Поддержка центральным процессором инструкций sse2

Какие процессоры поддерживают SSE2

Насколько важна поддержка инструкций SSE2 процессором и как узнать поддерживает ли их мой процессор?

SSE2 это набор инструкций, который определяет возможности того или иного процессора. Был разработан компанией Intel в 2000 году и включен в состав процессоров Pentium 4. Пришел на смену набору SSE, расширив список команд с 70 до 144.

история обновления SSE

Развитие SSE

C тех далеких времен вышло несколько более свежих версий этого набора инструкций.

На компьютер без поддержки SSE2 невозможно установить Windows 8 и более поздние версии этой операционной системы, Microsoft Office 2013 также требует поддержку SSE2 и практически все современные браузеры, включая Google Chrome и Mozilla Firefox.

Все больше программ обновляется до версий, которым необходимо наличие этого набора команд в процессоре компьютера.

Какие процессоры имеют поддержку SSE2?

У Intel данный набор инструкций впервые был внедрен на семейство процессоров Pentium 4 в 2000 году. Следовательно все процессоры, выпущенные позже, а это Pentium 4, Xeon, Celeron, Celeron D, Pentium M, Celeron M, Pentium D, Intel Atom, Core i3, i5, i7 поддерживают данный набор инструкций.

AMD внедрила SSE2 на свои процессоры впервые в 2003 году, когда была представлена архитектура AMD K8. Сюда входят все Athlon 64, Athlon 64 X2,  Sempron 64, Turion 64. Поэтому если ваш AMD процессор выпущен в 2003 и позднее, то с 99% вероятностью он поддерживает SSE2.

Как узнать поддерживает ли процессор SSE2?

Во первых, при попытке установить на компьютер с процессором без поддержки SSE2 последнюю версию браузера Chrome или Mozilla Firefox будет появляться ошибка с текстом “This program requires a computer that supports SSE2 instructions”. В ней говорится, что для данной программы нужен процессор с поддержкой SSE2.

Эту ошибку можно будет наблюдать при попытке установить или запустить любую другую игру или программу, для которой необходима поддержка данного набора команд.

Также вы можете скачать бесплатную программу CPU-Z, запустив которую можно посмотреть какие наборы команд доступны для использования на вашем процессоре.

как узнать поддерживает ли мой процессор SSE2

Просмотр поддерживаемых инструкций процессором в программе CPU-Z

Что делать, если SSE2 не поддерживается?

Самый правильный вариант – обновлять компьютер (установить процессор с поддержкой SSE2, если это возможно) или приобрести новый.

Также можно попробовать поискать более ранние версии той программы, которая требует поддержку этого набора команд.

Лучшая благодарность автору — репост к себе на страничку:

Любой компьютер — это очень сложное устройство, которое состоит из десятков модулей. Сегодня мы разберём, какие процессоры работают и поддерживают инструкцию SSE2. А также что они собой представляют.

Содержание

  1. Что такое SSE2?
  2. Какие процессоры поддерживают технологию SSE
  3. Устройства, которые не имеют инструкций SSE2
  4. Проверка наличия SSE2 в процессоре на ПК

Что такое SSE2?

SSE2 являются SIMD — эта аббревиатура с английского языка переводится, как единая инструкция и множество данных. SIMD — это своего рода поток команд, который реализует параллелизм при работе с данными. Без них компьютеры нового поколения не смогли бы выполнять одновременно сотни процессов.

Фото ноутбуков

Набор был разработан инженерами компании Intel. Главная его цель — расширить возможности процессоров.

Без них компьютер лишается следующих возможностей:

  • SSE2 содержит команды по управлению кэшем, которые минимизируют заполнение памяти данными, тщательно сортируют их;
  • Сложные формулы для вычисления и преобразования чисел;
  • Инструкции для вычисления скалярных данных и для работы с упакованными данными;
  • Содержит набор инструкций для работы с потоковыми данными. Использует новые методы вычислений, которые эффективнее инструкций MMX;
  • SSE2 дополнила прошлую первую версию инструкций, добавив 144 новых команд;
  • И многое другое.

SIMD представляет собой процессор, который часто называют контроллером. Практически во всех случаях он является главным и содержит дополнительные модули, в которых происходит обработка данных или числовые вычисления. Сам процессор ничего не вычисляет, он лишь даёт указания своим подопечным, чем им необходимо заниматься в данный момент. То есть играет роль аналитика и управляющего.

SIMD-процессор

В свою очередь каждый управляемый модуль имеет собственную память. Когда основной процессор получает команду к вычислению, он переправляет её всем вычислительным элементам. После чего каждый свободный элемент принимается за работу. Подобную архитектуру используют в создании компьютерных процессоров не только Intel, но и AMD.

Читайте также: CUDA error — cannot allocate big buffer for DAG как исправить.

Какие процессоры поддерживают технологию SSE

Несмотря на то, что уже есть более усовершенствованные инструкции (SSE3, SSSE3), процессоры, поддерживающие инструкцию SSE2, также до сих пор применяют. Более того, если в процессоре вашего компьютера она будет отсутствовать, вы не сможете установить на него Windows версии 8.1 и выше. А также текстовый процессор Word версии 2013 года или позднее.

Программа Word

Впервые компания Intel использовала SSE2 в Pentium 4. И с тех пор практически каждая модель процессора содержит её. Поэтому сегодня сложно найти контроллер без инструкции.

Поддержка SSE2: Пояснение:
Осуществляется в разных процессорах 32 и 64 бит. Инструкции есть в линейках AMD K8 — серии AMD Ryzen, Ruion 64, Athlon 64, FX, Phenom, Sempron.
Практически во всех Intel Core i3, Core i5, Corei7, Duo-Core, а также процессоры, которые поддерживают технологию NetBurst (Celeron D, Xeon, Pentium 4, Celeron).
В более бюджетных моделях. Intel Atom, Pentium M и процессора Celeron M.

Процессоры Intel

Вполне возможно, что вскоре будут разработаны новые инструкции, которые придут на смену старым. В этом случае SSE2 исчезнет из списка так же, как и её предшественник.

Это может быть полезным: SM контроллер шины — что это за драйвер.

Устройства, которые не имеют инструкций SSE2

Инструкции SSE2 были разработаны и внедрены в тридцати двух битные процессоры Intel или являются их усовершенствованием. Поэтому компьютерные процессоры, созданные на базе другой архитектуры (например, 16 бит) их не поддерживают. Поскольку SSE2 была разработана и внедрена в Pentium 4, то поддержка отсутствует в процессорах, выпущенных компанией до этой версии. А также нет инструкций в AMD Athlon 64. И некоторые других (Crusoe).

Процессор Crusoe

Проверка наличия SSE2 в процессоре на ПК

Чтобы определить поддержку данной инструкции на своём компьютере, необходимо воспользоваться утилитой для отображения информации о процессоре. Подобных существует очень много, самой простой является CPU-Z, которую можно загрузить бесплатно с официального сайта https://www.cpuid.com/.

Кнопка для загрузки CPU-Z

На главной странице нажмите на кнопку «Download» в окне программы для Windows. Программа очень компактна, её установочный пакет размером всего 1.9 Мб.

Линки на скачивание

После установки запустите утилиту и выберите вкладку «CPU» в том случае, если программа по умолчанию открыла другую.

Программа CPU-Z

Выберите вкладку CPU

На данной странице будет отображаться основная информацию о процессоре вашего компьютера. А именно: название, серия, кодовое название, спецификации и технологии. Инструкции находятся в соответствующей строке «Instruction». На иллюстрации видно, что текущий процессор имеет инструкции: SSE, SSE2, SSE3, AMD-V, x86-64, MMX, 3D-NOW!.

Строка с инструкциями

Если вы покупаете процессор в магазине или в интернете, то эту информацию можно узнать у консультанта. Все процессоры, которые имеют поддержку инструкций (в том числе, SSE2), в интернет-магазине можно найти на странице с подробной информацией.

Информация о процессоре

Например, на страницах популярного AliExpress достаточно выбрать модель процессора из списка, и найти эту информацию не составит труда.

From Wikipedia, the free encyclopedia

SSE2 (Streaming SIMD Extensions 2) is one of the Intel SIMD (Single Instruction, Multiple Data) processor supplementary instruction sets first introduced by Intel with the initial version of the Pentium 4 in 2000. It extends the earlier SSE instruction set, and is intended to fully replace MMX. Intel extended SSE2 to create SSE3 in 2004. SSE2 added 144 new instructions to SSE, which has 70 instructions. Competing chip-maker AMD added support for SSE2 with the introduction of their Opteron and Athlon 64 ranges of AMD64 64-bit CPUs in 2003.

Features[edit]

Most of the SSE2 instructions implement the integer vector operations also found in MMX. Instead of the MMX registers they use the XMM registers, which are wider and allow for significant performance improvements in specialized applications. Another advantage of replacing MMX with SSE2 is avoiding the mode switching penalty for issuing x87 instructions present in MMX because it is sharing register space with the x87 FPU. The SSE2 also complements the floating-point vector operations of the SSE instruction set by adding support for the double precision data type.

Other SSE2 extensions include a set of cache control instructions intended primarily to minimize cache pollution when processing infinite streams of information, and a sophisticated complement of numeric format conversion instructions.

AMD’s implementation of SSE2 on the AMD64 (x86-64) platform includes an additional eight registers, doubling the total number to 16 (XMM0 through XMM15). These additional registers are only visible when running in 64-bit mode. Intel adopted these additional registers as part of their support for x86-64 architecture (or in Intel’s parlance, «Intel 64») in 2004.

Differences between x87 FPU and SSE2[edit]

FPU (x87) instructions provide higher precision by calculating intermediate results with 80 bits of precision, by default, to minimise roundoff error in numerically unstable algorithms (see IEEE 754 design rationale and references therein). However, the x87 FPU is a scalar unit only whereas SSE2 can process a small vector of operands in parallel.

If code designed for x87 is ported to the lower precision double precision SSE2 floating point, certain combinations of math operations or input datasets can result in measurable numerical deviation, which can be an issue in reproducible scientific computations, e.g. if the calculation results must be compared against results generated from a different machine architecture. A related issue is that, historically, language standards and compilers had been inconsistent in their handling of the x87 80-bit registers implementing double extended precision variables, compared with the double and single precision formats implemented in SSE2: the rounding of extended precision intermediate values to double precision variables was not fully defined and was dependent on implementation details such as when registers were spilled to memory.

Differences between MMX and SSE2[edit]

SSE2 extends MMX instructions to operate on XMM registers. Therefore, it is possible to convert all existing MMX code to an SSE2 equivalent. Since an SSE2 register is twice as long as an MMX register, loop counters and memory access may need to be changed to accommodate this. However, 8 byte loads and stores to XMM are available, so this is not strictly required.

Although one SSE2 instruction can operate on twice as much data as an MMX instruction, performance might not increase significantly. Two major reasons are: accessing SSE2 data in memory not aligned to a 16-byte boundary can incur significant penalty, and the throughput of SSE2 instructions in older x86 implementations was half that for MMX instructions. Intel addressed the first problem by adding an instruction in SSE3 to reduce the overhead of accessing unaligned data and improving the overall performance of misaligned loads, and the last problem by widening the execution engine in their Core microarchitecture in Core 2 Duo and later products.

Since MMX and x87 register files alias one another, using MMX will prevent x87 instructions from working as desired. Once MMX has been used, the programmer must use the emms instruction (C: _mm_empty()) to restore operation to the x87 register file. On some operating systems, x87 is not used very much, but may still be used in some critical areas like pow() where the extra precision is needed. In such cases, the corrupt floating-point state caused by failure to emit emms may go undetected for millions of instructions before ultimately causing the floating-point routine to fail, returning NaN. Since the problem is not locally apparent in the MMX code, finding and correcting the bug can be very time consuming. As SSE2 does not have this problem and it usually provides much better throughput and provides more registers in 64-bit code, it should be preferred for nearly all vectorization work.

Compiler usage[edit]

When first introduced in 2000, SSE2 was not supported by software development tools. For example, to use SSE2 in a Microsoft Visual Studio project, the programmer had to either manually write inline-assembly or import object-code from an external source. Later the Visual C++ Processor Pack added SSE2 support to Visual C++ and MASM.

The Intel C++ Compiler can automatically generate SSE4, SSSE3, SSE3, SSE2, and SSE code without the use of hand-coded assembly.

Since GCC 3, GCC can automatically generate SSE/SSE2 scalar code when the target supports those instructions. Automatic vectorization for SSE/SSE2 has been added since GCC 4.

The Sun Studio Compiler Suite can also generate SSE2 instructions when the compiler flag -xvector=simd is used.

Since Microsoft Visual C++ 2012, the compiler option to generate SSE2 instructions is turned on by default.

CPU support[edit]

SSE2 is an extension of the IA-32 architecture, based on the x86 instruction set. Therefore, only x86 processors can include SSE2. The AMD64 architecture supports the IA-32 as a compatibility mode and includes the SSE2 in its specification.[1][2] It also doubles the number of XMM registers, allowing for better performance. SSE2 is also a requirement for installing Windows 8[3] (and later) or Microsoft Office 2013 (and later) «to enhance the reliability of third-party apps and drivers running in Windows 8».[4]

The following IA-32 CPUs support SSE2:

  • Intel NetBurst-based CPUs (Pentium 4, Xeon, Celeron, Pentium D, Celeron D)
  • Intel Pentium M and Celeron M
  • Intel Atom
  • AMD Athlon 64
  • Transmeta Efficeon
  • VIA C7

The following IA-32 CPUs were released after SSE2 was developed, but did not implement it:

  • AMD CPUs prior to Athlon 64, such as Athlon XP
  • VIA C3
  • Transmeta Crusoe
  • Intel Quark

See also[edit]

  • SSE2 instructions

References[edit]

  1. ^ Matz, Michael; Hubicka, Jan; Jaeger, Andreas; Mitchell, Mark (January 2010). «System V Application Binary Interface — AMD64 Architecture Processor Supplement — Draft Version 0.99.4» (PDF). Retrieved April 26, 2013.[permanent dead link]
  2. ^ Fog, Agner. «Optimizing software in C++: An optimization guide for Windows, Linux and Mac platforms» (PDF). Archived (PDF) from the original on April 8, 2013. Retrieved April 26, 2013.
  3. ^ «DirectXMath Programming Guide/Library Internals». Archived from the original on July 2, 2019. Retrieved July 2, 2019.
  4. ^ Microsoft Corporation. «What is PAE, NX, and SSE2 and why does my PC need to support them to run Windows 8 ?». Archived from the original on April 11, 2013. Retrieved March 19, 2013.

Как узнать SSE процессора?

Всем привет Поговорим сегодня о том как узнать какие инструкции SSE поддерживает процессор. Но что такое SSE вы знаете? Я вот не знаю и не то чтобы не знаю, я даже понять не могу что это такое. Ну то есть я понимаю, что это инструкция процессора, которая нужна для оптимизации его работы, то есть чтобы при одной и тоже частотой проц с этой инструкцией мог больше обрабатывать команд. Но это так, грубо говоря так бы сказать…

Про SSE я вообще не знаю где в жизни он нужен, может быть для игр? Я знаю что такое Hyper-threading (правда это не инструкция процессора, это технология), что такое VT-x, VT-d, что такое EM64T знаю, а вот что такое SSE не знаю! Ну вот такие пироги ребята

Короче ребята, я вам скажу сразу, что есть небольшой обломчик с этим делом, это я имею ввиду то, что штатными средствами винды такую штуку как SSE нельзя узнать есть она или нет. Тут нужно качать специальную прогу. Но вы не переживайте, эта супер пупер прога бесплатная, весит очень мало, комп вообще никак не грузит, но при этом она МЕГА ПОЛЕЗНАЯ и зовут ее CPU-Z (кстати скачать можно тут: cpuid.com/softwares/cpu-z.html, это официальный сайт).

Итак ребята, скачали CPU-Z, установили и потом запускаем. И вот сразу же вы все узнаете, вот сколько у меня этих SSE:

Не одна и не две, а целых шесть, огогошеньки ребята

Кстати, как видите тут еще много есть всякой полезной инфы, видите? Если срочно нужно узнать что-то о своем проце, то вы быстро запускаете CPU-Z и опа, все что вам нужно у вас под рукой! Говорю же что прога CPU-Z это одна годнота! Не верите? Ну нет проблем, я вам щас докажу. Смотрите, вот вы знаете когда у вас была выпущена та или иная планка памяти? Ну то есть дату ее выпуска на заводе так бы сказать. Или вам это не интересно? Ну некоторым очень интересно, вот мне например очень интересно! И вот прога CPU-Z может показать такую инфу! Итак ребята, смотрите, запустили CPU-Z, идете на вкладку SPD, там выбираете слот с планкой (слева), ну то есть разьем куда она установлена и смотрите инфу по выбранной планке. У меня вот стоит одна планка на 8 гигов в четвертом слоту и вот какую инфу показала прога CPU-Z:

Тут видно, что моя планка была выпущена в 30-тую неделю 2014-го года. Также написано что производитель у меня это Hyundai Electronics, ну это планка Hynix так называется

Ну короче CPU-Z это супер, если нужно быстро посмотреть вообще самую важную инфу о железе компа или ноута, она все это покажет без приколов! Короче рекомендую ребята!

И еще, забыл кое что написать про SSE. Включить или отключить SSE нельзя. Ибо эта инструкция или есть или нет. Вот например Hyper-threading включить/отключить можно, а SSE нет!

На этом все ребята, надеюсь что все вам тут было понятно, а если что-то не так, то прошу прощения. Эта инфа была вам полезной, только честно? Я буду всем сердцем надеется что да! Удачи вам в жизни, чтобы вы были здоровы и не болели, удачи

Популярно об MMX, SSE и AVX

В мире компьютерных технологий нет ничего странного в обилии всевозможных аббревиатур: CPU, GPU, RAM, SSD, BIOS, CD-ROM, и многих других. И почти каждый день появляются всё новые и новые сокращения названий каких-то технологий, что является неизбежным следствием бесконечного стремления инженеров улучшить функции и возможности наших вычислительных устройств.

Сегодня речь пойдёт о таких расширениях набора команд процессоров, как MMX, SSE и AVX. Многим знакомы эти сокращения, и мы выясним, действительно ли это какие-то интересные разработки, или же это не более чем бессмысленные маркетинговые уловки.

Ну о-о-очень первые дни

Середина 80-х прошлого столетия. Рынок процессоров был очень похож на сегодняшний. Intel бесспорно преобладала, но столкнулась с жесткой конкуренцией со стороны AMD. Домашние компьютеры, такие как Commodore 64, использовали базовые 8-битные процессоры, тогда как настольные ПК начинали переходить с 16-битных на 32-битные чипы.

Эти числа означают размер значений данных, которые могут быть обработаны математически, при этом чем выше эти значения, тем выше точность и возможности. Они также определяет размер основных регистров в микросхеме: небольших участков памяти, используемых для хранения рабочих данных.

Такие процессоры являются также скалярными и целочисленными. Что это означает? Скаляр – это когда над одним элементом данных выполняется только одна любая математическая операция. Обычно это обозначается как SISD (single instruction, single data, «одиночный поток команд – одиночный поток данных»).

Таким образом, инструкция по сложению двух значений данных просто обрабатывается для этих двух чисел. А если вам, например, нужно прибавить одно и то же значение к группе из 16 чисел, то для этого потребуется выполнить все 16 наборов инструкций – для каждого числа из этой группы по отдельности. По-другому процессоры тех лет складывать ещё не умели.


Intel 80386DX с частотой 16МГц (1985).

Целое (Integer) – в математике, это такое число, которое не имеет дробной части. Например, 8 или -12. Процессоры типа интеловского 80386SX не имели врожденной способности сложить, скажем, 3.80 и 7.26 – такие дробные числа называются числами с плавающей точкой (или запятой, в русском языке это без разницы) – по-английски FP, floating point или просто floats. Чтобы справиться с ними, нужен был другой процессор, например 80387SX, и отдельный набор инструкций – список команд, который сообщает процессору, что делать.

В те времена под инструкциями x86 понимали наборы команд для целочисленных (integer) операций, а под инструкциями x87 – для чисел с плавающей точкой (float). В наши дни все операции умеет выполнять один процессор, поэтому мы используем термин x86 для обозначения набора инструкций обоих типов данных.

Использование отдельных сопроцессоров для обработки разных типов данных было нормой, пока Intel не представила 80486: их первый CPU для персоналок со встроенным математическим сопроцессором для обработки вещественных данных (FPU, Floating Point Unit).


Intel 80486: Жёлтым цветом выделен блок FPU для обработки чисел с плавающей точкой.

Как вы можете видеть, этот блок совсем немного занимает места в процессоре, но рывок в производительности, благодаря этому решению, был огромен.

Но в целом принцип работы оставался скалярным, и таким он перешел и к преемнику 486-го: оригинальному Intel Pentium.

И пройдёт ещё три года после релиза этого первого Пентиума, прежде чем Intel представит миру Pentium MMX. Это произошло в октябре 1996 года.

V – значит «векторный». А MMX что значит?

В мире математики числа можно группировать в наборы различных видов и размеров – одна такая упорядоченная совокупность называется арифметическим вектором. Проще всего представить его себе в виде списка значений, расположенных горизонтально или вертикально. Технология MMX привнесла в мир процессоров возможность выполнять векторные математические вычисления.

Однако она была изначально довольно ограниченной, поскольку оперировала только целыми числами и фактически эксплуатировала для своих целей регистры FPU. Поэтому программисты, желающие использовать какие-то инструкции MMX, вынуждены иметь в виду, что при выполнении таких инструкций любые вычисления с плавающей запятой не могут выполняться одновременно с ними.

Знаменитая реклама технологии Intel MMX (1997).

FPU Pentium имел 64-битные регистры, и в операциях MMX каждый из них мог вместить два 32-битных, четыре 16-битных или восемь 8-битных целых числа. Именно эти группы чисел и являются векторами, и каждая инструкция, предназначенная для них, будет выполняться сразу над всеми значениями в группе.

Такой принцип получил название SIMD (single instruction, multiple data, «одиночный поток команд, множественный поток данных») и знаменует собой большой шаг вперед в развитии возможностей процессоров для персональных компьютеров.

Ну а какие приложения выигрывают от использования такого принципа? Практически все, которым приходится выполнять одинаковые вычисления над группой однородных данных, и в первую очередь это некоторые функции в 3D-моделировании и мультимедийных технологиях, а также в системах обработки стандартных сигналов.

Например, MMX можно применить для ускорения умножения матриц при обработке вершин в 3D, или для смешивания видеопотоков при работе с хромакеем или альфа-композитингом.


Процессор AMD K6-2 – где-то там есть 3DNow!

К сожалению, внедрение MMX продвигалось довольно медленными темпами из-за негативного влияния этой технологии на производительность операций с плавающей точкой. AMD частично решила эту проблему, создав свою собственную версию под названием 3DNow! примерно через два года после появления MMX. Технология от AMD предлагала больше инструкций SIMD и умела обрабатывать числа с плавающей точкой, но также страдала от недостатка понимания программистами.

Ах, да! Как же официально расшифровывается аббревиатура MMX? Согласно Intel – никак!

Проще пареной SSE

Ситуация переломилась в лучшую сторону с приходом в 1999 году процессора Intel Pentium III. Он принёс с собой блестящую реализацию векторной функции под названием SSE (Streaming SIMD Extensions, «потоковые расширения SIMD»). На этот раз это был дополнительный набор из восьми 128-битных регистров, отдельных от регистров в FPU, и стек дополнительных инструкций для обработки чисел с плавающей точкой.

Использование независимых регистров означает, что больше нет такой сильной зависимости от FPU, хотя Pentium III не мог выполнять инструкции SSE одновременно с инструкциями FP. А также, новая функция поддерживает только один тип данных в регистрах: четыре 32-битных FP-числа.

Но переход к использованию FP-инструкций SIMD позволил значительно увеличить производительность в таких приложениях, как кодирование/декодирование видео, обработка изображений и звука, сжатие файлов и многих других.


Pentium IV: желтым цветом выделен блок регистров SSE2.

Усовершенствованная версия SSE2 появилась в 2001 году вместе с Pentium 4, и на этот раз поддержка типов данных была намного лучше: четыре 32-битных или два 64-битных FP-числа, а также шестнадцать 8-битных, восемь 16-битных, четыре 32-битных или два 64-битных целых числа. Регистры MMX остались в процессоре, но все операции MMX и SSE могли выполняться с использованием независимых 128-битных регистров SSE.

Модификация SSE3 появилась на свет в 2003 году, имея больше инструкций и возможность выполнять некоторые математические вычисления между значениями внутри одного регистра.

Ещё через 3 года мы познакомились с архитектурой Intel Core, принёсшей ещё одну ревизию технологии SIMD (SSSE3 – Supplemental SSE, «расширенные SSE»), и чуть позже в том же году – финальную версию, SSE4.

В 2007 году AMD применила собственную версию расширений CPU-инструкций SSE4 в своей архитектуре Barcelona. С названием в AMD париться не стали, и назвали свою версию просто SSE4a.

С линейкой Nehalem Core в 2008 году было выпущено незначительное обновление этой версии, которую Intel обозначила как SSE4.2 (а под SSE4.1 стали понимать исходную версию этого обновления). Обновления не затронули регистры, а лишь добавили больше инструкций в таблицу, расширив диапазон возможных математических и логических операций.

AMD, со своей стороны, сперва предложила новую версию SSE5, но позже решила разделить ее на три отдельных расширения, одно из которых довольно проблемное – подробнее об этом чуть позже.

К концу 2008 года и Intel, и AMD поставляли процессоры, которые уже могли обрабатывать все версии наборов инструкций от MMX до SSE4.2, и многие приложения (в основном игры) начали требовать этих функций для работы.

Время для новых букв

2008 год также был годом, когда Intel объявила о том, что они работают над значительным апгрейдом своей системы SIMD, и в 2011 году выкатила линейку процессоров Sandy Bridge с поддержкой набора инструкций AVX (Advanced Vector Extensions, «продвинутые векторные расширения»).

Всё удвоилось: вдвое больше векторных регистров и вдвое больше их размер.

Шестнадцать 256-битных регистров вмещают только восемь 32-битных или четыре 64-битных вещественных числа, поэтому в плане форматов данных, этот набор инструкций более ограничен в сравнении с SSE, но ведь и SSE никто не отменял. К тому времени программная поддержка векторных операций для CPU была уже хорошо отлажена, начиная с фундаментального мира компиляторов, заканчивая сложными приложениями.

И не даром: Core i7-2600K (или подобный ему), работающий на частоте 3,8ГГц, потенциально может выдавать более 230 GFLOPS (миллиардов операций с плавающей точкой в секунду) при выполнении инструкций AVX – неплохо для дополнения, относительно немного места занимающего на кристалле процессора.

Или могло бы быть неплохо, если бы он действительно работал на частоте 3,8ГГц. Частично проблема AVX заключалась в том, что нагрузка на чип получалась настолько высокой, что Intel пришлось заставить процессор автоматически снижать тактовую частоту в этом режиме примерно на 20%, чтобы уменьшить энергопотребление и не допустить перегрева. К сожалению, такова цена за выполнение любой работы SIMD в современном процессоре.

Еще одно усовершенствование, предлагаемое в AVX – это возможность работать одновременно с тремя значениями. Во всех версиях SSE операции выполнялись между двумя значениями, после чего результат заменял одно из них в регистре. При выполнении инструкций SIMD AVX не трогает исходные значения, сохраняя результирующее значение в отдельный регистр.

AVX2 был выпущен вместе с архитектурой Haswell для процессоров Core 4-го поколения в 2013 году, и представлял собой довольно значительный апгрейд, благодаря добавлению нового расширения: FMA (Fused Multiply-Add, «умножение-сложение с однократным округлением»).

Эта независимая функция в составе AVX2 была крайне востребована для приложений, работающих с векторной и матричной математикой, поскольку давала возможность выполнять две операции с помощью одной инструкции. Функция поддерживала и скалярные операции также.

Проблема оказалась в том, что FMA от Intel отличался от аналогичного расширения AMD настолько, что они были совершенно несовместимы. Причина в том, что Intel FMA представляет собой систему с тремя операндами, то есть работает с тремя отдельными значениями: два слагаемых и сумма, либо три слагаемых и сумма, замещающая одно из слагаемых.

У версии от AMD четыре операнда, поэтому она может вычислить 3 числа и записать ответ в отдельный регистр, не трогая исходные значения. Математически FMA4 лучше, чем FMA3, но его реализация немного сложнее, как с точки зрения программирования, так и с точки зрения интеграции функции в процессор.

AVX-512: а не многовато-ли?

AVX2 ещё только начал появляться на рынке процессоров, а Intel уже плела маниакальные планы относительно его преемника, AVX-512, и общий настрой среди разработчиков был такой: «больше регистров богу регистров!». Мало того, что этих самых регистров снова вдвое больше, и они снова вдвое увеличились в размере, так ещё и появился стек новых инструкций и поддержка устаревших.

Первой партией чипов, на которых поднялся в воздух набор функций AVX-512, стала серия Xeon Phi 7200 – второе поколение громоздких и очень многоядерных процессоров Intel, ориентированных на рынок суперкомпьютеров.

72-ядерный 288-потоковый Knights Landing Xeon Phi.

В отличие от всех предыдущих реализаций, новый набор векторных инструкций состоял из 19-и компонентов: базового – AVX-512F, – необходимого для обеспечения совместимости, и множества весьма специфических. Эти дополнительные наборы охватывают такие области операций, как обратная математика, целочисленные FMA и алгоритмы свёрточной (конволюционной) нейронной сети (CNN-алгоритмы).

Первоначально AVX-512 был только прерогативой крупнейших чипов Intel, предназначенных для рабочих станций и серверов, но теперь их недавние архитектуры Ice Lake и Tiger Lake также поддерживают его. Да, не удивляйтесь: вы можете купить легкий ноутбук с процессором, имеющим 512-битные векторные блоки.

Это может показаться круто. А может и не показаться – в зависимости от вашей точки зрения. Регистры на кристалле CPU обычно группируются в так называемом регистровом файле, как видно на макрофото ниже.

2-ядерный Intel Skylake

Желтым прямоугольником выделен файл векторных регистров, красный прямоугольник – это наиболее вероятное расположение файла целочисленного регистра. Обратите внимание, насколько файл векторного регистра больше integer-регистра. В Skylake используются 256-битные регистры AVX2, следовательно аналогичный векторный регистровый файл AVX-512 занял бы на таком же кристалле в четыре раза больше места: вдвое больше, потому что вдвое больше их размер, и ещё вдвое – потому что самих регистров вдвое больше.

А очень-ли нужно такое количество векторных регистров маленькому чипу, который должен быть максимально мобильным? Хоть речь и не о лишних килограммах в ноутбуке, а лишь о небольшой части площади ядра процессора, каждый квадратный миллиметр имеет значение, когда речь идет о миниатюризации мобильных устройств и наиболее эффективном использовании доступного пространства в них.

И учитывая, что использование AVX в любом виде приводит к автоматическому уменьшению тактовой частоты, использование AVX-512 на таких платформах скорее всего приведет к ещё более сомнительным издержкам по сравнению с любым из своих предшественников, поскольку при работе он потребляет еще больше энергии.

И проблема AVX-512 не только в применении к небольшим мобильным процессорам. Разработчикам, пишущим код для работы на рабочих станциях и серверах, и для которых увеличение возможностей векторных расширений действительно важный вопрос, потребуется создавать несколько версий кода. Это связано с тем, что не все процессоры с AVX-512 работают с одинаковым набором команд.

Например, набор IFMA (Integer Fused Multiply Add, «целочисленное умножение-сложение с однократным округлением») доступен только на процессорах Cannon, Ice и Tiger Lake. В то время как процессоры на архитектуре Cooper и Cascade Lake его не поддерживают, несмотря на то, что они относятся к сегменту процессоров для серверов и рабочих станций.

Стоит отметить, что AMD не предлагает поддержку AVX-512, и не собирается. По их мнению, обработка массивных векторных вычислений – это прерогатива GPU. С AMD полностью солидарна Nvidia, и обе компании уже выпустили продукты специально для таких нужд.

И дальше что?

Много лет назад процессор с возможностью обработки векторной математики ознаменовал собой эпохальный прорыв. Современные процессоры обладают огромными возможностями, предлагая множество наборов инструкций для обработки целочисленных операций и операций с плавающей запятой для скалярных, векторных и матричных данных.

Что касается последних двух типов данных, то CPU теперь напрямую конкурируют с GPU: ведь мир 3D-графики – это как раз всё, что связано с SIMD, векторами, плавающими точками и т.д. И производители GPU не спали – разработка графических ускорителей велась стремительными темпами. В начале 2010-х годов купить видеокарту, процессор которой способен выполнять почти 800 миллиардов инструкций SIMD в секунду, вы уже могли менее чем за 500 долларов.

Это больше, чем то, на что сейчас способны лучшие из десктопных CPU. Но они и не предназначены для рекордов в какой-то конкретной области – их задача обрабатывать очень обобщенный код, который зачастую не повторяется или легко распараллеливается. Поэтому, не стоит думать, что возможности SIMD столь жизненно-важны для CPU, скорее это полезное дополнение к его арсеналу.

Вас интересует производительность SIMD в чистом виде? Ваш выбор – видеокарта, а не материнка!

Стремительное развитие графических процессоров недвусмысленно намекает, что для CPU нет нужды иметь чересчур большие векторные блоки, и почти наверняка именно поэтому AMD даже не пыталась разрабатывать своего собственного преемника для AVX2 (расширение, которое они используют в своих чипах с 2015 года). Давайте также не будем забывать, что процессоры следующего поколения могут больше походить на мобильные однокристальные (SoC, System-on-a-Chip), где под каждый тип задач выделена площадь на кристалле. Intel, в свою очередь, похоже, стремится внедрить AVX-512 в как можно большее количество продуктов.

Ждёт ли нас ещё и AVX-1024? Вряд ли, либо очень нескоро. Скорее всего, Intel займётся расширением AVX-512 с помощью дополнительных компонентов с инструкциями, чтобы повысить гибкость, а чистую SIMD-производительность переложит на плечи своей недавно разработанной линейки графических процессоров Xe.

Библиотеки SSE и AVX теперь являются неотъемлемой частью программного обеспечения: Adobe Photoshop требует, чтобы процессоры поддерживали как минимум SSE4.2; API машинного обучения TensorFlow требует поддержки AVX; Microsoft Teams может выполнять фоновые видеоэффекты, только если доступен AVX2.

Это говорит только об одном: несмотря на то, что в плане обработки SIMD графическим процессорам нет равных, этот функционал ещё долго будет в арсенале CPU. Так что будем ждать нового поколения векторных расширений и надеюсь, реклама нас впечатлит.

Как определить поддерживает ли ваш процессор PAE, NX и SSE2

Для работы 64 разрядных версий операционных систем windows 10 и 8.1 необходима поддержка ЦП таких инструкций как NX, PAE и SSE2. Поскольку 64 разрядные инструкции вводились в процессоры не сразу все а постепенно, то старые процессоры могут их не поддерживать. Как определить поддерживает ли ваш процессор инструкции PAE, NX и SSE2?

Программы для проверки наличия инструкций PAE, NX и SSE2

Майкрософт выпустила программу Coreinfo v3.31 , которая показывает соответствие между логическим процессором и физическим. Топология логического процессора зашита в саму программу. Соответствие инструкций, присутствующих в вашем процессоре отмечено звёздочками. Программу необходимо запустить из командной строки. В результате её работы вы получите примерно такую информацию:

Тест процессора на поддержку NX, PAE и SSE2 - Картинка

На рисунке я подчеркнул, всё что вас будет интересовать в первую очередь. Первые две строки это название и топология вашего ЦП. Следующие три это как раз NX, PAE и SSE2. Все они должны быть отмечены звёздочками как на рисунке. И хотя майкрософт указывает именно эти наборы инструкций для всех 64 разрядных виндовс от 7 до 10 как обязательных, поддержки их процессором хватает только для семёрки и восьмёрки.

Для виндовса 8.1 и 10 этого уже не достаточно. Дело в том что в списках 64 разрядных инструкций процессора уже больше 75. А старые процессоры, выпущенные скажем в 2005 году, поддерживают только 15. Естественно они физически не могут выполнять остальные инструкции. Следовательно 64 разрядные версии windows такие как 8.1 и 10 уже работать не будут.

Чтобы точно узнать подходит ли ваш старый микропроцессор для работы с виндовс 10 или 8.1 вам необходимо пройти на страницу майкрософт Системные требования для установки Windows 10 или 8.1. В строке «Процессор» найти слово выделенное синим цветом. Это ссылка на страницу Требования к процессору Windows . На этой странице ниже текста найдёте таблицы соответствий версий виндовсов от 7 до 10 группам процессоров. Зная полное название своего микропроцессора, в интернете можно найти достаточно подробностей о нём и потом сравнить с записями в таблице.

Как утверждает майкрософт, поддерживать старые процессоры в виндовс 10 постепенно прекратят. И сделано это для того чтобы покупали новые компьютеры, на которых новая десятка работает великолепно. А многие вопросы отпадут сами собой, так как оборудование новое.

Как узнать SSE процессора?

Всем привет Поговорим сегодня о том как узнать какие инструкции SSE поддерживает процессор. Но что такое SSE вы знаете? Я вот не знаю и не то чтобы не знаю, я даже понять не могу что это такое. Ну то есть я понимаю, что это инструкция процессора, которая нужна для оптимизации его работы, то есть чтобы при одной и тоже частотой проц с этой инструкцией мог больше обрабатывать команд. Но это так, грубо говоря так бы сказать…

Про SSE я вообще не знаю где в жизни он нужен, может быть для игр? Я знаю что такое Hyper-threading (правда это не инструкция процессора, это технология), что такое VT-x, VT-d, что такое EM64T знаю, а вот что такое SSE не знаю! Ну вот такие пироги ребята

Короче ребята, я вам скажу сразу, что есть небольшой обломчик с этим делом, это я имею ввиду то, что штатными средствами винды такую штуку как SSE нельзя узнать есть она или нет. Тут нужно качать специальную прогу. Но вы не переживайте, эта супер пупер прога бесплатная, весит очень мало, комп вообще никак не грузит, но при этом она МЕГА ПОЛЕЗНАЯ и зовут ее CPU-Z (кстати скачать можно тут: cpuid.com/softwares/cpu-z.html, это официальный сайт).

Итак ребята, скачали CPU-Z, установили и потом запускаем. И вот сразу же вы все узнаете, вот сколько у меня этих SSE:

Не одна и не две, а целых шесть, огогошеньки ребята

Кстати, как видите тут еще много есть всякой полезной инфы, видите? Если срочно нужно узнать что-то о своем проце, то вы быстро запускаете CPU-Z и опа, все что вам нужно у вас под рукой! Говорю же что прога CPU-Z это одна годнота! Не верите? Ну нет проблем, я вам щас докажу. Смотрите, вот вы знаете когда у вас была выпущена та или иная планка памяти? Ну то есть дату ее выпуска на заводе так бы сказать. Или вам это не интересно? Ну некоторым очень интересно, вот мне например очень интересно! И вот прога CPU-Z может показать такую инфу! Итак ребята, смотрите, запустили CPU-Z, идете на вкладку SPD, там выбираете слот с планкой (слева), ну то есть разьем куда она установлена и смотрите инфу по выбранной планке. У меня вот стоит одна планка на 8 гигов в четвертом слоту и вот какую инфу показала прога CPU-Z:

Тут видно, что моя планка была выпущена в 30-тую неделю 2014-го года. Также написано что производитель у меня это Hyundai Electronics, ну это планка Hynix так называется

Ну короче CPU-Z это супер, если нужно быстро посмотреть вообще самую важную инфу о железе компа или ноута, она все это покажет без приколов! Короче рекомендую ребята!

И еще, забыл кое что написать про SSE. Включить или отключить SSE нельзя. Ибо эта инструкция или есть или нет. Вот например Hyper-threading включить/отключить можно, а SSE нет!

На этом все ребята, надеюсь что все вам тут было понятно, а если что-то не так, то прошу прощения. Эта инфа была вам полезной, только честно? Я буду всем сердцем надеется что да! Удачи вам в жизни, чтобы вы были здоровы и не болели, удачи

Как определить поддерживает ли ваш процессор PAE, NX и SSE2

Для работы 64 разрядных версий операционных систем windows 10 и 8.1 необходима поддержка ЦП таких инструкций как NX, PAE и SSE2. Поскольку 64 разрядные инструкции вводились в процессоры не сразу все а постепенно, то старые процессоры могут их не поддерживать. Как определить поддерживает ли ваш процессор инструкции PAE, NX и SSE2?

Программы для проверки наличия инструкций PAE, NX и SSE2

Майкрософт выпустила программу Coreinfo v3.31 , которая показывает соответствие между логическим процессором и физическим. Топология логического процессора зашита в саму программу. Соответствие инструкций, присутствующих в вашем процессоре отмечено звёздочками. Программу необходимо запустить из командной строки. В результате её работы вы получите примерно такую информацию:

Тест процессора на поддержку NX, PAE и SSE2 - Картинка

На рисунке я подчеркнул, всё что вас будет интересовать в первую очередь. Первые две строки это название и топология вашего ЦП. Следующие три это как раз NX, PAE и SSE2. Все они должны быть отмечены звёздочками как на рисунке. И хотя майкрософт указывает именно эти наборы инструкций для всех 64 разрядных виндовс от 7 до 10 как обязательных, поддержки их процессором хватает только для семёрки и восьмёрки.

Для виндовса 8.1 и 10 этого уже не достаточно. Дело в том что в списках 64 разрядных инструкций процессора уже больше 75. А старые процессоры, выпущенные скажем в 2005 году, поддерживают только 15. Естественно они физически не могут выполнять остальные инструкции. Следовательно 64 разрядные версии windows такие как 8.1 и 10 уже работать не будут.

Чтобы точно узнать подходит ли ваш старый микропроцессор для работы с виндовс 10 или 8.1 вам необходимо пройти на страницу майкрософт Системные требования для установки Windows 10 или 8.1. В строке «Процессор» найти слово выделенное синим цветом. Это ссылка на страницу Требования к процессору Windows . На этой странице ниже текста найдёте таблицы соответствий версий виндовсов от 7 до 10 группам процессоров. Зная полное название своего микропроцессора, в интернете можно найти достаточно подробностей о нём и потом сравнить с записями в таблице.

Как утверждает майкрософт, поддерживать старые процессоры в виндовс 10 постепенно прекратят. И сделано это для того чтобы покупали новые компьютеры, на которых новая десятка работает великолепно. А многие вопросы отпадут сами собой, так как оборудование новое.

Какие процессоры поддерживают SSE 4.1 и SSE 4.2

Пользователи некоторых старых компьютеров все чаще обнаруживают, что часть новых программ и компьютерных игр больше не работает на их системах.

При чем это не зависит от версии или разрядности операционной системы. Ограничения находятся на аппаратном уровне и связаны с поддержкой инструкций SSE 4.1 и SSE 4.2. В данной статье мы расскажем, что это такое и какие процессоры поддерживают SSE 4.1 и SSE 4.2.

Что такое SSE 4.1 и SSE 4.2

SSE 4 – это набор инструкций, который применяется в процессорах Intel и AMD. Впервые о данном наборе инструкций стало известно в конце 2006 года на форуме для разработчиков Intel, а первые процессоры с его поддержкой появились в 2008 году.

Набор SSE 4 включает в себя 54 новых инструкций, 47 из которых относятся SSE 4.1 и еще 7 к SSE 4.2. Данные инструкции включают в себя улучшенные целочисленные операции, операции с плавающей точкой, операции с плавающей точкой одинарной точности, упаковочные операции DWORD и QWORD, быстрые регистровые операции, операции для работы с памятью, а также операции со строками.

Использование данных новых инструкций позволяет значительно повысить производительность программ. Например, такие программы DivX 6.7 и VirtualDub 1.7.2 показывают рост производительности на 49%, а TMPGEncoder Xpress 4.4 на 42%.

В связи с ростом производительности, наборы SSE 4.1 и SSE 4.2 уже давно активно используются разработчиками программ и компьютерных игр. Естественно, если программа требует данного набора инструкций, то без него работать она не будет.

В результате многие современные игры и программы отказываются запускаться на старых компьютерах. Например, наличия SSE 4.1 или 4.2 требуют такие игры как No Man Sky, Dishonored 2, Far Cry 5 или Mafia 3. В некоторых случаях, эту проблему можно решить с помощью программного эмулятора, но это приводит к значительному снижению производительности.

Процессоры, поддерживающие SSE 4.1 и SSE 4.2

Практически все современные процессоры поддерживают инструкции SSE 4.1 и SSE 4.2. В настольных процессорах Intel поддержка SSE 4.1 появилась в архитектуре Penryn (процессоры Core 2 Duo, Core 2 Quad), а поддержка SSE 4.2 в архитектуре Nehalem (процессоры Intel Core 1-поколения). Полная же поддержка инструкций SSE 4.2 (включая POPCNT и LZCNT) доступна начиная с архитектуры Haswell (процессоры Intel Core 4-поколения). Более подробная информация о поддержке в таблице внизу.

В настольных процессорах AMD сначала появилась поддержка собственного набора инструкций SSE4a, который отсутствовал в процессорах Intel. Но, уже начиная микроархитектуры Bulldozer (FX) была внедрена поддержка SSE 4.1 и SSE 4.2 (включая инструкции POPCNT и LZCNT). Последовавшая в дальнейшем микроархитектура Zen (Ryzen) также в полной мере поддерживает SSE 4.1 и SSE 4.2. Более подробная информация о поддержке в таблице внизу.

Как узнать, что процессор поддерживает SSE 4.1 и SSE 4.2

Если у вас уже есть готовый компьютер и вы хотите узнать, поддерживает ли его процессор инструкции SSE 4.1 и SSE 4.2, то это можно сделать, просто запустив программу CPU-Z. Данная программа предназначена для сбора информации об установленном процессоре. С ее помощью можно узнать название процессора, а также все его основные характеристики. Скачать CPU-Z можно с официального сайта.

Среди прочего, с помощью CPU-Z можно проверить наличие поддержки инструкций SSE 4.1 и SSE 4.2. Для этого нужно просто запустить CPU-Z и изучить строку «Instructions» на вкладке «CPU».

набор инструкций в cpu-z

Если процессора на руках пока нет, то можно просто поискать скриншот CPU-Z в любой поисковой системе, например, в Google. Для этого нужно ввести поисковый запрос «cpu-z название процессора» и перейти к просмотру картинок.

поиск скриншота cpu-z

Таким образом можно найти информацию практически о любом современном процессоре.

Понравилась статья? Поделить с друзьями:

Новое и полезное:

  • Подделка подписи в должностной инструкции ответственность
  • Подгузник из марли для новорожденного своими руками пошаговая инструкция
  • Подготовьте должностную инструкцию юрисконсульта запишите из каких разделов она будет состоять
  • Подготовленный текст инструкции по делопроизводству согласовывается с
  • Подготовка стены под плитку на кухне фартук своими руками пошаговая инструкция

  • 0 0 голоса
    Рейтинг статьи
    Подписаться
    Уведомить о
    guest

    0 комментариев
    Старые
    Новые Популярные
    Межтекстовые Отзывы
    Посмотреть все комментарии