.15 PID 1, 2 / PID reset PIN 442 / 465 PID 1 442)PID1 RESET 3 When DISABLED it turns on the OP and releases the integrator. 442)PID1 RESET DISABLED PARAMETER PID1 RESET RANGE ENABLED or DISABLED DEFAULT DISABLED PIN 442 Note. When the reset is ENABLED the output stage and the integrator are set to 0.00%. Note. The PID RESET operates independantly from and has priority over the integrator preset function. 3.3.16 PID 1, 2 / PID positive clamp level PIN 443 / 466 PID 1 443)PID1 POS CLAMP 3 Sets the positive clamp level for the PID output. 443)PID1 POS CLAMP 100.00% PARAMETER PID1 POS CLAMP RANGE 0.00 to 105.00% DEFAULT 100.00% PIN 443 Note. When the output is being clamped at this level, the integrator is held at its prevailing value 3.3.17 PID 1, 2 / PID negative clamp level PIN 444 / 467 PID 1 444)PID1 NEG CLAMP 3 Sets the negative clamp level for the PID output. 444)PID1 NEG CLAMP -100.00% PARAMETER PID1 NEG CLAMP RANGE 0.00 to -105.00% DEFAULT -100.00% PIN 444 Note. When the output is being clamped at this level, the integrator is held at its prevailing value 3.3.18 PID 1, 2 / PID output % trim PIN 445 / 468 PID 1 3 445)PID1 OUTPUT TRIM Sets the scaling trim factor for the PID output. 445)PID1 OUTPUT TRIM 0.2000 PARAMETER PID1 OUTPUT TRIM RANGE +/-3.0000 The output of the PID may be inverted by selecting a negative trim factor. DEFAULT 0.2000 PIN 445 APPLICATION BLOCKS 25 3.3.19 PID 1, 2 / PID profile mode select PIN 446 / 469 PID 1 446)PID1 PROFL MODE 3 Allows selection of gain profile curve shape Mode 0 1 2 3 4 446)PID1 PROFL MODE 0 PARAMETER PID1 PROFL MODE RANGE 1 of 5 modes DEFAULT 0 PIN 446 Law of profile curve Yaxis output = Yaxis MAX Yaxis output = Linear change between MIN and MAX Yaxis output = Square law change between MIN and MAX Yaxis output = Cubic law change between MIN and MAX Yaxis output = 4th power law change between MIN and MAX Y AXIS GAIN OUTPUT X-AXIS = 100% These X and Y axis values are always associated with each other 436)PID1 PROP GAIN These X and Y axis values are always associated with each other 448)PID1 X-AXIS MIN 447)PID1 MIN PROP GAIN PRFL X-AXIS GET FROM 3.3.20 PID 1, 2 / PID minimum proportional gain PIN 447 / 470 PID 1 447)PID1 MIN PROP GN 3 Sets the minimum value for the PID parameter profile ouput. 447)PID1 MIN PROP GN 20.00% PARAMETER PID1 MIN PROP GN RANGE 0.00 to 100.00% DEFAULT 20.00% PIN 447 DEFAULT 0.00% PIN 448 3.3.21 PID 1, 2 / PID Profile X axis minimum PIN 448 / 471 PID 1 448)PID1 X-AXIS MIN 3 Sets the minimum value for the PID parameter profile X-AXIS. 448)PID1 X-AXIS MIN 0.00% PARAMETER PID1 X-AXIS MIN RANGE 0.00 to 100.00% 26 APPLICATION BLOCKS 3.3.22 PID 1, 2 / PID Profile X axis GET FROM PID 1 PID1 X-AXIS GET FROM 3 Sets the PIN for the profile X axis input signal source. PID1 X-AXIS GET FROM 400)Block Disconnect PARAMETER PID1 X-AXIS GET FROM RANGE 000 to 720 DEFAULT 400)Block Disconnect Note This GET FROM input has a built in rectifier and hence will accept bi-polar or unipolar inputs. 3.3.23 PID 1, 2 / PID Profiled prop gain output monitor PIN 449 / 472 PID 1 449)PID1 PROFILED GN 3 This is an output monitor of the PID1 profiled proportional gain. 449)PID1 PROFILED GN 0.0 PARAMETER PID1 PROFILED GN RANGE 0.0 to 100.0 PIN 449 This window has a branch hopping facility. 3.3.24 PID 1, 2 / PID clamp flag monitor PIN 450 / 473 PID 1 450)PID1 CLAMP FLAG 3 Shows if the PID OP has reached the clamp limits. 450)PID1 CLAMP FLAG LOW PARAMETER PID1 CLAMP FLAG RANGE HIGH (clamped) or LOW PIN 450 See 3.3.16 and 3.3.17 PID 1, 2 / PID negative clamp level PIN 444 / 467. This window has a branch hopping facility. 3.3.25 PID 1, 2 / PID error value monitor PIN 451 / 474 PID 1 451)PID1 ERROR MON 3 Shows the result of subtracting IPs Channel 2 from Channel 1. 451)PID1 ERROR MON 0.00% PARAMETER PID1 ERROR MON RANGE +/-105.00% Note. This error signal is internally clamped at +/-105.00%. This window has a branch hopping facility to 3.3.2 PID 1, 2 / PID output monitor PIN 429 / 452. PIN 451 APPLICATION BLOCKS 27 3.4 APPLICATION BLOCKS / PARAMETER PROFILER PARAMETER PROFILER PRFL X-AXIS GET FROM PINs used 475 to 481 APPLICATION BLOCKS PARAMETER PROFILER 2 3 PARAMETER PROFILER 3 475)PROFILE Y OP MON 3.4.1 PARAMETER PROFILER / Block diagram Y at Xmax PIN 478 GET FROM X RECTIFY PIN 481 X axis Input PARAMETER PROFILER 476)PROFILER MODE 3 PARAMETER PROFILER 477)PROFLR Y AT Xmin 3 PIN 475 Mode PIN 476 Yaxis output Y at Xmin PIN 477 3 X axis X min X max PIN 479 PIN 480 Parameter profiler GO TO This block is used when it is desirable to modulate one parameter according to the magnitude of another. A typical example is changing the gain of a block as the error increases. The block symbol shows the profiler working in the positive quadrant by using a rectified version of the input signal to indicate the position on the profile X axis. The related Y axis amplitude is then sent to the block output. Both axes are able to impose maximum and minimum levels to the profile translation. The profile curve is able to adopt several different modes. PARAMETER PROFILER 3 478)PROFLR Y AT Xmax PARAMETER PROFILER 479)PROFILER Xmin 3 PARAMETER PROFILER 480)PROFILER Xmax 3 PARAMETER PROFILER 481)PROFLR X RECTIFY 3 It is possible to use the block in up to 4 quadrants for specialist applications. The input is connected by using the PRFL X-AXIS GET FROM window in this menu. 3.4.1.1 Profile for Y increasing with X Y AXIS PROFILER Xmax PROFLR Y AT Xmax PROFILER Xmin These X and Y axis values are always associated with each other These X and Y axis values are always associated with each other PROFLR Y AT Xmin X AXIS The graph shows the positive quadrant only. It is useful to consider each pair of min values as a coordinate, and each pair of max values as a coordinate. 28 APPLICATION BLOCKS 3.4.1.2 Profile for Y decreasing with X Y AXIS PROFILER Xmin PROFLR Y AT Xmin These X and Y axis values are always associated with each other PROFILER Xmax PROFLR Y AT Xmax These X and Y axis values are always associated with each other X AXIS The graph shows the positive quadrant only. It is useful to consider each pair of min values as a coordinate, and each pair of max values as a coordinate. 3.4.1.3 Examples of general profiles X Rectify DISABLED X Rectify DISABLED Coord Xmax And Y at Xmax X Rectify DISABLED Coord Xmax And Y at Xmax Coord Xmin And Y at Xmin Coord Xmax And Y at Xmax Coord Xmin And Y at Xmin Coord Xmin And Y at Xmin Coord Xmax Coord And Y at Xmax Xmax And Y at Xmax Coord Xmax Coord And Y at Xmax Xmax And Y at Xmax Coord Xmax Coord And Y at Xmax Xmax And Y at Xmax X Rectify ENABLED DISABLED Coord Xmin Coord Xmin And Y at Xmin And Y at Xmin X Rectify ENABLED DISABLED Coord Xmin Coord Xmin And Y at Xmin And Y at Xmin X Rectify ENABLED DISABLED Coord Xmin Coord Xmin And Y at Xmin And Y at Xmin 1) The above graphs show some of the possibile profiles. 2) When using 2nd , 3rd or 4TH order modes the curve always approaches the Xmin coordinate asymptotically. 3) If the value for Xmin is greater or equal to Xmax, then Y is constant and equal to PROFLR Y AT Xmax. 4) If the PROFILER MODE is set to 0 then Y is constant and equal to PROFLR Y AT Xmax. APPLICATION BLOCKS 29 3.4.2 PARAMETER PROFILER / Profile Y output monitor PIN 475 PARAMETER PROFILER 3 475)PROFILE Y OP MON This is the final output monitor of the parameter profiler block. 475)PROFILE Y OP MON 0.00% PARAMETER PROFILE Y OP MON RANGE +/-300.00% DEFAULT 0.00% PIN 475 DEFAULT 0 PIN 476 DEFAULT 0.00% PIN 477 DEFAULT 100.00% PIN 478 3.4.3 PARAMETER PROFILER / Profiler mode PIN 476 PARAMETER PROFILER 476)PROFILER MODE 3 Sets the mode of the profile curve between min and max. Mode 0 1 2 3 4 476)PROFILER MODE 0 PARAMETER PROFILER MODE RANGE 1 of 5 modes Law of profile curve Yaxis output = Y at Xmax Yaxis output = Linear change between min coords and max coords Yaxis output = Square law change between min coords and max coords Yaxis output = Cubic law change between min coords and max coords Yaxis output = 4th power law change between min coords and max coords 3.4.4 PARAMETER PROFILER / Profile Y at Xmin PIN 477 PARAMETER PROFILER 477)PROFLR Y AT Xmin 3 Sets the corresponding value for the Y axis at Xmin. 477)PROFLR Y AT Xmin 0.00% PARAMETER PROFLR Y AT Xmin RANGE +/-300.00% 3.4.5 PARAMETER PROFILER / Profiler Y at Xmax PIN 478 PARAMETER PROFILER 3 478)PROFLR Y AT Xmax Sets the corresponding value for the Y axis at Xmax. 478)PROFLR Y AT Xmax 0.00% PARAMETER PROFLR Y AT Xmax RANGE +/-300.00% 30 APPLICATION BLOCKS 3.4.6 PARAMETER PROFILER / Profile X axis minimum PIN 479 PARAMETER PROFILER 479)PROFILER Xmin 3 479)PROFILER Xmin 0.00% Sets the minimum value for the X axis input. PARAMETER PROFILER Xmin RANGE +/-300.00% DEFAULT 0.00% PIN 479 If the value for Xmin is greater or equal to Xmax, then Y is constant and equal to PROFLR Y AT Xmax. 3.4.7 PARAMETER PROFILER / Profile X axis maximum PIN 480 PARAMETER PROFILER 480)PROFILER Xmax 3 Sets the maximum value for the X axis input. 480)PROFILER Xmax 100.00% PARAMETER PROFL X-AXIS MAX RANGE +/-300.00% DEFAULT 100.00% PIN 480 If the value for Xmin is greater or equal to Xmax, then Y is constant and equal to PROFLR Y AT Xmax. 3.4.8 PARAMETER PROFILER / Profile X axis rectify PIN 481 PARAMETER PROFILER 481)PROFLR X RECTIFY 3 Enables the X axis input to be rectified prior to profiling. 481)PROFLR X RECTIFY ENABLED PARAMETER PROFLR X RECTIFY RANGE ENABLED OR DISABLED DEFAULT ENABLED 3.4.9 PARAMETER PROFILER / Profile X axis GET FROM PARAMETER PROFILER PRFL X-AXIS GET FROM 3 Sets the PIN for the profile X axis input signal source. PRFL X-AXIS GET FROM 400)Block Disconnect PARAMETER PRFL X-AXIS GET FROM RANGE 000 to 720 DEFAULT 400)Block Disconnect PIN 481 APPLICATION BLOCKS 31 3.5 APPLICATION BLOCKS / REEL DIAMETER CALC PINs used 483 to 493 For a constant web speed the reel shaft slows down as the reel diameter increases. Dividing the web speed by the shaft speed gives the reel diameter. REEL DIAMETER CALC 493)DIA MEM BOOT-UP 3 REEL DIAMETER CALC 483)DIAMETER OP MON 3 REEL DIAMETER CALC 484)DIA WEB SPEED IP 3 REEL DIAMETER CALC 485)DIA REEL SPD IP 3 REEL DIAMETER CALC 486)DIAMETER MIN 3 REEL DIAMETER CALC 487)DIA MIN SPEED 3 This block performs APPLICATION BLOCKS REEL DIAMETER CALC 2 3 reel diameter calculation and provides a diameter output for control of web winding tension systems. The diameter value can be independantly preset to any value to allow seamless take up for winding or unwinding applications. There is provision made to suspend diameter calculation if the speed falls below a user preset threshold. The diameter can be programmed to be retained indefinitely during power loss if desired. A filter with adjustable time constant is included which will smooth the calculation output. The block provides a web break alarm flag output with adjustable threshold that compares the input and output of the smoothing filter. With this measure of the reel diameter it is possible to control the torque of the reel shaft to give constant tension in the web. This method of tension control is an open loop technique, and relies on the system properties remaining constant over time. Not all the torque at the shaft goes into web tension. Some of it is used to overcome losses in the mechanical system. These can be caused by:Static or starting friction. Dynamic friction due to windage etc. The fixed inertia of the motor and transmission. The varying inertia of the increasing reel. REEL DIAMETER CALC 488)DIAMETER HOLD 3 REEL DIAMETER CALC 489)DIA FILTER TC 3 REEL DIAMETER CALC 490)DIAMETER PRESET 3 A torque compensation block (3.7 APPLICATION BLOCKS / TORQUE COMPENSATOR) is available to REEL DIAMETER CALC 3 provide a compensatory signal which adds just 491)DIA PRESET VALUE sufficient torque to overcome the losses. For good results it is essential to keep the torque required for loss compensation as low as possible compared with REEL DIAMETER CALC 3 that required to make tension. E. g. The torque 492)DIA WEB BRK THR. required to overcome the losses are 10% of the torque required to provide the desired web tension. Then a drift of 25% in the losses results in a tension error of 2.5%. However if the torque required to overcome the losses is the same as the torque required to provide the desired web tension, then a drift of 25% in the losses results in a tension error of 25%. Also it will be much more difficult to estimate the absolute magnitude of the losses if they are large. Some systems require the tension of the web to be tapered according to the reel diameter. This technique is used to prevent reel collapse or damage to delicate materials. A taper control block is available for this function. (3.6 APPLICATION BLOCKS / TAPER TENSION CALC) 32 APPLICATION BLOCKS If the diameter calculation is held then it is still possible to connect to a hidden PIN 697 which contains the unheld diameter calculation. Two other hidden PINs contain the rectified web and reel speeds 3.5.1 REEL DIAMETER CALC / Block diagram Dia Hold PIN 488 Min speed PIN 695 Rectified Web speed Hidden pin PIN 487 mem boot up PIN 493 Filter TC PIN 489 PIN 697 Unfiltered Diameter Hidden pin PIN 484 Web speed Rectifier WEB SPEED REEL SPEED PIN 485 Reel speed REEL DIAMETER Rectifier PIN 696 Rectified reel speed Hidden pin Hold Filter GOTO Preset Thr PIN 483 Diam op PIN 492 Web break threshold. Diameter Minimum. Dia min is scaling factor and low limit. Web breakFlag on PIN 690 PIN 486 PIN 490 PIN 491 Diameter min Diam Preset Preset value Warning. If due to the mechanical arrangement of the machine, it is impossible to achieve sufficiently low losses, then a closed loop system of tension control must be employed. This could be by dancing arm methods or a tension transducer loadcell feedback system. Note. This block is usually used in conjunction with the TAPER TENSION CALC and TORQUE COMPENSATOR blocks. In this case the diameter result is automatically connected to these blocks via internal software connections. Hence the GOTO of this block must be connected to a staging post, for example, in order to activate the block. See 3.8 Centre winding block arrangement. 3.5.2 REEL DIAMETER CALC / Diameter output monitor PIN 483 REEL DIAMETER CALC 483)DIAMETER OP MON 3 This is the output result of the diameter calculator. 483)DIAMETER OP MON 0.00% PARAMETER DIAMETER OP MON RANGE 0.00 to +100.00% DEFAULT 0.00% PIN 483 DEFAULT 0.00% PIN 484 3.5.3 REEL DIAMETER CALC / Web speed input PIN 484 REEL DIAMETER CALC 484)DIA WEB SPEED IP 3 Sets the input value, prior to rectifying, for the WEB speed. 484)DIA WEB SPEED IP 0.00% PARAMETER DIA WEB SPEED IP RANGE +/-105.00% 3.5.4 REEL DIAMETER CALC / Reel speed input PIN 485 REEL DIAMETER CALC 485)DIA REEL SPD IP 3 Sets the input value, prior to rectifying, for the reel speed. 485)DIA REEL SPD IP 0.00% PARAMETER DIA REEL SPD IP RANGE +/-105.00% DEFAULT 0.00% PIN 485 APPLICATION BLOCKS 33 3.5.5 REEL DIAMETER CALC / Minimum diameter input PIN 486 REEL DIAMETER CALC 486)DIAMETER MIN 3 Sets a minimum diameter clamp level for the calculator. 486)DIAMETER MIN 10.00% PARAMETER DIAMETER MIN RANGE 0.00 to +100.00% DEFAULT 10.00% PIN 486 This value is also used as a scaling factor for the diameter calculation. Result = (Web/Reel) X (Dia min) 3.5.6 REEL DIAMETER CALC / Diameter calculation min speed PIN 487 REEL DIAMETER CALC 487)DIA MIN SPEED 3 If the web speed goes below this %, the calculation is held. 487)DIA MIN SPEED 5.00% PARAMETER DIA MIN SPEED RANGE 0.00 to +105.00% DEFAULT 5.00% PIN 487 3.5.7 REEL DIAMETER CALC / Diameter hold enable PIN 488 REEL DIAMETER CALC 488)DIAMETER HOLD 3 When high, this logic input will cause the calculation to hold. 488)DIAMETER HOLD DISABLED PARAMETER DIAMETER HOLD RANGE ENABLED or DISABLED DEFAULT DISABLED PIN 488 DEFAULT 5.00 SECS PIN 489 3.5.8 REEL DIAMETER CALC / Diameter filter time constant PIN 489 REEL DIAMETER CALC 489)DIA FILTER TC 3 Sets the filter time constant for the diameter calculation. 489)DIA FILTER TC 5.00 SECS PARAMETER DIA FILTER TC RANGE 0.00 to 200.00 SECS This value applies a filter to the output to remove small transients in the raw calculation. The difference between the input and output of the filter also provides a comparison measurement for the web break detector. See 3.5.11 REEL DIAMETER CALC / Diameter web break threshold PIN 492. 34 APPLICATION BLOCKS 3.5.9 REEL DIAMETER CALC / Diameter preset enable PIN 490 REEL DIAMETER CALC 490)DIAMETER PRESET 3 When ENABLED it presets the calculator to the preset value. 490)DIAMETER PRESET DISABLED PARAMETER DIAMETER PRESET RANGE ENABLED or DISABLED DEFAULT DISABLED PIN 490 3.5.10REEL DIAMETER CALC / Diameter preset value PIN 491 REEL DIAMETER CALC 3 491)DIA PRESET VALUE The calculator is preset to this value by DIAMETER PRESET. 491)DIA PRESET VALUE 10.00% PARAMETER DIA PRESET VALUE RANGE 0.00 to +100.00% DEFAULT 10.00% PIN 491 DEFAULT 7.50% PIN 492 3.5.11REEL DIAMETER CALC / Diameter web break threshold PIN 492 REEL DIAMETER CALC 3 492)DIA WEB BRK THR. Sets the threshold for the web break flag to be activated. 492)DIA WEB BRK THR. 7.50% PARAMETER DIA WEB BRK THR. RANGE 0.00 to +100.00% A break in the web will cause a sudden change in the diameter calculation due to the breakdown of the speed relationship. Hence if the raw calculation value changes at a rate that causes it to differ from the filtered calculation result by more than this threshold value, then the web break flag on hidden PIN 690 will be set high. See 3.5.8 REEL DIAMETER CALC / Diameter filter time constant PIN 489. Note. This flag will also go high if the calculator output is preset to a value which differs from the calculated value, (derived from the prevailing web and reel speeds), by more than the threshold. 3.5.12REEL DIAMETER CALC / Diameter memory boot up REEL DIAMETER CALC 493)DIA MEM BOOT UP 3 Used to select the value of the calculator on power up PIN 493 493)DIA MEM BOOT UP DISABLED PARAMETER DIA BOOT UP MODE RANGE ENABLED or DISABLED DEFAULT DISABLED This may be used to retain the calculator value in the event of a power loss. 1) DISABLED 2) ENABLED Used to set the value of the calculator on control supply power up to the MIN DIAMETER. Used to retain the current value of the calculator during control supply power off. PIN 493 APPLICATION BLOCKS 35 3.6 APPLICATION BLOCKS / TAPER TENSION CALC PINs used 494 to 499 TAPER TENSION CALC 3 499)TAPERED TENS.MON APPLICATION BLOCKS TAPER TENSION CALC TAPER TENSION CALC 3 494)TOTAL TENSION MN 2 3 This block allows the introduction of positive or negative taper to a tension reference and the ability to externally trim the final output. The taper profile can be selected to be hyperbolic or linear to suit most types of winding requirements. Note. This block has internal connections to the diameter calculator block, which must also be activated to allow the taper calculation. 3.6.1 TAPER TENSION CALC / Block diagram TAPER TENSION CALC 495)TENSION REF 3 TAPER TENSION CALC 496)TAPER STRENGTH 3 TAPER TENSION CALC 3 497)HYPERBOLIC TAPER TAPER TENSION CALC 498)TENSION TRIM IP 3 PIN 495 Tension ref PIN 497 Taper mode Min dia Diameter (internal connections) The diameter calculator block must be actived PIN 499 Tapered Tension Monitor PIN 496 PIN 494 Taper strength Total Tension Monitor PIN 498 Tension trim IP 3.6.1.1 Taper calc TAPER TENSION CALCULATOR GO TO Linear taper equation Tapered tension% = (Tension ref% / 100%) X (100% - (Dia% - Min dia%) X Taper strength% / 100%) Example. Min diameter 10%, Diameter 50%, Tension ref 70%, Taper strength - 40%. Tapered tension% 3.6.1.2 =(70% / 100%) X (100% - (50% - 10%) X -40% / 100%) =0.7 X (100% - (40% X -0.4)) =0.7 X (100% - ( -16%)) =0.7 X 116% =81.20 % Hyperbolic taper equation Tapered tension% = (Tension ref% / 100%) X (100% - (Dia% - Min dia%) X Taper strength% / Dia%) 36 APPLICATION BLOCKS 3.6.1.3 Taper graphs showing tension versus diameter Tension graph for linear taper Tension graph for hyperbolic taper Tension Tension Min Dia Max Dia 200% Min Dia Max Dia 200% -100% taper 0% taper 100% -100% taper 0% taper 100% +100% taper 0% +100% taper 0% Diameter 3.6.1.4 Diameter Taper graphs showing torque versus diameter Torque Graph for linear taper Torque Min Dia Torque graph for hyperbolic taper Max Dia Torque Min Dia Max Dia -100% taper -100% taper 0% taper straight line 0% taper straight line +100% taper +100% taper Diameter Diameter 3.6.2 TAPER TENSION CALC / Total tension OP monitor PIN 494 TAPER TENSION CALC 3 494)TOTAL TENSION MN This is the total output of the taper tension calculator. 494)TOTAL TENSION MN 0.00% PARAMETER TOTAL TENSION MN RANGE +/-100.00% PIN 494 This has a branch hopping facility to 3.6.7 TAPER TENSION CALC / Tapered tension monitor PIN 499. 3.6.3 TAPER TENSION CALC / Tension reference PIN 495 TAPER TENSION CALC 495)TENSION REF 3 This is the tension reference for the taper tension calculator 495)TENSION REF 0.00% PARAMETER TENSION REF RANGE 0.00 to +100.00% DEFAULT 0.00% PIN 495 APPLICATION BLOCKS 37 3.6.4 TAPER TENSION CALC / Taper strength input PIN 496 TAPER TENSION CALC 496)TAPER STRENGTH 3 Sets the amount of taper for the taper tension calculator 496)TAPER STRENGTH 0.00% PARAMETER TAPER STRENGTH RANGE +/-100.00% DEFAULT 0.00% PIN 496 Note. +100.00% taper progressively reduces the tension to zero at full diameter. 0.00% taper gives constant tension over the entire diameter range. -100.00% taper progressively increases the tension to 200.00% at full diameter. The taper may be linear or hyperbolic. See 3.6.5 TAPER TENSION CALC / Hyperbolic taper enable PIN 497. 3.6.5 TAPER TENSION CALC / Hyperbolic taper enable PIN 497 TAPER TENSION CALC 3 497)HYPERBOLIC TAPER When enabled the taper profile is hyperbolic. Disabled its linear 497)HYPERBOLIC TAPER DISABLED PARAMETER HYPERBOLIC TAPER RANGE ENABLED or DISABLED DEFAULT DISABLED PIN 497 See 3.6.4 TAPER TENSION CALC / Taper strength input PIN 496. 3.6.6 TAPER TENSION CALC / Tension trim input PIN 498 TAPER TENSION CALC 498)TENSION TRIM IP 3 Sets a trim input level added to the tapered tension. 498)TENSION TRIM IP 0.00% PARAMETER TENSION TRIM IP RANGE +/-100.00% DEFAULT 0.00% PIN 498 3.6.7 TAPER TENSION CALC / Tapered tension monitor PIN 499 TAPER TENSION CALC 3 499)TAPERED TENS. MON This is the output of the taper tension calculator without trim. 499)TAPERED TENS.MON 0.00% PARAMETER TAPERED TENS.MON RANGE +/-100.00% This has a branch hopping facility to 3.6.2 TAPER TENSION CALC / Total tension OP monitor PIN 494 PIN 499 38 APPLICATION BLOCKS 3.7 APPLICATION BLOCKS / TORQUE COMPENSATOR TORQUE COMPENSATOR 3 520)INERTIA COMP MON PINs used 500 to 520 APPLICATION BLOCKS 2 TORQUE COMPENSATOR 3 TORQUE COMPENSATOR 500)TORQUE DEMAND MN TORQUE COMPENSATOR 3 501)TORQUE TRIM IP APPLICATION BLOCKS 511)ACCEL SCALER 2 TORQUE COMPENSATOR 3 512)ACCEL INPUT/MON TORQUE COMPENSATOR 3 502)STICTION COMP TORQUE COMPENSATOR 3 503)STIC.WEB SPD THR TORQUE COMPENSATOR 3 513)ACCEL FILTER TC TORQUE COMPENSATOR 3 504)STATIC FRICTION TORQUE COMPENSATOR 3 514)TENSION DEM IP TORQUE COMPENSATOR 3 505)DYNAMIC FRICTION TORQUE COMPENSATOR 3 515)TENSION SCALER TORQUE COMPENSATOR 3 506)FRICTION SIGN TORQUE COMPENSATOR 3 516)TORQUE MEM SEL TORQUE COMPENSATOR 3 507)FIXED INERTIA TORQUE COMPENSATOR 3 517)TORQUE MEM INPUT TORQUE COMPENSATOR 3 508)VARIABLE INERTIA TORQUE COMPENSATOR 3 518)TENSION ENABLE TORQUE COMPENSATOR 3 509)MATERIAL WIDTH TORQUE COMPENSATOR 3 519)OVER/UNDERWIND TORQUE COMPENSATOR 3 510)ACCEL LINE SPEED APPLICATION BLOCKS 39 This block is used to add loss compensation to the tension demand signal generated by the TAPER TENSION CALC block. The result is steered to the positive or negative current limits to provide a torque clamp which will give the correct tension. The losses in the winding system are friction and inertia. When winding, the drive system relies on arranging the speed loop to saturate. This means that under all running conditions the speed demand remains unsatisfied, and hence is always asking for more current than the clamps will allow. Hence the current is operating at the limit determined by the torque compensator. The speed loop saturation may be accomplished by utilising the SLACK take up function. See JOG CRAWL SLACK in the main manual. There is a hidden PIN, 714)IN SLACK FLAG, which stays high during the slack take up mode including the ramp up/down periods. This FLAG can be used to operate 518)TENSION ENABLE. Friction. The block provides compensation for stiction, static friction and dynamic friction. Stiction compensation is applied only if the web speed exceeds its programmed threshold (e. g. 5%) and the reel speed remains below 2%. This compensation is used to get the system moving. Static friction compensation is applied at a constant level throughout the speed range. Dynamic friction compensation is applied throughout the speed range and linearly increases with speed. Inertia. When accelerating positively or negatively (decelerating), torque is required to overcome the mechanical inertia of the total load. Without compensation this torque is no longer available to provide tension. Hence to control the tension more accurately the block provides compensation for both fixed and variable inertia. The fixed inertia compensation is used to accelerate all fixed mass components of the system (e. g. motor, gearbox, reel former etc.). The variable inertia compensation is used to accelerate the process material, the mass of which is changing as the reel diameter changes. There is also provision for compensating for different material widths. The compensation factors may be found by pure calculation, or empirically. The descriptions here outline empirical methods that may be utilised using only the reel drive, and a full and empty reel. 3.7.1 TORQUE COMPENSATOR / Block diagram PIN 514 Tension demand input PIN 502 Stiction comp By Diameter PIN 515 Torque trim input Torque mem input PIN 501 PIN 517 TORQUE COMPENSATOR Tension enable PIN 518 Tension Scaler TORQUE Memory Select PIN 516 PIN 503 Stiction comp Web speed threshold level TORQUE demand monitor PIN 500 T/COMP +cur lim GO TO (Block activate) Memory Curr limit 150% Enable Active Static friction Dynamic friction PIN 89 Upper +clamp 150% I limit PIN 504 PIN 505 Connect to Overwind 150% curr limit -150% I limit PIN 519 By rectified Reel speed (Internal connection) Overwind Underwind Enable select -1 PIN 520 Inertia comp monitor Underwind PIN 506 Friction Sign for FWD / REV By accel PIN 507 Fixed Inertia -150% Curr limit PIN 513 Accel filter time constant 1/DIA T/COMP -cur lim GO TO PIN 508 Variable Inertia Accel By reel width 3 PIN 90 Lower -clamp PIN 511,0=off select K*DIA Off Calculated from line speed Sets switch off when set to Zero dv/dt PIN 509 Material Width Connect to gives accel PIN 512 PIN 511 Accel scaler accel IP / monitor PIN 510 Accel line speed 40 APPLICATION BLOCKS 3.7.2 TORQUE COMPENSATOR / Torque demand monitor PIN 500 TORQUE COMPENSATOR 3 500)TORQUE DEMAND MN Allows the torque demand reference to be monitored. 500)TORQUE DEMAND MN 0.00% PARAMETER TORQUE DEMAND MN RANGE +/-300.00% DEFAULT 0.00% PIN 500 The torque demand reference is the sum of all the compensation components and the scaled tension demand. This has a branch hopping facility to 3.7.22 TORQUE COMPENSATOR / Inertia comp monitor PIN 520. 3.7.3 TORQUE COMPENSATOR / Torque trim input PIN 501 TORQUE COMPENSATOR 3 501)TORQUE TRIM IP IP Allows a torque trim input to be added to the compensation. 501)TORQUE TRIM IP 0.00% PARAMETER TORQUE TRIM IP RANGE +/-150.00% DEFAULT 0.00% PIN 501 3.7.4 TORQUE COMPENSATOR / Stiction compensation PIN 502 TORQUE COMPENSATOR 3 502)STICTION COMP Sets the level of compensation required to overcome stiction. 502)STICTION COMP 0.00% PARAMETER STICTION COMP RANGE +/-300.00% DEFAULT 0.00% PIN 502 DEFAULT 5.00% PIN 503 See 3.7.5 TORQUE COMPENSATOR / Stiction web speed threshold PIN 503. 3.7.5 TORQUE COMPENSATOR / Stiction web speed threshold PIN 503 TORQUE COMPENSATOR 3 503)STIC.WEB SPD THR Sets the WEB speed above which stiction comp occurs. 503)STIC.WEB SPD THR 5.00% PARAMETER STIC.WEB SPD THR RANGE 0.00 to 10.00% Some systems require extra torque to overcome starting friction. This level must be set to ensure the reel motor starts rotating. The system will add the compensation set in 3.7.4 TORQUE COMPENSATOR / Stiction compensation PIN 502, when the web speed reference is greater than the threshold AND the reel speed feedback is less than 2.00%. Hence the compensation is only active during the stiction phase, and will not be permanently applied at zero web speed reference. The threshold is not signed and is applied to both directions of rotation. A value of 5.00% is suggested as a starting point. APPLICATION BLOCKS 41 3.7.6 TORQUE COMPENSATOR / Static friction compensation PIN 504 TORQUE COMPENSATOR 3 504)STATIC FRICTION Sets the compensation required to overcome static friction. 504)STATIC FRICTION 0.00% PARAMETER STATIC FRICTION RANGE +/-300.00% DEFAULT 0.00% PIN 504 This compensation is applied at a constant level throughout the speed range. With an empty reel running at 10% speed, observe the ARM CUR % MON in the diagnostics menu. Enter the monitored value here. Arm current Stiction current % at start of motion Dynamic friction current % at full reel speed Static friction current % at all reel speeds Reel speed 3.7.7 TORQUE COMPENSATOR / Dynamic friction compensation PIN 505 TORQUE COMPENSATOR 3 505)DYNAMIC FRICTION Compensation factor required to overcome dynamic friction. 505)DYNAMIC FRICTION 0.00% PARAMETER DYNAMIC FRICTION RANGE +/-300.00% DEFAULT 0.00% PIN 505 This compensation is applied at a level proportional to speed. With an empty reel running at 100% speed, observe the ARM CUR % MON in the diagnostics menu. Enter the difference between the monitored value and 504)STATIC FRICTION. The block automatically adjusts the compensation by scaling it according to web speed. Arm current Stiction current % at start of motion Dynamic friction current % at full reel speed Static friction current % at all reel speeds Reel speed 42 APPLICATION BLOCKS 3.7.8 TORQUE COMPENSATOR / Friction sign PIN 506 TORQUE COMPENSATOR 3 506)FRICTION SIGN Sets total friction compensation polarity for forward or reverse. 506)FRICTION SIGN NON-INVERT PARAMETER FRICTION SIGN RANGE INVERT or NON-INVERT DEFAULT NON-INVERT PIN 506 DEFAULT 0.00% PIN 507 3.7.9 TORQUE COMPENSATOR / Fixed mass inertia PIN 507 TORQUE COMPENSATOR 3 507)FIXED INERTIA Compensation required to overcome fixed mass inertia. 507)FIXED INERTIA 0.00% PARAMETER FIXED INERTIA RANGE +/-300.00% The compensation applied depends on reel diameter. The diameter calculator block must be activated in order for the diameter value to be acquired by this block. The gain of this input is proportional to 1/DIA. It is unity for minimum diameter and 1/(build up ratio) at maximum diameter. To arrive at a suitable value to enter here you must perform a measurement of armature current with a separate empty reel running in speed control mode. First reprogram the reel drive speed ramp to the same ramp time as the web speed. Then set the speed to a constant 95% and note ARM CUR % MON in the diagnostics menu. Increase the speed reference to 100%, while the reel is ramping up to the new speed measure the increased ARM CUR % MON in the diagnostics menu. The change is the current% required to accelerate the fixed mass to the new speed at the normal maximum acceleration rate. Enter this change in current% in the FIXED INERTIA window. If differing reel core sizes or masses are to be used, the fixed mass inertia value must be determined and then used for each reel core for complete accuracy. The fixed inertia compensation has the greatest influence on tension accuracy for empty reels. In this case the speeds are higher and the ratio of fixed mass to variable mass is also higher. Hence for good results it is important to make accurate measurements to determine the compensation. 3.7.10TORQUE COMPENSATOR / Variable mass inertia PIN 508 TORQUE COMPENSATOR 3 508)VARIABLE INERTIA Compensation required to overcome variable inertia. 508)VARIABLE INERTIA 0.00% PARAMETER VARIABLE INERTIA RANGE +/-300.00% DEFAULT 0.00% PIN 508 The compensation applied depends on reel diameter. The diameter calculator block must be activated in order for the diameter value to be acquired by this block. The gain curve of this input is proportional to DIA3. It is zero at minimum diameter and unity for maximum diameter.To arrive at a suitable value to enter here you must perform a measurement of armature current with a separate full reel running in speed control mode. The purpose of this experiment is to simulate the condition of unity gain to this input and measure the torque required to accelerate the mass. This condition occurs at APPLICATION BLOCKS 43 maximum diameter and hence minimum reel speed. First calculate the build up ratio. E. g. If your core diameter is 0.1 metre, and the full reel diameter is 0.5 metre, then the build up ratio is 5. 1) Then reprogram the reel drive speed ramp to a new longer ramp time as follows New ramp time = the web speed ramp time X the build up ratio. E. g. For a web speed ramp time of 10 secs and a build up ratio of 5. Adjust the reel speed ramp time to 50 secs for the duration of the experiment. Remember to return the reel speed ramp time to the original setting after the reading has been completed. 2) Set the speed of the reel drive to 100% / Build up ratio. (in this example this results in a 20% speed) Then, increase the speed reference by 5%. Note the change in ARM CUR % MON in the diagnostics menu whilst the reel of material is accelerating. Make a note of this value and then subtract an amount equal to 507)FIXED INERTIA, and the result represents the current% required to accelerate the mass of the material. Enter this value. 3.7.11 TORQUE COMPENSATOR / Material width PIN 509 TORQUE COMPENSATOR 3 509)MATERIAL WIDTH Sets a ratio % to accomodate material width or mass changes 509)MATERIAL WIDTH 100.00% PARAMETER MATERIAL WIDTH RANGE 200.00% DEFAULT 100.00% PIN 509 The material used during empirical measurement of inertia compensation currents is the 100% width/mass. E. g. For material twice as wide as the measurement material this value should be set to 200.00% For material of a specific gravity which is 80% of the measurement material, set the value to 80.00%. For material of a specific gravity which is 80% of the measurement material, and twice as wide, set the value to 160.00%. Note. The formula used by the block assumes an air core. The mass of the reel core is accomodated in the value for fixed mass inertia compensation. If the reel mass changes aswell as the material, then both FIXED INERTIA and MATERIAL WIDTH parameters will need adjusting. 3.7.12 TORQUE COMPENSATOR / Accel line speed input PIN 510 TORQUE COMPENSATOR 3 510)ACCEL LINE SPEED The web speed reference is input here to calculate accel. 510)ACCEL LINE SPEED 0.00% PARAMETER ACCEL LINE SPEED RANGE +/-105.00% DEFAULT 0.00% PIN 510 The acceleration of the system is required in order to calculate the total inertia compensation. There are two ways of arriving at a value for acceleration. 1) Input the acceleration value directly from an external source to PIN 512. 2) Let the block calculate the value by differentiating the line or web speed which is input to PIN 510. When using method 2 a line or web speed reference is input. Note. The line speed reference will usually come from an external source via an analogue input terminal. The input speed is scaled by PIN 511)ACCEL SCALER. Note. If PIN 511)ACCEL SCALER is set to 0.00 then an internal switch is opened to allow 512)ACCEL INPUT/MON to become an input. Otherwise it remains a monitor of the calculated accel. The resulting value on 512)ACCEL INPUT/MON should be arranged to be 100.00% for maximum acceleration by either method. 44 APPLICATION BLOCKS 3.7.13 TORQUE COMPENSATOR / Accel scaler PIN 511 TORQUE COMPENSATOR 3 511)ACCEL SCALER Sets the scaling factor to normalise the accel calculation. 511)ACCEL SCALER 10.00 PARAMETER ACCEL SCALER RANGE +/-100.00 DEFAULT 10.00 PIN 511 Typically set this value to equal the 100% ramp time. E.g. Total ramp time equal 10 secs. Set to 10.00. See 3.7.12 TORQUE COMPENSATOR / Accel line speed input PIN 510 Note. If PIN 511)ACCEL SCALER is set to 0.00 then an internal switch is opened to allow 512)ACCEL INPUT/MON to become an input. Otherwise it remains a monitor of the calculated accel. 3.7.14 TORQUE COMPENSATOR / Accel input/monitor PIN 512 TORQUE COMPENSATOR 3 512)ACCEL INPUT/MON Used to monitor accel, or input an external accel signal 512)ACCEL INPUT/MON 0.00% PARAMETER ACCEL INPUT/MON RANGE to 105.00% DEFAULT 0.00% PIN 512 DEFAULT 0.10 SECS PIN 513 See 3.7.12 TORQUE COMPENSATOR / Accel line speed input PIN 510 3.7.15 TORQUE COMPENSATOR / Accel filter time constant PIN 513 TORQUE COMPENSATOR 3 513)ACCEL FILTER TC Sets a filter time constant for the line acceleration signal. 513)ACCEL FILTER TC 0.10 SECS PARAMETER ACCEL FILTER TC RANGE 0.00 to 200.00 SECS If the line speed input or the external accel input signal used to derive the accel value have a ripple content then this may cause tension variations. The filter is provided to smooth the accel value. Use the accel monitor to set the filter time constant. Select the lowest filter time constant that gives a smooth accel value. 3.7.16 TORQUE COMPENSATOR / Tension demand input TORQUE COMPENSATOR 3 514)TENSION DEM IP Sets the tension demand input. PIN 514 514)TENSION DEM IP 0.00% PARAMETER TENSION DEM IP RANGE +/-100.00% DEFAULT 0.00% PIN 514 APPLICATION BLOCKS 45 3.7.17 TORQUE COMPENSATOR / Tension scaler PIN 515 TORQUE COMPENSATOR 3 515)TENSION SCALER Scales the tension from the taper tension block. 515)TENSION SCALER 1.0000 PARAMETER TENSION SCALER RANGE +/-3.0000 DEFAULT 1.0000 PIN 515 The result of the product of the tension input and the diameter are divided by the factor entered here. 3.7.18 TORQUE COMPENSATOR / Torqe memory select PIN 516 TORQUE COMPENSATOR 3 516)TORQUE MEM SEL Selects an external torque source. (TORQUE MEM INPUT). 516)TORQUE MEM SEL DISABLED PARAMETER TORQUE MEM SEL RANGE ENABLED or DISABLED DEFAULT DISABLED PIN 516 This is useful if the torque is required to be held at a memorised value while the input speeds are not available at the levels required to provide a calculated output. Eg. During a reel changeover sequence. The memorised value may be obtained using a sample and hold. See 3.10 APPLICATION BLOCKS / MULTI-FUNCTION 1 to 8. 3.7.19 TORQUE COMPENSATOR / Torque memory input PIN 517 TORQUE COMPENSATOR 3 517)TORQUE MEM INPUT Sets the input value for 516)TORQUE MEM SELect. 517)TORQUE MEM INPUT 0.00% PARAMETER TORQUE MEM INPUT RANGE +/-300.00% DEFAULT 0.00% PIN 517 This is useful if the torque is required to be held at a memorised value while the input speeds are not available at the levels required to provide a calculated output. Eg. During a line stopping sequence. The memorised value may be obtained using a sample and hold. See 3.10 APPLICATION BLOCKS / MULTI-FUNCTION 1 to 8. 3.7.20 TORQUE COMPENSATOR / Tension enable PIN 518 TORQUE COMPENSATOR 3 518)TENSION ENABLE Selects the torque reference or the prevailing current limit. 518)TENSION ENABLE ENABLED PARAMETER TENSION ENABLE RANGE ENABLED or DISABLED DEFAULT ENABLED PIN 518 By selecting the prevailing current limit (DISABLED), the system can operate as a speed controller. When the torque demand is ENABLED the torque compensator provides the new current limit. When winding, the drive system relies on arranging the speed loop to saturate so that the current is operating at the limit determined by the torque compensator. The speed loop saturation may be accomplished by utilising the SLACK take up function. See JOG CRAWL SLACK in the main manual. There is a hidden PIN, 714)IN SLACK FLAG, which stays high during the slack take up mode including the ramp up/down periods. This FLAG can be used to operate 518)TENSION ENABLE. 46 APPLICATION BLOCKS 3.7.21 TORQUE COMPENSATOR / Overwind/underwind PIN 519 TORQUE COMPENSATOR 3 519)OVER/UNDERWIND Selects the winding style to be overwind or underwind. 519)OVER/UNDERWIND ENABLED PARAMETER OVER/UNDERWIND RANGE ENABLED or DISABLED DEFAULT ENABLED PIN 519 Overwinding is selected when the function is enabled. Underwind is selected when the function is disabled. The term overwinding is referring to the chosen direction of layer addition on the reel. It assumes that the web is wound onto the reel in the direction which requires a positive current clamp. If the web is wound on in the underwind direction then the reel must change direction of rotation and the negative current clamp is operative. Overwind Underwind 3.7.22 TORQUE COMPENSATOR / Inertia comp monitor PIN 520 TORQUE COMPENSATOR 3 520)INERTIA COMP MON Allows the final result of the inertia comp to be monitored. 520)INERTIA COMP MON 0.00% PARAMETER INERTIA COMP MON RANGE +/-300.00% DEFAULT 0.00% This has a branch hopping facility to 3.7.2 TORQUE COMPENSATOR / Torque demand monitor PIN 500. PIN 520 APPLICATION BLOCKS 47 PIN 695 Rectified Web speed Hidden pin 3.8 Centre winding block arrangement mem boot up PIN 493 Dia Hold PIN 488 Min speed PIN 487 Filter TC PIN 489 PIN 697 Unfiltered Diameter Hidden pin PIN 484 To activate this block, connect the GOTO. Eg to a staging post. Web speed Rectifier WEB SPEED REEL SPEED PIN 485 Reel speed Preset Thr Web break threshold. Diameter Minimum. Dia min is scaling factor and low limit. PIN 696 Rectified reel speed Hidden pin DIAMETER GOTO PIN 483 Diam op PIN 492 Rectifier REEL Tension reference Hold Filter Web breakFlag on PIN 690 PIN 486 PIN 490 PIN 491 Diameter min Diam Preset Preset value PIN 495 Tension ref PIN 497 Taper mode Min dia Diameter (internal connections) The diameter calculator block must be actived PIN 499 Dotted line shows factory internal software connection for diameter arithmetic. Tapered Tension Monitor PIN 496 PIN 494 Taper strength Total Tension Monitor PIN 498 Use the SLACK take up mode to saturate the speed loop and then control 518)TENSION ENABLE using 714)IN SLACK FLAG. Taper calc Tension trim IP TAPER TENSION CALCULATOR GO TO PIN 514 Tension demand input PIN 502 Stiction comp By Diameter PIN 515 Torque trim input Torque mem input PIN 501 PIN 517 TORQUE COMPENSATOR Tension enable PIN 518 Tension Scaler TORQUE Memory Select PIN 516 PIN 503 Stiction comp Web speed threshold level TORQUE demand monitor PIN 500 T/COMP +cur lim GO TO (Block activate) Memory Upper +clamp Curr limit 150% Enable Active Static friction Dynamic friction PIN 89 150% I limit PIN 504 PIN 505 Connect to To current control(+) Overwind 150% curr limit -150% I limit PIN 519 By rectified Reel speed (Internal connection) Overwind Underwind Enable select -1 PIN 520 Inertia comp monitor Underwind PIN 506 Friction Sign for FWD / REV By accel PIN 507 Fixed Inertia -150% Curr limit PIN 514 Accel filter time constant 1/DIA T/COMP -cur lim GO TO PIN 508 Variable Inertia By reel width Accel select K*DIA3 Off Material Width Calculated from line speed Sets switch off when set to Zero gives accel PIN 512 PIN 90 Lower -clamp PIN 513 dv/dt PIN 509 Connect to PIN 511 Accel scaler accel IP / monitor PIN 510 Accel line speed To current control (-) 48 APPLICATION BLOCKS 3.9 APPLICATION BLOCKS / PRESET SPEED Pin numbers used 523 to 534 APPLICATION BLOCKS PRESET SPEED 2 3 This block provides a versatile preset value selection machine. The primary use is for preset speeds. By defining output values for each one of 8 possible input combinations, various types of preset mode are possible. E. g. Input priority, input summing, BCD thumbwheel code. This block contains 8 consecutive PINs with a range of +/-300.00% (527 to 534). If the block is not being used for its intended function then these PINs are ideal as extra STAGING POSTS. PRESET SPEED 3 534)PR.VALUE FOR 111 PRESET SPEED 523)PRESET OP MON 3 PRESET SPEED 524)PRESET SEL1(LSB) 3 PRESET SPEED 525)PRESET SELECT2 3 PRESET SPEED 526)PRESET SEL3(MSB) 3 PRESET SPEED 3 527)PR.VALUE FOR 000 PRESET SPEED 3 528)PR.VALUE FOR 001 PRESET SPEED 3 529)PR.VALUE FOR 010 PRESET SPEED 3 530)PR.VALUE FOR 011 PRESET SPEED 3 531)PR.VALUE FOR 100 PRESET SPEED 3 532)PR.VALUE FOR 101 PRESET SPEED 3 533)PR.VALUE FOR 110 APPLICATION BLOCKS 49 3.9.1 PRESET SPEED / Block diagram PIN 524 Logic Input SEL1 (LSB) PIN 525 Logic Input SELECT 2 PIN 526 Logic Input SEL 3(MSB) Logic IPs SEL3,2,1 000 001 010 011 100 101 110 111 PRESET SPEED PIN number to set value PIN 527 PIN 528 PIN 529 PIN 530 PIN 531 PIN 532 PIN 533 PIN 534 PRESET SPEED GO TO PIN 523 Preset output Value mon 1) Ascending priority Inputs 3,2,1 000 001 010 011 100 101 110 111 PIN number To set value PIN 527 PIN 528 PIN 529 PIN 530 PIN 531 PIN 532 PIN 533 PIN 534 Actual value 0.00% W% X% X% Y% Y% Y% Y% Assuming that there are 3 output values (1=W, 2 =X, 3=Y) required and that logic select input 3 has the highest priority, followed by 2 and 1 in that order. By entering the values for each PIN number as shown in the table the desired result is obtained. 2) Binary coded decimal Inputs 3,2,1 000 001 010 011 100 101 110 111 PIN number OP value PIN 527 PIN 528 PIN 529 PIN 530 PIN 531 PIN 532 PIN 533 PIN 534 Actual value 0.00% 10.00% 20.00% 30.00% 40.00% 50.00% 60.00% 70.00% This will give 8 values up to 70.00% for the 8 BCD codes. 3) 4 digital inputs for 4 preset speeds. Inputs 3,2,1 000 001 010 011 100 101 110 111 PIN number OP value PIN 527 PIN 528 PIN 529 PIN 530 PIN 531 PIN 532 PIN 533 PIN 534 Actual value 25.00% 50.00% 75.00% 62.50% 100.00% 75.00% 87.50% 0.00% Make the GOTO connection to the Value for low PIN on a digital input E.g. DIP1 on T14. Then connect the GOTO of DIP1 to the desired preset speed target PIN. The The The The DIP1 digital input will be the 25% input preset speed select1 input will be the 50% input preset speed select2 input will be the 75% input preset speed select3 input will be the 100% input The intermediate combinations are shown here bolded with intermediate values for smoother transition, but may be set to other values as desired. 50 APPLICATION BLOCKS 3.9.2 PRESET SPEED / Preset speed output monitor PIN 523 PRESET SPEED 3 523)PRESET SPEED MON Allows the preset speed block output to be monitored. 523)PRESET SPEED MON 0.00% PARAMETER PRESET SPEED MON RANGE +/-300.00% DEFAULT 0.00% PIN 523 DEFAULT LOW PIN 524 DEFAULT 0.00% PIN 527 3.9.3 PRESET SPEED / Select bit inputs 1 lsb, 2, 3 msb PINs 524 / 525 / 526 PRESET SPEED 524)PRESET SEL1(LSB) 3 Sets the logic state of the preset speed block digital input. 524)PRESET SEL1(LSB) LOW PARAMETER PRESET SEL1(LSB) RANGE HIGH or LOW 3.9.4 PRESET SPEED / OP value of 000 to 111 PINs 527 to 534 PRESET SPEED 3 527)PR.VALUE FOR 000 Sets the values for each preset speed block digital input code. 527)PR.VALUE FOR 000 0.00% PARAMETER PR.VALUE FOR 000 See 3.9.1 PRESET SPEED / Block diagram. RANGE +/-300.00% APPLICATION BLOCKS 51 3.10 APPLICATION BLOCKS / MULTI-FUNCTION 1 to 8 PINs used 544 to 559 MULTI-FUNCTION 1 GOTO 3 MULTI-FUNCTION 1 544)MULTIFUN1 MODE 3 There are 8 identical independent MULTI FUNCTION APPLICATION BLOCKS MULTI-FUNCTION 1 2 3 blocks. They are identified by the suffix 1 to 8 in the menu windows. MULTI-FUNCTION 1 3 545)MULTIFUN1 OP SEL Only number 1 is shown here. They are used to perform simple signal processing on 1 or 2 signals. Available functions are comparator, AND, OR, LOGIC INVERT, sign change, rectify and sample and hold. These blocks may also be used as JUMPERS to make connections. 3.10.1MULTIFUNCTION / Block diagram MULTI-FUNCTION 1 GET FROM 3 MULTI-FUNCTION 1 AUX GET FROM 3 PIN 544 Aux input Function mode GET FROM MULTI FUNCTION 1 Function (Enabled) Direct (Disabled) SIGN CHANGER Main input GET FROM Rectifier PIN 545 Output select MULTI FUNCTION 1 GO TO 52 APPLICATION BLOCKS 3.10.2 MULTI-FUNCTION 1 to 8 / Function mode PINs 544/6/8, 550/2/4/6/8 MULTI-FUNCTION 1 544)MULTIFUN1 MODE 3 Select 1 of 7 transfer functions according the table below. 544)MULTIFUN1 MODE C/O SWITCH PARAMETER MULTIFUN1 MODE RANGE 1 of 7 functions DEFAULT C/O SWITCH PIN 544 Note that a linear signal will be treated as a logical 0 by a logical function if its value is zero (any units), any other value including negative values will be treated as a logical 1. Mode 0 Function C/O SWITCH Or JUMPER Function type Linear or logical 1 COMPARATOR 2 linear inputs, logical output 2 AND GATE 2 logical inputs, logical output 3 OR GATE 2 logical inputs, logical output 4 INVERT 1 logical input, logical output 5 6 SIGN CHANGER RECTIFIER 1 linear input, linear output 1 linear input, linear output OP Description for MULTIFUN1 OP SEL ENABLED The value at the aux input Use this for connections if JUMPERS are all used If MAIN > AUX output = 1 If MAIN < AUX output = 0 MAIN AUX Output 0 0 0 0 1 0 1 0 0 1 1 1 MAIN AUX Output 0 0 0 0 1 1 1 0 1 1 1 1 MAIN Output (The invert function ouput is 0 1 also the EXOR (exclusive OR) 1 0 of the MAIN and OP SELECT) Output = MAIN X (-1) Output = | MAIN | To create an Exclusive OR function easily. The invert mode OP is the EXOR of the MAIN, OP SELECT inputs 3.10.2.1 Sample and hold function To perform a sample and hold simply set the AUX GET FROM source PIN to be the same as the output GOTO destination PIN and the MODE to 0. Then when the output select is disabled the output value will follow the main input. When the output select is enabled, the value pertaining at that time will be held. See also 3.16.1.1 C/O switch used as sample and hold function. 3.10.3 MULTI-FUNCTION 1 to 8 / Output select 1 to 8 PIN 545/7/9, 551/3/5/7/9 MULTI-FUNCTION 1 3 545)MULTIFUN1 OP SEL When disabled the main input flows directly to the output. 545)MULTIFUN1 OP SEL DISABLED PARAMETER MULTIFUN1 OP SEL RANGE ENABLED or DISABLED DEFAULT DISABLED PIN 545 When enabled, 1 of 7 transfer functions selected by the logic mode switch is then output. When this PIN is used as a logic input with the main input in invert mode, the ouput is EXOR of the 2 inputs. 3.10.4 MULTI-FUNCTION 1 to 8 / Main input GET FROM 1 to 8 MULTI-FUNCTION 1 GET FROM 3 Sets the PIN for the main input signal source. GET FROM PIN)Description of function PARAMETER GET FROM RANGE 000 to 720 DEFAULT 400)Block disconnect APPLICATION BLOCKS 53 3.10.5 MULTI-FUNCTION 1 to 8 / Aux input GET FROM 1 to 8 MULTI-FUNCTION 1 AUX GET FROM 3 Sets the PIN for the auxiliary input signal source. AUX GET FROM PIN)Description of function PARAMETER AUX GET FROM RANGE 000 to 720 DEFAULT 400)Block disconnect 3.10.6 MULTI-FUNCTION 1 to 8 / GOTO 1 to 8 MULTI-FUNCTION 1 GOTO 3 Sets the target PIN for the multifunction output signal. GOTO PIN)Description of function PARAMETER GOTO RANGE 000 to 720 DEFAULT 400)Block disconnect 54 APPLICATION BLOCKS 3.11 APPLICATION BLOCKS / LATCH LATCH 566)LATCH LO VALUE PINs used 560 to 566 APPLICATION BLOCKS LATCH 2 3 3 LATCH 3 560)LATCH OUTPUT MON This block provides a standard D type latch function. The logic inputs are scanned at least once every 50mS hence the maximum operating frequency is 10Hz. See 3.1.1 Sample times. LATCH 561)LATCH DATA IP 3 LATCH 562)LATCH CLOCK IP 3 LATCH 563)LATCH SET IP 3 LATCH 564)LATCH RESET IP 3 LATCH 565)LATCH HI VALUE 3 3.11.1 LATCH / Block diagram GO TO PIN 561 DATA LATCH PIN 560 Data input CLOCK PIN 562 Latch Output mon OUTPUT PIN 565 SET Clock input Value for HI RESET PIN 566 Value for LO PIN 563 Set input SET High Low High Low Low RESET Low High High Low Low PIN 564 Reset input CLOCK Don’t care Don’t care Don’t care +VE EDGE +VE EDGE DATA Don’t care Don’t care Don’t care Low High OUTPUT Value for Value for Value for Value for Value for high low high low high 3.11.2 LATCH / Latch output monitor PIN 560 LATCH 3 560)LATCH OUTPUT MON Shows the output value of the latch block. 560)LATCH OUTPUT MON 0.00% PARAMETER LATCH OUTPUT MON RANGE +/-300.00% DEFAULT 0.00% PIN 560 3.11.3 LATCH / Latch data input PIN 561 LATCH 561)LATCH DATA IP 3 Sets logic level for the data input. Min dwell time 50mS. 561)LATCH DATA IP LOW PARAMETER LATCH DATA IP RANGE LOW or HIGH DEFAULT LOW PIN 561 If the clock level has changed from a low to a high since the last sample, then the logic level of the data input (high or low) is placed on the latch output stage giving an output value for high or low. APPLICATION BLOCKS 55 3.11.4 LATCH / Latch clock input PIN 562 LATCH 562)LATCH CLOCK IP 3 Sets logic level for the latch clock input. 562)LATCH CLOCK IP LOW PARAMETER LATCH CLOCK IP RANGE LOW or HIGH DEFAULT LOW PIN 562 If the clock level has changed from a low to a high since the last sample, then the logic level of the data input (high or low) is placed on the latch output stage giving an output value for high or low. See the truth table for a complete definition. 3.11.5 LATCH / Latch set input PIN 563 LATCH 563)LATCH SET IP 3 Sets logic level for the latch set input. 563)LATCH SET IP LOW PARAMETER LATCH SET IP RANGE LOW or HIGH DEFAULT LOW PIN 563 DEFAULT LOW PIN 564 DEFAULT 0.01% PIN 565 DEFAULT 0.00% PIN 566 See the truth table for a complete definition. 3.11.6 LATCH / Latch reset input PIN 564 LATCH 564)LATCH RESET IP 3 Sets logic level for the latch reset input. 564)LATCH RESET IP LOW PARAMETER LATCH RESET IP RANGE LOW or HIGH See the truth table for a complete definition. 3.11.7 LATCH / Latch output value for HI/LOW PINs 565 / 566 LATCH 565)LATCH HI VALUE 3 Sets the output value for the high result LATCH 566)LATCH LO VALUE 565)LATCH HI VALUE 0.01% PARAMETER LATCH HI VALUE 3 Sets the output value for the low result RANGE +/-300.00% 566)LATCH LO VALUE 0.00% PARAMETER LATCH LO VALUE RANGE +/-300.00% 56 APPLICATION BLOCKS 3.12 APPLICATION BLOCKS / FILTER 1, 2 PINs used 568/9 and 573/4 There are 2 identical filter blocks APPLICATION BLOCKS FILTER 1 2 3 Each filter has an accurate time constant set by the user. With a 0.000 value the filter is transparent. FILTER 1 GET FROM 3 FILTER 1 568)FILTER1 OP MON 3 FILTER 1 569)FILTER1 TC 3 There is also a simple low pass filter in the hidden PIN list. Input is PIN 705, and output is PIN 706 3.12.1 FILTER / Block diagram FILTER 1 Amplitude FILTER 2 FILTER 1 Amplitude GO TO GET FROM Filter Output monitor Frequency GO TO GET FROM PIN 568 Filter input FILTER 2 PIN 573 Filter Output monitor Filter input Frequency PIN 569 PIN 574 Time constant Time constant The filters are useful for eliminating mechanical resonance effects from the control system closed loop. 3.12.2 FILTER 1, 2 / Filter output monitor FILTER 1 568)FILTER1 OP MON 3 Allows the filter 1 output to be monitored. 568)FILTER1 OP MON 0.00% PARAMETER FILTER1 OP MON 3.12.3 FILTER 1, 2 / Filter time constant FILTER 1 569)FILTER1 TC PIN 568 / 573 DEFAULT 0.00% PIN 568 DEFAULT 1.000 SECS PIN 569 PIN 569 / 574 3 Sets the value of the time constant for the filter 1 block. RANGE +/-315.00% 569)FILTER1 TC 1.000 SECS PARAMETER FILTER1 TC RANGE 0.000 to 32.000 SECS For filter time constants in excess of 32.000 seconds, the filters may be cascaded. APPLICATION BLOCKS 57 3.12.4 FIXED LOW PASS FILTER There is a simple low pass filter function with a cut off frequency of approximately 10 Hz. It may be useful for smoothing linear signals or eliminating resonances. Amplitude Hidden PIN 705 Hidden PIN 706 Filter input Filter Output Frequency The filter does not have any adjustments hence the PIN numbers are hidden. LOW PASS FILTER Fixed 10Hz Cut off freq To use the filter connect the input using a GOTO window from another block, and connect the output using a GETFROM from the destination block. Alternatively use JUMPERS to make the connections. 58 APPLICATION BLOCKS 3.13 APPLICATION BLOCKS / BATCH COUNTER PINs used 578 to 582 APPLICATION BLOCKS BATCH COUNTER BATCH COUNTER 3 582)COUNTER >=TARGET 2 3 This block provides a batch counter function. The minimum low or high logic input dwell time is 50mS giving a maximum count frequency of 10Hz. A positive clock transition causes the counter to count up. If the count is equal to or greater than the target, then 582)COUNTER >=TARGET flag is set high. The counter continues counting positive clock transitions unless the reset input is high or the counter reaches 32000. This feature is useful if the counter is used to signal intermediate points within a total batch. The count target may be changed without interfering with the counting process. The reset input resets the counter to zero. BATCH COUNTER 578)COUNTER COUNT 3 BATCH COUNTER 579)COUNTER CLOCK 3 BATCH COUNTER 580)COUNTER RESET 3 BATCH COUNTER 3 581)COUNTER TARGET 3.13.1 BATCH COUNTER / Block diagram BATCH COUNTER PIN 581 Counter target PIN 579 Counter clock PIN 582 32000 > Count > or = to target Batch counter 32000 GO TO PIN 578 PIN 580 Count Value monitor Count reset The clock input low time must be at least 50mS The clock input high time must be at least 50mS See 3.1.1 Sample times. 3.13.2 BATCH COUNTER / Counter count monitor PIN 578 BATCH COUNTER 578)COUNTER COUNT 3 Allows the batch counter value to be monitored. 578)COUNTER COUNT 0 PARAMETER COUNTER COUNT RANGE 0 to 32000 PIN 578 Note. This value is the output of the block GOTO connection. This window has a branch hopping facility to 3.13.6 BATCH COUNTER / Count equal or greater than target flag PIN 582. APPLICATION BLOCKS 59 3.13.3 BATCH COUNTER / Clock input PIN 579 BATCH COUNTER 579)COUNTER CLOCK 3 Sets the clock input logic level for the batch counter. 579)COUNTER CLOCK LOW PARAMETER COUNTER CLOCK RANGE LOW or HIGH DEFAULT LOW PIN 579 DEFAULT LOW PIN 580 DEFAULT 32000 PIN 581 The counter will increment on a positive clock transition. 3.13.4 BATCH COUNTER / Reset input PIN 580 BATCH COUNTER 580)COUNTER RESET 3 Sets the reset input logic level for the batch counter. 580)COUNTER RESET LOW PARAMETER COUNTER RESET RANGE LOW or HIGH The counter is held reset while the reset input is high. 3.13.5 BATCH COUNTER / Counter target number PIN 581 BATCH COUNTER 3 581)COUNTER TARGET Sets the target number for the batch counter. 581)COUNTER TARGET 32000 PARAMETER COUNTER TARGET RANGE 0 to 32000 When the batch counter value equals or exceeds the target value this output goes high. Changing the counter target does not interfere with the counting process. 3.13.6 BATCH COUNTER / Count equal or greater than target flag PIN 582 BATCH COUNTER 3 582)COUNTER >=TARGET Allows the equal or greater output flag to be monitored. 582)COUNTER >=TARGET LOW PARAMETER COUNTER >=TARGET RANGE LOW or HIGH PIN 582 When the batch counter value equals or exceeds the target value the equal output goes high. Note. By using a jumper to connect this flag to 580)COUNTER RESET, it is possible to make the counter roll over at the counter target number and continue counting from 0 again. Branch hopping facility to 3.13.2 BATCH COUNTER / Counter count monitor PIN 578 60 APPLICATION BLOCKS 3.14 APPLICATION BLOCKS / INTERVAL TIMER PINs used 584 to 586 APPLICATION BLOCKS INTERVAL TIMER INTERVAL TIMER 3 586)TMR EXPIRED FLAG INTERVAL TIMER 3 583)TMR ELAPSED TIME 2 3 INTERVAL TIMER 584)TIMER RESET 3 INTERVAL TIMER 585)TIMER INTERVAL 3 3.14.1 INTERVAL TIMER / Block diagram Expired flag PIN 586 INTERVAL TIMER PIN 584 600.0 Secs timer reset Enable PIN 583 Elapsed time mon PIN 585 Timer interval INTERVAL TIMER GO TO The INTERVAL TIMER may be used to control event sequencing in systems applications. E. g. If a motion control sequence must wait before starting or a relay changeover delayed. 3.14.2 INTERVAL TIMER / Time elapsed monitor PIN 583 INTERVAL TIMER 3 583)TMR ELAPSED TIME Allows the interval timer elapsed time to be monitored. 583)TMR ELAPSED TIME 0.0 SECS PARAMETER TMR ELAPSED TIME RANGE 0.1 to 600.0 SECS DEFAULT 0.0 SECS PIN 583 Note. This value is the output of the block GOTO connection. When the total interval time has elapsed the block output goes high until the next disable/enable sequence. This window has a branch hopping facility to 3.14.5 INTERVAL TIMER / Timer expired flag PIN 586. 3.14.3 INTERVAL TIMER / Timer reset enable PIN 584 INTERVAL TIMER 584)TIMER RESET 3 When enabled the timer is reset to and held at zero. 584)TIMER RESET DISABLED PARAMETER TIMER RESET RANGE ENABLED or DISABLED DEFAULT DISABLED The timer commences timing when disabled. The timer is reset if the input is enabled prior to timing out. PIN 584 APPLICATION BLOCKS 61 3.14.4 INTERVAL TIMER / Time interval setting PIN 585 INTERVAL TIMER 585)TIMER INTERVAL 3 Sets the time delay for the interval timer. 585)TIMER INTERVAL 5.0 SECS PARAMETER TIMER INTERVAL RANGE 0.1 to 600.0 SECS DEFAULT 5.0 SECS PIN 585 When the time delay has elapsed the block output goes high. It stays high until the next disable input. 3.14.5 INTERVAL TIMER / Timer expired flag PIN 586 INTERVAL TIMER 3 586)TMR EXPIRED FLAG Allows the interval timer expired flag to be monitored. 586)TMR EXPIRED FLAG LOW PARAMETER TMR EXPIRED FLAG RANGE LOW or HIGH DEFAULT LOW PIN 586 This window has a branch hopping facility to 3.14.2 INTERVAL TIMER / Time elapsed monitor PIN 583. Note. By connecting this flag to 584)TIMER RESET using a jumper, it is possible to make the timer roll over and continue timing from 0 again. 62 APPLICATION BLOCKS 3.15 APPLICATION BLOCKS / COMPARATOR 1 to 4 Pins 588 to 603 There are 4 identical comparators each with adjustable hysterisis and a window mode option. This description applies to all 4. APPLICATION BLOCKS COMPARATOR 1 2 3 3.15.1COMPARATOR 1 / Block diagram COMPARATOR 1 GOTO 3 COMPARATOR 1 588)COMP1 INPUT 1 3 COMPARATOR 1 589)COMP1 INPUT 2 3 PIN 591 PIN 588 Input 1 Comp 1 Hysteresis COMPARATOR 1 3 590)COMP1 WINDOW SEL Comp 1 GO TO PIN 589 Input 2 COMPARATOR 1 3 591)COMP1 HYSTERESIS 0 IP2 X -1 PIN 590 Window enable COMPARATOR 1 With the window mode disabled, the block functions as a comparator with input 1 on the positive input and input 2 on the negative input. The hysteresis level is applied above and below the value of input 1. The hysteresis range is 0 - 10.00%. If the window mode is enabled, then the value on input 2 creates a symmetrical window around zero. If the value on input 1 lies within the window then the comparator output is high. If hysteresis is used in the window mode it is applied at each boundary. 3.15.2 COMPARATOR 1/2/3/4 / Input 1 PIN 588/592/596/600 COMPARATOR 1 588)COMP1 INPUT 1 3 Sets the level of input 1 (+ve) of the comparator 1. 588)COMP1 INPUT 1 0.00% PARAMETER COMP1 INPUT 1 RANGE +/- 300.00% DEFAULT 0.00% PIN 588 The output is high for input 1 > input 2 (algebraic). The output is low for input 1 =< input 2 (algebraic). 3.15.3 COMPARATOR 1/2/3/4 / Input 2 PIN 589/593/597/601 COMPARATOR 1 589)COMP1 INPUT 2 3 Sets the level of input 2 (-ve) of the comparator 1. 589)COMP1 INPUT 2 0.00% PARAMETER COMP1 INPUT 2 RANGE +/- 300.00% DEFAULT 0.00% The output is high for input 1 > input 2 (algebraic). The output is low for input 1 =< input 2 (algebraic). PIN 589 APPLICATION BLOCKS 63 3.15.4 COMPARATOR 1/2/3/4 / Window mode select PIN 590/594/598/602 COMPARATOR 1 3 590)COMP1 WINDOW SEL 590)COMP1 WINDOW SEL DISABLED Enables the window comparator mode. PARAMETER COMP1 WINDOW SEL RANGE ENABLED or DISABLED DEFAULT DISABLED PIN 590 DEFAULT 0.50% PIN 591 The output is low for input 1 > or =< the window amplitude created by input 2 (algebraic). The window is created symmetrically around 0.00% and has a range of +/- input 2. If hysteresis is applied it operates at each boundary of the window. 3.15.5 COMPARATOR 1/2/3/4 / Hysteresis PIN 591/595/599/603 COMPARATOR 1 3 591)COMP1 HYSTERESIS 591)COMP1 HYSTERESIS 0.50% Sets the level of hysteresis applied to input 1 (-ve). PARAMETER COMP1 HYSTERESIS RANGE 0 to 10.00% E. g. A value of 1.00% requires input 1 to exceed input 2 by more than 1.00% for a high output and to fall below input 2 by 1.00% or more to go low. 3.15.6 COMPARATOR 1/2/3/4 / Comparator GOTO COMPARATOR 1 GOTO 3 GOTO Pin) Description of parameter Sets the PIN for the GOTO connection target parameter. PARAMETER GOTO RANGE 2 to 720 DEFAULT 400)Block disconnect Note. To activate the block the GOTO must be connected to a PIN other than 400)Block disconnect. 3.16 APPLICATION BLOCKS / C/O SWITCH 1 to 4 Pins 604 to 615 There are 4 identical changeover switches each with 2 inputs and 1 output. This description applies to all 4. APPLICATION BLOCKS C/O SW1TCH 1 C/O SW1TCH 1 GOTO 3 C/O SW1TCH 1 3 604)C/O SW1 CONTROL 2 3 C/O SW1TCH 1 605)C/O SW1 HI VALUE 3.16.1C/O SWITCH / Block diagram 3 C/O SWITCH 1 Switch 1 HI value PIN 605 Control HI C/O SWITCH Control LO Switch 1 LO value PIN 606 PIN 604 Output control 1 GO TO C/O SW1TCH 1 3 606)C/O SW1 LO VALUE 64 APPLICATION BLOCKS 3.16.1.1 C/O switch used as sample and hold function Note. A sample and hold function can be implemented by connecting the output to 606)C/O SW1 LO VALUE. The value on 605)C/O SW1 HI VALUE will be transfered to 606)C/O SW1 LO VALUE when 604)C/O SW1 CONTROL is HIGH. It will be held at the value pertaining when the control goes LOW. 3.16.2 C/O SWITCH 1/2/3/4 / Control PIN 604/607/610/613 C/O SW1TCH 1 3 604)C/O SW1 CONTROL Sets the changeover switch position to the LO or HI input. 604)C/O SW1 CONTROL LOW PARAMETER C/O SW1 CONTROL RANGE LOW or HIGH DEFAULT LOW PIN 604 DEFAULT 0.00% PIN 605 3.16.3 C/O SWITCH 1/2/3/4 / Inputs HI/LO PIN 605/608/611/614 / 606/609/612/615 C/O SW1TCH 1 605)C/O SW1 HI VALUE 3 Sets the level of the IP selected by a logic HIGH control mode. 505)C/O SW1 HI VALUE 0.00% PARAMETER C/O SW1 HI VALUE RANGE +/- 300.00% Note. 606)C/O SW1 LO VALUE Sets the level of the IP selected by a logic LOW control mode. 3.16.4 C/O SWITCH 1/2/3/4 / C/O switch GOTO C/O SW1TCH 1 GOTO 3 Sets the PIN for the GOTO connection target parameter. GOTO Pin) Description of parameter PARAMETER GOTO RANGE 2 to 720 DEFAULT 400)Block disconnect Note. To activate the block the GOTO must be connected to a PIN other than 400)Block disconnect. APPLICATION BLOCKS 65 3.17 APPLICATION BLOCKS / 16-BIT DEMULTIPLEX 16-BIT DEMULTIPLEX 3 577)DEMULX O/P BIT16 16-BIT DEMULTIPLEX GET FROM 3 16-BIT DEMULTIPLEX 535)DEMULX O/P BIT1 3 16-BIT DEMULTIPLEX 536)DEMULX O/P BIT2 3 16-BIT DEMULTIPLEX 537)DEMULX O/P BIT3 3 16-BIT DEMULTIPLEX 538)DEMULX O/P BIT4 3 16-BIT DEMULTIPLEX 539)DEMULX O/P BIT5 3 16-BIT DEMULTIPLEX 3 570)DEMULX O/P BIT11 16-BIT DEMULTIPLEX 540)DEMULX O/P BIT6 3 16-BIT DEMULTIPLEX 3 571)DEMULX O/P BIT12 16-BIT DEMULTIPLEX 541)DEMULX O/P BIT7 3 16-BIT DEMULTIPLEX 3 572)DEMULX O/P BIT13 16-BIT DEMULTIPLEX 542)DEMULX O/P BIT8 3 16-BIT DEMULTIPLEX 3 575)DEMULX O/P BIT14 16-BIT DEMULTIPLEX 543)DEMULX O/P BIT9 3 16-BIT DEMULTIPLEX 3 576)DEMULX O/P BIT15 16-BIT DEMULTIPLEX 3 567)DEMULX O/P BIT10 APPLICATION BLOCKS 16-BIT DEMULTIPLEX 2 3 This block is primarily used to extract the alarm flags from the active or stored alarm functions. Please refer to the Part 1 Digital DC Drive Manual section 8.1.9 MOTOR DRIVE ALARMS / Active and stored trip monitors PINS 181 / 182 The valued stored in the Alarms monitor parameters is a 4 character hex code which contains 16 different alarm flags. By connecting the GET FROM to PIN 181 for the active flags, or PIN 182 for the stored flags it is possible to extract the individual FLAGS for monitoring or use within the PL/X configuration. The flags for bits 1 to 16 will be available on the PIN allocated to each bit in this block. 16-BIT DEMULTIPLEX (bits 1-9) Armature overcurrent 535, Speed fbk mismatch 536, Overspeed 537, Armature overvolts 538, Field overcurrent 539, Field loss 540, Missing pulse 541, Stall trip 542, Thermistor on T30 543 16-BIT DEMULTIPLEX (bit 10) Heatsink overtemp 16-BIT DEMULTIPLEX (bits 11 – 13) Short cct digital output 570, Bad reference Exch 571, Contactor lock out 572 16-BIT DEMULTIPLEX (bits 14-16) User Alarm input (PIN 712) 575, Synchronization loss 576, Supply phase loss 577 535 to 543 567 570 to 572 575 to 577 66 APPLICATION BLOCKS 4 PIN table for application blocks 401 – 680 Paragraph number Menu / Description Range Default Values PIN 3.2.2 3.2.3 3.2.4 3.2.5 3.2.6 3.2.7 3.2.8 3.2.9 3.2.10 3.2.11 3.2.12 3.2.13 3.2.14 Block disconnect SUMMER 1 / Total output value monitor PIN 401 SUMMER 1 / Sign 1 PIN 402 SUMMER 1 / Sign 2 PIN 403 SUMMER 1 / Ratio 1 PIN 404 SUMMER 1 / Ratio 2 PIN 405 SUMMER 1 / Divider 1 PIN 406 SUMMER 1 / Divider 2 PIN 407 SUMMER 1 / Input 1 PIN 408 SUMMER 1 / Input 2 PIN 409 SUMMER 1 / Input 3 PIN 410 SUMMER 1 / Deadband PIN 411 SUMMER 1 / Output sign inverter PIN 412 SUMMER 1 / Symmetrical clamp PIN 413 +/-200.00% 0-1 0-1 +/-3.0000 +/-3.0000 +/-3.0000 +/-3.0000 +/-300.00% +/-300.00% +/-300.00% 0 – 100.00% 0 -1 0 - 200.00% 0.00% Non-invert Non-invert 1.0000 1.0000 1.0000 1.0000 0.00% 0.00% 0.00% 0.00% Non-invert 105.00% 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 3.2.2 3.2.3 3.2.4 3.2.5 3.2.6 3.2.7 3.2.8 3.2.9 3.2.10 3.2.11 3.2.12 3.2.13 3.2.14 SUMMER 2 / Total output value monitor PIN 415 SUMMER 2 / Sign 1 PIN 416 SUMMER 2 / Sign 2 PIN 417 SUMMER 2 / Ratio 1 PIN 418 SUMMER 2 / Ratio 2 PIN 419 SUMMER 2 / Divider 1 PIN 420 SUMMER 2 / Divider 2 PIN 421 SUMMER 2 / Input 1 PIN 422 SUMMER 2 / Input 2 PIN 423 SUMMER 2 / Input 3 PIN 424 SUMMER 2 / Deadband PIN 425 SUMMER 2 / Output sign inverter PIN 426 SUMMER 2 / Symmetrical clamp PIN 427 +/-200.00% 0-1 0-1 +/-3.0000 +/-3.0000 +/-3.0000 +/-3.0000 +/-300.00% +/-300.00% +/-300.00% 0 – 100.00% 0 -1 0 - 200.00% 3.3.2 3.3.3 3.3.4 3.3.5 3.3.6 3.3.7 3.3.8 3.3.9 3.3.10 3.3.11 3.3.12 3.3.13 3.3.14 3.3.15 3.3.16 3.3.17 3.3.18 3.3.19 3.3.20 3.3.21 3.3.23 3.3.24 3.3.25 3.3.2 3.3.3 3.3.4 3.3.5 3.3.6 3.3.7 3.3.8 3.3.9 3.3.10 PID 1 / Pid1 output value monitor PIN 429 PID 1 / Pid1 IP1 value PIN 430 PID 1 / Pid1 IP1 ratio PIN 431 PID 1 / Pid1 IP1 divider PIN 432 PID 1 / Pid1 IP2 value PIN 433 PID 1 / Pid1 IP2 ratio PIN 434 PID 1 / Pid1 IP2 divider PIN 435 PID 1 / Pid1 proportional gain PIN 436 PID 1 / Pid1 integrator time constant PIN 437 PID 1 / Pid1 derivative time constant PIN 438 PID 1 / Pid1 derivative filter time constant PIN 439 PID 1 / Pid1 integrator preset enable PIN 440 PID 1 / Pid1 integrator preset value PIN 441 PID 1 / Pid1 reset enable PIN 442 PID 1 / Pid1 positive clamp level PIN 443 PID 1 / Pid1 negative clamp level PIN 444 PID 1 / Pid1 output % trim PIN 445 PID 1 / Pid1 Profile mode select PIN 446 PID 1 / Pid1 Minimum proportional gain % PIN 447 PID 1 / Pid1 Profile X axis minimum PIN 448 PID 1 / Pid1 Profiled proportional gain output PIN 449 PID 1 / Pid1 clamp flag monitor PIN 450 PID 1 / Pid1 error value monitor PIN 451 PID 2 / Pid2 output value monitor PIN 452 PID 2 / Pid2 IP1 value PIN 453 PID 2 / Pid2 IP1 ratio PIN 454 PID 2 / Pid2 IP1 divider PIN 455 PID 2 / Pid2 IP2 value PIN 456 PID 2 / Pid2 IP2 ratio PIN 457 PID 2 / Pid2 IP2 divider PIN 458 PID 2 / Pid2 proportional gain PIN 459 PID 2 / Pid2 integrator time constant PIN 460 +/-300.00% +/-300.00% +/-3.0000 +/-3.0000 +/-300.00% +/-3.0000 +/-3.0000 0.0 – 100.0 .01–100.00 s 0 –10.000s 0 –10.000s 0-1 +/-300.00% 0-1 0 - 105.00% 0 - -105.00% +/-3.0000 1 of 5 modes 0 - 100.00% 0 - 100.00% 0 - 100.0 0-1 +/-105.00% +/-300.00% +/-300.00% +/-3.0000 +/-3.0000 +/-300.00% +/-3.0000 +/-3.0000 0.0 – 100.00 .01–100.00 s 0.00% Non-invert Non-invert 1.0000 1.0000 1.0000 1.0000 0.00% 0.00% 0.00% 0.00% Non-invert 105.00% 0 0.00% 0.00% 1.0000 1.0000 0.00% 1.0000 1.0000 1.0 5.00 secs 0.000 secs 0.100 secs Disabled 0.00% Disabled 100.00% -100.00% 0.2000 0 (constant) 20.00% 0.00% 0.0 Low 0.00% 0.00% 0.00% 1.0000 1.0000 0.00% 1.0000 1.0000 1.0 5.00 secs 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 APPLICATION BLOCKS Paragraph number 3.3.11 3.3.12 3.3.13 3.3.14 3.3.15 3.3.16 3.3.17 3.3.18 3.3.19 3.3.20 3.3.21 3.3.23 3.3.24 3.3.25 3.4.2 3.4.3 3.4.4 3.4.5 3.4.6 3.4.7 3.4.8 PID 2 / Pid2 derivative time constant PIN 461 PID 2 / Pid2 derivative filter time constant PIN 462 PID 2 / Pid2 integrator preset enable PIN 463 PID 2 / Pid2 integrator preset value PIN 464 PID 2 / Pid2 reset enable PIN 465 PID 2 / Pid2 positive clamp level PIN 466 PID 2 / Pid2 negative clamp level PIN 467 PID 2 / Pid2 output % trim PIN 468 PID 2 / Pid2 Profile mode select PIN 469 PID 2 / Pid2 Minimum proportional gain % PIN 470 PID 2 / Pid2 Profile X axis minimum PIN 471 PID 2 / Pid2 Profiled proportional gain output PIN 472 PID 2 / Pid2 clamp flag monitor PIN 473 PID 2 / Pid2 error value monitor PIN 474 PARAMETER PROFILER / Profile Y output monitor PIN 475 PARAMETER PROFILER / Profiler mode PIN 476 PARAMETER PROFILER / Profile Y at Xmin PIN 477 PARAMETER PROFILER / Profile Y at Xmax PIN 478 PARAMETER PROFILER / Profile X axis minimum PIN 479 PARAMETER PROFILER / Profile X axis maximum PIN 480 PARAMETER PROFILER / Profile X axis rectify PIN 481 0 –10.000s 0 –10.000s 0-1 +/-300.00% 0-1 0 - 105.00% 0 - -105.00% +/-3.0000 1 of 5 modes 0 - 100.00% 0 - 100.00% 0 - 100.0 0-1 +/-105.00% +/-300.00% 1 of 5 modes +/-300.00% +/-300.00% +/-300.00% +/-300.00% 0-1 Default Values 0.000 secs 0.100 secs Disabled 0.00% Disabled 100.00% -100.00% 0.2000 0 (constant) 20.00% 0.00% 0.0 Low 0.00% 0.00% 0 (constant) 0.00% 100.00% 0.00% 100.00% Enabled 3.5.2 3.5.3 3.5.4 3.5.5 3.5.6 3.5.7 3.5.8 3.5.9 3.5.10 3.5.11 3.5.12 3.6.2 3.6.3 3.6.4 3.6.5 3.6.6 3.6.7 3.7.2 3.7.3 3.7.4 3.7.5 3.7.6 3.7.7 3.7.8 3.7.9 3.7.10 3.7.11 3.7.12 REEL DIAMETER CALC / Diameter output monitor PIN 483 REEL DIAMETER CALC / Web speed input PIN 484 REEL DIAMETER CALC / Reel speed input PIN 485 REEL DIAMETER CALC / Minimum diameter input PIN 486 REEL DIAMETER CALC / Diameter calculation min speed PIN 487 REEL DIAMETER CALC / Diameter hold enable PIN 488 REEL DIAMETER CALC / Diameter filter time constant PIN 489 REEL DIAMETER CALC / Diameter preset enable PIN 490 REEL DIAMETER CALC / Diameter preset value PIN 491 REEL DIAMETER CALC / Diameter web break threshold PIN 492 REEL DIAMETER CALC / Diameter memory boot up PIN 493 TAPER TENSION CALC / Total tension output monitor PIN 494 TAPER TENSION CALC / Tension reference PIN 495 TAPER TENSION CALC / Taper strength input PIN 496 TAPER TENSION CALC / Hyperbolic taper enable PIN 497 TAPER TENSION CALC / Tension trim input PIN 498 TAPER TENSION CALC / Tapered tension monitor PIN 499 TORQUE COMPENSATOR / Torque demand monitor PIN 500 TORQUE COMPENSATOR / Torque trim input PIN 501 TORQUE COMPENSATOR / Stiction compensation PIN 502 TORQUE COMPENSATOR / Stiction web speed threshold PIN 503 TORQUE COMPENSATOR / Static friction comp PIN 504 TORQUE COMPENSATOR / Dynamic friction comp PIN 505 TORQUE COMPENSATOR / Friction sign PIN 506 TORQUE COMPENSATOR / Fixed mass inertia PIN 507 TORQUE COMPENSATOR / Variable mass inertia PIN 508 TORQUE COMPENSATOR / Material width PIN 509 TORQUE COMPENSATOR / Accel line speed input PIN 510 0 - 100.00% +/-105.00% +/-105.00% 0 - 100.00% +/-105.00% 0-1 0.1 - 200.0 s 0-1 0 - 100.00% 0 - 100.00% 0-1 +/-100.00% 0 - 100.00% +/-100.00% 0-1 +/-100.00% +/-100.00% +/-300.00% +/-150.00% +/-300.00% 0 - 10.00% +/-300.00% +/-300.00% 0-1 +/-300.00% +/-300.00% 0 - 200.00% +/-105.00% 0.00% 0.00% 0.00% 10.00% 5.00% Disabled 5.00 secs Disabled 10.00% 7.50% Disabled 0.00% 0.00% 0.00% Disabled 0.00% 0.00% 0.00% 0.00% 0.00% 5.00% 0.00% 0.00% Non-invert 0.00% 0.00% 100.00% 0.00% 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 3.7.13 3.7.14 3.7.15 3.7.16 3.7.17 3.7.18 3.7.19 3.7.20 3.7.21 3.7.22 TORQUE TORQUE TORQUE TORQUE TORQUE TORQUE TORQUE TORQUE TORQUE TORQUE +/-100.00 0 -105.00% 0 - 200.00 s +/-100.00% +/-3.0000 0-1 +/-300.00% 0-1 0-1 +/-300.00% 10 0.00% 0.01 secs 0.00% 1.0000 Disabled 0.00% Enabled Enabled 0.00% 511 512 513 514 515 516 517 518 519 520 0.00% Low Low 521 522 523 524 525 3.9.2 3.9.3 3.9.3 Menu 67 / Description COMPENSATOR / Accel scaler PIN 511 COMPENSATOR / Accel input/mon PIN 512 COMPENSATOR / Accel filter time constant PIN 513 COMPENSATOR / Tension demand IP PIN 514 COMPENSATOR / Tension scaler PIN 515 COMPENSATOR / Torque memory select enable PIN 516 COMPENSATOR / Torque memory input PIN 517 COMPENSATOR / Tension enable PIN 518 COMPENSATOR / Overwind/underwind PIN 519 COMPENSATOR / Inertia comp monitor PIN 520 PRESET SPEED / Preset speed output monitor PIN 523 PRESET SPEED / Digital input 1 LSB PIN 524 PRESET SPEED / Digital input 2 PIN 525 Range +/-300.00% 0-1 0-1 PIN 68 APPLICATION BLOCKS Paragraph number 3.9.3 3.9.4 3.9.4 3.9.4 3.9.4 Menu 0-1 +/-300.00% +/-300.00% +/-300.00% +/-300.00% Default Values Low 0.00% 0.00% 0.00% 0.00% 3.9.4 3.9.4 3.9.4 3.9.4 3.17 +/-300.00% +/-300.00% +/-300.00% +/-300.00% 0-1 0.00% 0.00% 0.00% 0.00% Low 531 532 533 534 535 to 543 3.10.2 3.10.3 3.10.2 3.10.3 3.10.2 3.10.3 3.10.2 PRESET SPEED / Value for 100 PIN 531 PRESET SPEED / Value for 101 PIN 532 PRESET SPEED / Value for 110 PIN 533 PRESET SPEED / Value for 111 PIN 534 16-BIT DEMULTIPLEX (bits 1-9) Armature overcurrent 535, Speed fbk mismatch 536, Overspeed 537, Armature overvolts 538, Field overcurrent 539, Field loss 540, Missing pulse 541, Stall trip 542, Thermistor on T30 543 MULTI-FUNCTION 1 Function mode 1 PIN 544 MULTI-FUNCTION 1 Output select 1 PIN 545 MULTI-FUNCTION 2 Function mode 2 PIN 546 MULTI-FUNCTION 2 Output select 2 PIN 547 MULTI-FUNCTION 3 Function mode 3 PIN 548 MULTI-FUNCTION 3 Output select 3 PIN 549 MULTI-FUNCTION 4 Function mode 4 PIN 550 0000000- 7) C/O switch Disabled C/O switch Disabled C/O switch Disabled C/O switch 544 545 546 547 548 549 550 3.10.3 MULTI-FUNCTION 4 Output select 4 PIN 551 0-1 Disabled 551 3.10.2 MULTI-FUNCTION 5 Function mode 5 PIN 552 0 - 6 (1 of 7) C/O switch 552 3.10.3 MULTI-FUNCTION 5 Output select 5 PIN 553 0-1 Disabled 553 3.10.2 MULTI-FUNCTION 6 Function mode 6 PIN 554 0 - 6 (1 of 7) C/O switch 554 3.10.3 MULTI-FUNCTION 6 Output select 6 PIN 555 0-1 Disabled 555 3.10.2 MULTI-FUNCTION 7 Function mode 7 PIN 556 0 - 6 (1 of 7) C/O switch 556 3.10.3 MULTI-FUNCTION 7 Output select 7 PIN 557 0-1 Disabled 557 3.10.2 3.10.3 3.11.2 3.11.3 3.11.4 3.11.5 MULTI-FUNCTION 8 Function mode 8 PIN 558 MULTI-FUNCTION 8 Output select 8 PIN 559 LATCH / Latch output monitor PIN 561 LATCH / Latch data input PIN 561 LATCH / Latch clock input PIN 562 LATCH / Latch set input PIN 563 0 - 6 (1 of 7) 0-1 +/-300.00% 0-1 0-1 0-1 C/O switch Disabled 0.00% Low Low Low 558 559 560 561 562 563 3.11.6 LATCH / Latch reset input PIN 564 0-1 Low 564 3.11.7 LATCH / Latch value for high output PIN 565 +/-300.00% 0.01% 565 3.11.7 LATCH / Latch value for low output PIN 566 +/-300.00% 0.00% 566 3.17 16-BIT DEMULTIPLEX (bit 10) Heatsink overtemp 0-1 Low 567 3.12.2 FILTER 1 / Filter1 output monitor PIN 568 +/-315.00% 0.00% 568 PRESET PRESET PRESET PRESET PRESET / Description Range SPEED / Digital input 3 MSB PIN 526 SPEED / Value for 000 PIN 527 SPEED / Value for 001 PIN 528 SPEED / Value for 010 PIN 529 SPEED / Value for 011 PIN 530 6 (1 of 1 6 (1 of 1 6 (1 of 1 6 (1 of 7) 7) 7) PIN 526 527 528 529 530 3.12.3 FILTER 1 / Filter1 time constant PIN 569 0 - 32.000 s 1.0 secs 569 3.17 16-BIT DEMULTIPLEX (bits 11 – 13) Short cct digital output 570, Bad reference Exch 571, Contactor lock out 572 0-1 Low 3.12.2 FILTER 2 / Filter2 output monitor +/-315.00% 0.00% 570 to 572 573 3.12.3 FILTER 2 / Filter2 time constant PIN 574 0 - 32.000 s 1.0 secs 574 3.17 16-BIT DEMULTIPLEX (bits 14-16) User Alarm input (PIN 712) 575, Synchronization loss 576, Supply phase loss 577 0-1 Low 3.13.2 BATCH COUNTER / Counter value monitor PIN 578 0 - 32000 0 575 to 577 578 3.13.3 BATCH COUNTER / Clock input PIN 579 0-1 Low 579 3.13.4 BATCH COUNTER / Reset enable input PIN 580 0-1 Low 580 3.13.5 BATCH COUNTER / Counter target number PIN 581 0 - 32000 32000 581 3.13.6 BATCH COUNTER / Count >= than target flag PIN 582 0-1 Low 582 3.14.2 INTERVAL TIMER / Time elaosed monitor PIN 583 0.1 - 600.0 s 0.0 secs 583 3.14.3 INTERVAL TIMER / Timer reset enable input PIN 584 0-1 Disabled 584 3.14.4 INTERVAL TIMER / Timer interval PIN 585 0.1 - 600.0 s 5.0 secs 585 3.14.5 INTERVAL TIMER / Timer expired flag PIN 586 0-1 Low 586 3.15.2 3.15.3 3.15.4 3.15.5 COMPARATOR 1 / Input 1 PIN 588 +/-300.00% 0.00% COMPARATOR 1 / Input 2 PIN 589 +/-300.00% 0.00% 588 COMPARATOR 1 / Window mode select PIN 590 0-1 Disabled 590 COMPARATOR 1 / Hysteresis PIN 591 0 - 10.00% 0.00% 591 PIN 573 587 588 APPLICATION BLOCKS 3.15.2 3.15.3 3.15.4 3.15.5 3.15.2 3.15.3 3.15.4 3.15.5 3.15.2 3.15.3 3.15.4 3.15.5 3.16.2 3.16.3 3.16.3 3.16.2 3.16.3 3.16.3 3.16.2 3.16.3 3.16.3 3.16.2 3.16.3 3.16.3 69 COMPARATOR 2 / Input 1 PIN 592 +/-300.00% 0.00% COMPARATOR 2 / Input 2 PIN 593 +/-300.00% 0.00% 592 593 COMPARATOR 2 / Window mode select PIN 594 0-1 Disabled 594 COMPARATOR 2 / Hysteresis PIN 595 0 - 10.00% 0.00% 595 COMPARATOR 3 / Input 1 PIN 596 +/-300.00% 0.00% 596 COMPARATOR 3 / Input 2 PIN 597 +/-300.00% 0.00% 597 COMPARATOR 3 / Window mode select PIN 598 0-1 Disabled 598 COMPARATOR 3 / Hysteresis PIN 599 0 - 10.00% 0.00% 599 COMPARATOR 4 / Input 1 PIN 600 +/-300.00% 0.00% 600 COMPARATOR 4 / Input 2 PIN 601 +/-300.00% 0.00% 601 COMPARATOR 4 / Window mode select PIN 602 0-1 Disabled 602 COMPARATOR 4 / Hysteresis PIN 603 0 - 10.00% 0.00% 603 C/O SWITCH 1 / Control PIN 604 0-1 Low 604 C/O SWITCH 1 / Input HI value PIN 605 +/-300.00% 0.00% 605 C/O SWITCH 1 / Input LO value PIN 606 +/-300.00% 0.00% 606 C/O SWITCH 2 / Control PIN 607 0-1 Low 607 C/O SWITCH 2 / Input HI value PIN 608 +/-300.00% 0.00% 608 C/O SWITCH 2 / Input LO value PIN 609 +/-300.00% 0.00% 609 C/O SWITCH 3 / Control PIN 610 0-1 Low 610 C/O SWITCH 3 / Input HI value PIN 611 +/-300.00% 0.00% 611 C/O SWITCH 3 / Input LO value PIN 612 +/-300.00% 0.00% 612 C/O SWITCH 4 / Control PIN 613 0-1 Low 613 C/O SWITCH 4 / Input HI value PIN 614 +/-300.00% 0.00% 614 C/O SWITCH 4 / Input LO value PIN 615 +/-300.00% 0.00% 615 70 APPLICATION BLOCKS 5 Index Batch counter .............................................58 General purpose filters 1 and 2 ........................56 Latch block ................................................54 Parameter profile ........................................27 PID 1 and 2.................................................19 Preset speed block .......................................48 Reel diameter calculator ............................... 31 Simple logical and linear processing ............. 45, 51 Summer 1 and 2 .......................................... 14 Taper tension calculator ................................ 35 Warning ............................................. 7, 8, 32 Winding torque compensator...................... 31, 38 PIN number tables The description of every parameter can be located by using the table in chapter 4. They are listed in numeric order under convenient headings. The tables contain a cross reference to each parameter paragraph number. 6 Record of applications manual modifications Manual Version 6.00a Description of change Reason for change Applications manual !^-BIT Demultiplex block description added Paragraph reference Date April 5th 2017 Software version 6.10 7 Record of application blocks bug fixes Manual Version 6.00a Description of change Reason for change Applications manual First public issue of v^.00a applications manual Paragraph reference Date April 2017 This record only applies to application blocks. Please refer also to the product manual for other bug fixes. 8 Changes to product since manual publication Any new features that affect the existing functioning of the APPLICATIONS BLOCKS in the unit, that have occurred since the publication of the manual, will be recorded here using an attached page. 5/04/17 Software version 6.10 Sprint Electric Limited Peregrine House, Ford, Arundel, BN18 0DF, UK Tel. Fax. Email. +44 (0)1243 558080 +44 (0)1243 558099 [email protected] www.sprint-electric.com 1 Part 1 PL / PLX Digital DC Drive Part 3 High Power Modules PL / PLX 275 - 980 HG103278 V6.00a Part 2 Application Blocks Part 3 High Power Modules PL / PLX 275 - 980 PLX275 - 980 1 This manual should be read in conjunction with the PL / PLX Digital DC Drive Manual. (Part 1) Important. See section 2 in main PL / PLX Digital DC Drive Manual for WARNINGS 1 Table of contents 1 2 3 4 5 6 Table of contents........................................................................................1 Introduction ..............................................................................................2 Rating Table..............................................................................................2 Mechanical Dimensions PL/X 275 – 440...............................................................3 Mechanical Dimensions PL/X 520 - 980...............................................................4 Venting....................................................................................................5 6.1 General venting information............................................................................................ 5 6.1.1 When venting kit impractical. Models PL/X 275/315/360/520/600........................................... 5 6.1.2 When venting kit impractical. Models PL/X 400/440/700/800/900/980..................................... 5 6.2 Venting kit for PL/X 275 - 440.......................................................................................... 5 6.2.1 PL/X 275 - 440 venting kit diagram ................................................................................. 6 6.3 Venting kit for PL/X 520 - 980.......................................................................................... 6 6.4 Air supply to enclosure .................................................................................................. 7 6.5 Exhaust air .................................................................................................................. 7 6.6 Venting summary .......................................................................................................... 7 6.6.1 Diagram of air flow .................................................................................................... 8 7 Product rating table ....................................................................................9 7.1 Product rating labels ..................................................................................................... 9 7.2 Semiconductor fuses.....................................................................................................10 7.2.1 PL and PLX Models AC and DC semiconductor fuses ............................................................ 10 7.2.2 PLX Models DC semi-conductor fuses .............................................................................. 11 7.3 Terminal information....................................................................................................11 7.3.1 Control Terminals ..................................................................................................... 11 7.3.2 Powerboard Terminals ............................................................................................... 11 7.3.3 Terminal tightening torques ........................................................................................ 11 7.3.4 Forces applied to the power terminals............................................................................ 11 7.3.5 Avoid dropping small objects into unit ............................................................................ 12 7.4 Line reactors ..............................................................................................................13 7.5 Lifting the unit ............................................................................................................13 7.5.1 Unit weight ............................................................................................................. 13 2 PL/X275 - 980 2 Introduction These additional models have all the functionality as described in the PL / PLX Digital DC Drive Product Manual. They also have the option of being supplied as MV units that are able to accept AC supply voltages up to 600 Volts and HV units that are able to accept AC supply voltages up to 690 Volts for motors with armatures of 750V DC. They are available with the power 3 phase supply terminals in standard top entry, or bottom entry as an option. 3 Rating Table Model PL 2 quadrant PLX 4 quadrant Suffix MV for 600 VAC Suffix HV for 690 VAC Suffix BE for bottom entry 3 phase power PL and PLX PL and PLX PL and PLX PL* and PLX PL*< and PLX< 275 315 360 400 440 Nominal maximum continuous shaft ratings kW HP HP HP at at at 500V at 750V 460V 460V (690V AC) olt olt HV models 100% Armature Current DC Amps 100% Field Amps Dimensions mm W x H x D 275 315 360 400 440 370 425 485 540 590 400 460 520 580 640 600 690 780 875 970 650 750 850 950 1050 32 32 32 32 32 or 50 or 50 or 50 or 50 or 50 253 253 253 253 253 x x x x x 700 x 350 700 x 350 700 x 350 700 x 350 700 x 350 PL and PLX 520 520 700 760 1140 1250 64 506 x 700 x 350 PL and PLX 600 600 810 880 1320 1450 64 506 x 700 x 350 PL* and PLX 700 700 940 1020 1530 1650 64 506 x 700 x 350 1080 PL* and PLX 800 800 1170 1760 1850 64 506 x 700 x 350 1200 PL* and PLX 900 800 1300 1950 2050 64 506 x 700 x 350 1320 PL*< and PLX< 980 980 1430 2145 2250 64 506 x 700 x 350 * Starred models: (PL*) 2 Q models have electronic regen stopping. PL/X< Models have no overload capability. Standard Models Main 3 phase supply 50 - 60hz Auxiliary 3 phase supply 50 - 60hz Control 1 phase (50VA) 50 - 60Hz Any supply from 12 to 500V AC nominal +/- 10% (CE) Any supply from 100 to 500V AC nominal +/- 10% (CE) Any supply from 110 to 240V AC+/- 10% Medium Voltage (MV) Models Main 3 phase supply 50 - 60hz Auxiliary 3 phase supply 50 - 60hz Control 1 phase (50VA) 50 - 60Hz Any supply from 12 to 600V nominal AC +/- 10% (CE) Any supply from 100 to 690V nominal AC +/- 10% (CE) Any supply from 110 to 240V AC+/- 10% High Voltage (HV) Models Main 3 phase supply 50 - 60hz Auxiliary 3 phase supply 50 - 60hz Control 1 phase (50VA) 50 - 60Hz Any supply from 12 to 690V nominal AC +/- 10% (CE) Any supply from 100 to 690V nominal AC +/- 10% (CE) Any supply from 110 to 240V AC+/- 10% Internal Fan supply PL/X 275/315/360/400/440 models also need a separate 100VA 240V 50/60Hz ac supply for the fan. PL/X 520/600/700/800/900/980 models also need a separate 200VA 240V 50/60Hz ac supply for the fan. OUTPUT VOLTAGE RANGE Armature PLX and PL* 0 to 1.2 times AC supply. PL 0 to 1.3 times AC supply. (Absolute upper limits) Note. 1.1 times AC supply is recommended if supply variations exceed –6%. Field 0 to 0.9 times AC supply on auxiliary terminals. (EL1, EL2, EL3) OUTPUT CURRENT RANGE Armature 0 to 100% continuous. 150% for 25 seconds +/- for PLX Field programmable minimum to 100% continuous with fail alarm. < Note. Models PL440, PLX440, PL980, PLX980 have no overload capability. PLX275 - 980 3 4 Mechanical Dimensions PL/X 275 – 440 Weight 45KG See 7.5 Lifting 4 PL/X275 - 980 5 Mechanical Dimensions PL/X 520 - 980 High current AC supply terminals High current AC supply terminals Bottom Entry option Field Supply and Output terminals DC Armature terminals High current AC supply terminals Bottom Entry option DC Armature terminals Weight 90KG. See 7.5 Lifting PLX275 - 980 5 6 Venting 6.1 General venting information In order to keep these units within the required operating temperatures under all operating limits they are equipped with a very efficient cooling system. It consists of a powerful centrifugal fan system integral to the unit mounted at the bottom, which blows air over a high dissipation heatsink. Cool air is drawn in both at the top and bottom of the unit and after travelling over the internal heatsink fins, is exhausted at the top of the unit. From here the warm air must be vented from the enclosure used to house the drive. See 4 Mechanical Dimensions PL/X 275 – 440 and 5 Mechanical Dimensions PL/X 520 - 980 for diagram of air exhaust flow. The unit will run cooler and hence be less stressed if the warm exhaust air is prevented from mixing with the intake air. This can be achieved by the use of the optional venting kit. See below. 6.1.1 When venting kit impractical. Models PL/X 275/315/360/520/600 For these models it is usually sufficient to ensure that the enclosure is fitted with exhaust fans that can evacuate air from the enclosure at a rate at least as high as the drive fan, but within the capacity of the enclosure inlet filter. See 3 Rating Table for airflow ratings. When fitting enclosure fans ensure they are placed in the roof of the enclosure directly above the exhaust outlet of the PL/X. 6.1.2 When venting kit impractical. Models PL/X 400/440/700/800/900/980 For these models it is necessary to keep the exhaust air that is emitted from the top end of the fin section seperated from the rest of the enclosure by constructing a duct that can evacuate the exhaust air from the enclosure. If this requires an indirect route then you may need to use external fans to maintain the required airflow. See 3 Rating Table for airflow ratings. Ensure against pollutants entering the port and you may need to use a suitable grill if there is a danger of birds or vermin making it their home. 6.2 Venting kit for PL/X 275 - 440 The venting kit comprises two steel ducts which are designed to telescope together. Hence the duct length from the top of the drive is adjustable between 270mm to 538mm. It consists of three main components. 1) A lower duct which fits within the side cheeks directly above the heatsink exhaust area. This is secured with 2 M5 screws. See 4 Mechanical Dimensions PL/X 275 – 440 for fixing point drawing. The lower duct is 270mm long from the top edge of the PL/X. 2) The upper duct, which fits over the lower duct section, to extend the total length of the assembly. It has a series of M5 side holes to allow adjustment. Once the desired height is established the upper duct can be screwed to the lower duct through the selected hole, one screw per side. The useful length of the extended duct may be adjusted in steps of approx. 20mm from 270mm to 535mm. The duct must be inserted through a tight fitting rectangular hole in the roof of the enclosure (hole size 100mm x 252mm) and protrude above it by 1020mm. Then the gap between the duct and the enclosure roof must be sealed (e.g. using tape or flexible filler) to ensure that the exhaust air and pollutants cannot enter into the enclosure. 3) A cowl which is fixed on top of the enclosure to prevent pollutants from dropping into the outlet. The cowl is supplied with 4 off 70mm mounting pillars, and 4 M6 holes must be drilled in the roof of the enclosure, to allow the mounting pillars to be fixed such that the cowl is positioned centrally over the duct. The cowl will overhang the duct by 70mm all the way round. If there is a danger of birds or vermin entering the exhaust port then it is recommend that a suitable grille is added round the edge of the cowl. 130m m Hole in enclosure roof 100mm x 252mm 280m m 6 6.2.1 PL/X275 - 980 PL/X 275 - 440 venting kit diagram Cowl mounted on enclosure roof using 70mm pillars provided The cowl must be fitted with this lip facing forward to direct exhaust air away from the air intakes. Upper duct slides over lower duct Select fixing hole to attach to lower duct Upper/lower duct fixing hole. M5 Lower duct fits within exhaust port of drive. It is 270mm long Lower duct M5 fixing hole aligns with hole in drive side cheek 6.3 Venting kit for PL/X 520 - 980 The venting kit comprises a cowl and 2 pairs of steel ducts, each pair being designed to telescope together. Hence the duct length from the top of the drive is adjustable between 270mm to 535mm. There is also an enclosure roof cowl. Each pair is the same unit as described in 6.2 Venting kit for PL/X 275 - 440. There are 2 exhaust ports at the top of the PL/X and each pair of ducts is used with one of the ports. Please read section 5.2 for details about each pair. The ducts must be inserted through a tight fitting rectangular hole in the roof of the enclosure (hole size 100mm x 504mm) and protrude above it by 10-20mm. Then the gap between the duct and the roof must be sealed (e.g. using tape or flexible filler) to ensure that the exhaust air and pollutants cannot enter into the enclosure. Also the interface between each pair of ducts must be sealed at the top where it protrudes from the roof. The cowl is fixed on top of the enclosure to prevent pollutants from dropping into the exhaust outlet of the drive. The cowl is supplied with 6 off 50mm mounting pillars, and 6 M6 holes must be drilled in the roof of the enclosure, to allow the mounting pillars to be fixed such that the cowl is positioned centrally over the duct. The PLX275 - 980 7 cowl will overhang the duct by 70mm all the way round. If there is a danger of birds or vermin entering the exhaust port then it is recommend that a suitable grille is added round the edge of the cowl 130m m Hole in enclosure roof 100mm x 504mm 268m m 268m m 6.4 Air supply to enclosure It is essential that the enclosure which houses the PL/X is supplied with sufficient cool clean air to satisfy the throughput requirements of the PL/X and any other devices within the enclosure. Do not forget that the current carrying components associated with the drive will be dissipating a considerable amount of heat especially when the system is running at full capacity. The enclosure must be fitted with air filters suitable for the airbourne pollutants encountered within its environment. Together they must have a rated throughput of sufficient capacity for all of the exhaust fans used in the enclosure. If the PL/X is fitted with a venting kit and there is another exhaust fan also operating for cooling other components it is essential that the auxiliary fan does not starve the PL/X of its air supply. This should be avoided if the input filters have sufficient capacity. It is recommended that the PL/X is provided with its own filters, and an enclosure partition used to isolate it from the influence of the rest of the enclosure cooling arrangements. There should be 2 filters for the PL/X. One to provide air to the lower input port, and one for the upper port. The inlet filters should be fitted to the enclosure adjacent to the input ports at the lower and upper ends of the unit to ensure that the air drawn in is close to where it is needed. The reason for using filters at the top and bottom of the unit is because if only one filter is provided, then when the enclosure door is shut, the airpath from top to bottom may become throttled if the door is close to the face of the unit. 6.5 Exhaust air After leaving the enclosure containing the PL/X the heated exhaust air will need to be prevented from elevating the ambient temperature of the room that is housing the enclosure by using sufficient ventilation. Alternatively the supply of cooling air may be obtained from outside and ducted to the enclosure. 6.6 Venting summary Ensure a clean un-interruptible supply of cool filtered air is available for the PL/X and that the exhaust air is adequately and safely disposed of. Use the venting kit to keep the hot exhaust air separate from the cooling input air within the enclosure. Ensure the cooling air is available at the top and bottom of the unit. The PL/X will survive running at high ambient temperatures but possibly at the expense of its potential lifespan. Observe good engineering practice and keep all the components within the enclosure as cool as possible, consistent with avoiding condensation. For installations subjected to high ambient temperatures consider the use of air conditioning to achieve these requirements. 8 PL/X275 - 980 6.6.1 Diagram of air flow This diagram shows a side view of a unit in an enclosure. This is the recommended method for arranging the flow of cooling air. The fan in the PL/X will draw air into the top and bottom air intakes of the unit. There are 2 air inlet filters mounted on the door. One adjacent to the lower air intake of the unit and the other adjacent to the upper air intake of the unit. Venting Kit ensures exhaust air does not mix with input air. Air Intake The exhaust air is exiting the enclosure via the venting kit assembly which is shown with the cowl fitted on the roof of the enclosure. Air Intake Lift Points If this hot exhaust air is likely to raise the temperature of the air being drawn in, then further measures must be taken to direct it away from the system. Air Intake Air Intake IMPORTANT. Ensure 200mm area top and bottom of drive for unrestricted air entry. PLX275 - 980 9 7 Product rating table Model PL 2Q PLX 4Q At Output power At OP = 460V 380 -415AC 500V 480AC HP At Max continuous Current (AMPS) Max field DC output Amps AC IP std 750V 690AC HP DC OP Kw HP PL/X275 PL/X315 PL/X360 PL/X400 PL/X440 275 315 360 400 440 370 425 485 540 590 400 460 520 580 640 600 690 780 875 970 530 615 700 780 860 650 750 850 950 1050 32 32 32 32 32 PL/X520 PL/X600 PL/X700 PL/X800 PL/X900 PL/X980 520 600 700 800 900 980 700 810 940 1080 1200 1320 760 880 1020 1170 1300 1430 1140 1320 1530 1760 1950 2145 1025 1190 1350 1520 1680 1845 1250 1450 1650 1850 2050 2250 64 64 64 64 64 64 Line reactor type option 50 50 50 50 50 Cooling air flow and dissipation cfm watts LR650 LR750 LR850 LR950 LR1050 400 400 400 400 400 1700 2000 2300 2500 2800 LR1250 LR1450 LR1650 LR1850 LR2050 LR2250 800 800 800 800 800 800 3200 3700 4200 4700 5200 5700 Important Notes 1) Only use UL fuses for installations complying with UL codes. 2) 2Q models PL400/440/700/800/900/980 have a regenerative stopping capability. 3) The EL1/2/3 connections require 3 auxiliary fuses, (max ratings 80A, I2t 5000). Sprint part no. Fuse CH00880A. Fuseholder CP102071 When selecting alternative types the fuse current rating must typically be 1.25 X the field current rating of the motor. Max ratings 80A, I2t 5000. 4) Please consider the total component dissipation within the enclosure when calculating the required air throughput. This includes the fuses, line reactors and other sources of dissipation. 5) 400 Cubic feet per minute is approximately equivalent to 12 cubic metres per minute. 6) The output power rating shown is at the 100% rating of the drive and is the power available at the shaft for a typical motor. The actual power available will depend on the efficiency of the motor. 7) The high power field output option is an extra cost option and needs to be specified at the time of order. 8) The 690V AC supply is an extra cost option and needs to be specified at the time of order. Suffix HV 9) The bottom entry AC supply option needs to be specified at the time of order. Suffix BE 10) Models PL/X 900/980 have maximum ambient temperature rating of 35C. Derate by 100 Amps for 40C. 11) Derate by 1% per Deg C for ambient temperatures above 40C up to 50C. 7.1 Product rating labels The product rating labels are located on the unit under the upper end cap. The product serial number is unique and can be used by the manufacturer to identify all ratings of the unit. The power ratings and model type are also found here, along with any product standard labels applicable to the unit. 10 PL/X275 - 980 7.2 Semiconductor fuses WARNING. All units must be protected by correctly rated semi-conductor fuses. Failure to do so will invalidate warranty. For semi-conductor fuses please refer to supplier. 7.2.1 PL and PLX Models AC and DC semiconductor fuses 500V AC Table Output Main Fuses 2 2 Aux Fuses 2 2 DC Fuses 2 2 Model DC Amps I t [A s] PartNo I t [A s] PartNo Holder Line Reactor I t [A s] PartNo PL/X275 650 210,000 CH103301 770 CH00850A CP102054 LR650 490,000 CH103303 PL/X315 750 300,000 CH103302 770 CH00850A CP102054 LR750 700,000 CH103304 PL/X360 850 490,000 CH103303 770 CH00850A CP102054 LR850 900,000 CH103305 PL/X400 950 700,000 CH103304 770 CH00850A CP102054 LR950 1260,000 CH103306 PL/X440 1050 900,000 CH103305 770 CH00850A CP102054 LR1050 1850,000 CH103307 PL/X520 1250 1260,000 CH103306 4650 CH008100 CP102054 LR1250 2500,000 CH103308 PL/X600 1450 1850,000 CH103307 4650 CH008100 CP102054 LR1450 1900,000 CH103309 PL/X700 1650 2500,000 CH103308 4650 CH008100 CP102054 LR1650 2800,000 CH103310 PL/X800 1850 1900,000 CH103309 4650 CH008100 CP102054 LR1850 3100,000 CH103467 PL/X900 2050 2800,000 CH103310 4650 CH008100 CP102054 LR2050 4400,000 CH103330 PL/X980 2250 3100,000 CH103467 4650 CH008100 CP102054 LR2250 6600,000 CH103469 600/690V AC Table Output Main Fuses Aux Fuses DC Fuses Model DC Amps I2t [A2s] PartNo I2t [A2s] PartNo Holder Line Reactor I2t [A2s] PL275MV/HV 650 210,000 CH103301 770 CH00850A CP102054 LR650HV PartNo PL315MV/HV 750 300,000 CH103302 770 CH00850A CP102054 LR750HV PL360MV/HV 850 490,000 CH103303 770 CH00850A CP102054 LR850HV PL400MV/HV 950 700,000 CH103304 770 CH00850A CP102054 LR950HV PL440MV/HV 1050 900,000 CH103305 770 CH00850A CP102054 LR1050HV PL520MV/HV 1250 1260,000 CH103306 4650 CH008100 CP102054 LR1250HV PL600MV/HV 1450 1850,000 CH103307 4650 CH008100 CP102054 LR1450HV PL700MV/HV 1650 2500,000 CH103308 4650 CH008100 CP102054 LR1650HV PL800MV/HV 1850 1900,000 CH103309 4650 CH008100 CP102054 LR1850HV PL900MV/HV 2050 2800,000 CH103310 4650 CH008100 CP102054 LR2050HV PL980MV/HV 2250 3100,000 CH103467 4650 CH008100 CP102054 LR2250HV PLX275MV/HV 650 485,000 CH103341 770 CH00850A CP102054 PLX315MV/HV 750 640,000 CH103342 770 CH00850A CP102054 LR650HV 1090,000 CH103343 LR750HV 1440,000 PLX360MV/HV 850 1090,000 CH103343 770 CH00850A CP102054 CH103344 LR850HV 2130,000 CH103345 PLX400MV/HV 950 1440,000 CH103344 770 CH00850A PLX440MV/HV 1050 2130,000 CH103345 770 CH00850A CP102054 LR950HV 2430,000 CH103346 CP102054 LR1050HV 3080,000 PLX520MV/HV 1250 2430,000 CH103346 4650 CH103355 CH008100 CP102054 LR1250HV 4100,000 PLX600MV/HV 1450 3080,000 CH103347 CH103348 4650 CH008100 CP102054 LR1450HV 4400,000 CH103349 PLX700MV/HV 1650 4100,000 PLX800MV/HV 1850 4400,000 CH103348 4650 CH008100 CP102054 LR1650HV 5800,000 CH103350 CH103349 4650 CH008100 CP102054 LR1850HV 8500,000 PLX900MV/HV 2050 CH103471 5800,000 CH103350 4650 CH008100 CP102054 LR2050HV 9632,000 PLX980MV/HV 2250 CH103360 8500,000 CH103471 4650 CH008100 CP102054 LR2250HV 12,075,000 CH103472 PLX275 - 980 7.2.2 11 PLX Models DC semi-conductor fuses For PLX units used in applications in which regeneration occurs for most or all of the time, it is recommended to fit a DC side semi-conductor fuse. This will further protect the unit in the event of an un-sequenced power loss when regeneration is taking place Note. It is not normally necessary to use DC fuses with the PL Models but if required then these fuses can be used. Example. A *PL model that allows regenerative stopping is employed on a site that suffers from a higher than normal amount of power brown outs or blackouts. See fuse table above 7.3 Terminal information 7.3.1 Control Terminals See Part 1 main product manual for control terminal information section 3.3.3, 3.4 and 3.5. 7.3.2 Powerboard Terminals Remove busbar cover plate to reveal powerboard terminals. For terminals T41 to T53 refer to main manual Part 1 section 3.3.3, for power terminals section 3.3.2. 7.3.2.1 Fan supply input Remove busbar cover plate to reveal powerboard terminals. The fan supply input terminals are located on the lower left hand edge of the powerboard marked AC FAN SUPPLY B1 N, B2 L. Internal Fan supply PL/X 275/315/360/400/440 models need a separate 100VA 240V 50/6OHz ac supply for the fan. PL/X 520/600/700/800/900/980 models need a separate 200VA 240V 50/6OHz ac supply for the fan. Note. If the fan supply fails, or is not present on power up then a warning message HEATSINK OVERTEMP is displayed on the front of the unit, and operation of the motor will be prevented. See also the main manual section 8.1.11.13 for further details of this message related to actual overtemp events. 7.3.2.2 Field supply input and output Remove busbar cover plate to reveal powerboard terminals The terminals EL1 EL2 EL3 F+ F- are M6 stud types found on the bottom right hand corner of the powerboard. Further information on utilising these terminals is in Section 4 Basic Application and Section 14.9 Wiring instructions, in the main manual. Also section 3.3.2 for specification. See section 7 Product rating table, in this Part 3. 7.3.3 Terminal tightening torques Terminals Terminals 1 to 100 Model PL/X 275-980 Tightening torque 4 lb-in or 0.5 N-m EL1 EL2 EL3 F+ F- PL/X 275-980 35 lb-in or 3.9 N-m L1 L2 L3 A+ A- PL/X 275-980 242 lb-in or 27 N-m Fan supply terminals PL/X 275-980 9 lb-in or 1.0 N-m 7.3.4 Forces applied to the power terminals Avoid applying mechanical stress to the heavy current terminals L1/2/3 A+ A-. Please ensure that any cables or busbars that are bolted to these terminals are supported within the enclosure. Do not rely on the drive terminals to support the weight of the external connections. 12 PL/X275 - 980 Do not use the connecting bolt to hold the terminal and the connecting cable or busbar in alignment, otherwise, if they have been levered into alignment prior to inserting the bolt, there will be a permanent stress on the terminal. Always support the connection to the terminal such that the only purpose of the terminal bolt is to tighten them together and not to maintain their relative position to each other. The respective holes in the terminal and the connecting busbar should remain in alignment without the aid of the terminal bolt. Then you can be sure that there is minimum stress on the drive terminal busbar. When tightening the connecting bolts of the terminals L1/2/3 A+ A- please ensure that the busbar is not subjected to a turning moment as the nut is torqued down. To do this always use two spanners, one on the bolt head to provide a counter torque and one on the nut to provide tightening torque. 7.3.5 Avoid dropping small objects into unit If the unit is in the horizontal plane then there is a danger that objects may be accidentally dropped into the air intake grille when connecting the busbars to the terminals. Or when the unit is vertical, dropping washers into the fin section at the top, or objects dropping through the upper air intake grill. As a precaution it is advised that a temporary cover be utilised over these areas when working on the unit, e.g. a piece of cardboard. Do not forget to remove the temporary cover prior to starting the unit. If anything is dropped into the unit then it may interfere with the fan rotation. PLX275 - 980 13 7.4 Line reactors Only use UL certified line reactors for installations complying with UL codes. These line reactors are not certified. Refer to supplier for certified alternatives. Model PL 2Q PLX 4Q Max continuous Current (AMPS) Line reactor Type 500V AC Supply Line reactor Type 600V AC Supply Line reactor Type 690V AC Supply PL/X275 PL/X315 PL/X360 PL/X400 PL/X440 Input AC 530 615 700 780 860 Output DC 650 750 850 950 1050 LR650 LR750 LR850 LR950 LR1050 LR650HV LR750HV LR850HV LR950HV LR1050HV LR650HV LR750HV LR850HV LR950HV LR1050HV PL/X520 PL/X600 PL/X700 PL/X800 PL/X900 PL/X980 1025 1190 1350 1520 1680 1845 1250 1450 1650 1850 2050 2250 LR1250 LR1450 LR1650 LR1850 LR2050 LR2250 LR1250HV LR1450HV LR1650HV LR1850HV LR2050HV LR2250HV LR1250HV LR1450HV LR1650HV LR1850HV LR2050HV LR2250HV To obtain line reactor dimensions please refer to supplier 7.5 Lifting the unit Use the lifting points provided. There are lifting holes at each end of the unit. Attach a loop of suitable rope (approx. 1.2m for PL/X275-440 and 1.5m for PL/X520-980) between the lifting holes at each side at the top end, and a similar loop at the bottom end, to assist in lifting the unit out of its container. When lifting the unit keep it in either the horizontal or vertical plane to avoid deforming the side cheeks at the lifting points. Use the top end lifting loop to assist in presenting the unit onto the back panel. The fixing holes at the top of the unit are designed with a keyhole shape to allow the unit to be initially hung on the securing bolts. These should be fixed on the back panel prior to presenting the unit into the enclosure. Alternatively a small fork lift may be employed if the wheel has access under the door of the enclosure. (It is usually possible to have access for one fork from the side of a typical enclosure with the side panel removed). If access can be gained this way then you will need to bolt some temporary wooden extensions to the lifting holes at the bottom of the unit in order to stand the unit on the fork which will enter the enclosure). 7.5.1 Unit weight The PL/X 275-440 weighs 45Kg. The PL/X 520-980 weighs 90Kg. 14 05/04/17 PL/X275 - 980 HG103278v600a Find out more: www.sprint-electric.com Sprint Electric Ltd. Peregrine House, Ford Lane, Ford Arundel, West Sussex, BN18 0DF United Kingdom Tel: +44 (0)1243 558080 Fax: +44 (0)1243 558099 Email: [email protected]
—}}
- Общение
- Строительные форумы
- Форум электриков
Форум
Тема (Автор)
Последний ответ
Ответов
Ремонт квартир
Комплексный ремонт и отделка под ключ
????Почему выбирают именно нас:
?Цены не завышены как у конкурентов.
?Мы работаем без…
Разнорабочие на производство
Предоставим разнорабочих и грузчиков на производство и складскую работу на временную и постоянную работу! Звоните! Приступим к…
Цена: 300 руб.
Капитальный ремонт квартир
Выполним квартирный ремонт
????Почему выбирают именно нас:
?Цены не завышены как у конкурентов.
?Мы работаем без…
0
- XFoil
- LEGION SOLAR
- Wideband O2
- KIWI
- Multigauge
- Luxor
- SUPPORT
Home > SUPPORT |
|
FAQ
General help? You might find the answer
in our
frequently asked questions below.
Tech Manuals
Product specific question?
Access an
online user manual.
Customer Support
Can’t find the answer here?
Contact our
customer support team.
Order Status
• |
My Account
• |
International Shipping
• |
Guarantees
• |
Pricing and Billing
• |
Buyer’s Guide
• |
Additional Support
• |
Product User Manuals
Automotive Gauges and Sensors
DM-100 Touch
User Guide
DM-100 OBD II
User Guide
DM-200 OBD II
User Guide
DM-6
User Guide
M-300 TE
User Guide
SM-AFR Combo
User Guide
SM-AFR
User Guide
SM-AIT
User Guide
SM-EGT
User Guide
SM-FP
User Guide
SM-FT
User Guide
SM-V/B
User Guide
8V Converter
User Guide
SM-Pro
User Guide
Kiwi Car to Smartphone
Kiwi 3 User Guide
and Support
Kiwi 2 Bluetooth
User Guide
Kiwi 2 Wifi
User Guide
Luxor
Luxor LX735
User Guide
Luxor 2
User Guide
Luxor Mini
User Guide
KC1 Charger
User Guide
Legion Solar
Legion Solar
User Guide
Legion Solar
Electrical Connection Notes
Electronics
Legion 11000mAH (Gen2)
User Guide
Legion 5500mAh
User Guide
Legion Meter
User Guide
Retired Products
Kiwi MPG
User Guide
Kiwi Bluetooth
User Guide
Legion 11,000mAh (Gen1)
User Guide
Yaba Speaker
User Guide
Yaba X Speaker
User Guide
Software and Drivers
DM-100/200 Utility
DM-100/200 OBD II/Touch
Driver (32 bit OS)
DM-100/200 OBD II/Touch
Driver (64 bit OS)
R-Series
USB Driver
Custom Gauge
Library
Get on the list & get exclusive deals
Enter your email address for special offers from PLX Devices Inc.
© Copyright 2015, PLX Devices Inc. All Rights Reserved.