Точное описание некоторого процесса инструкция по его выполнению

Алгоритм,
его свойства. Виды алгоритмов. Формы
записи алгоритмов.

Решение
задач на компьютере основано на понятии
алгоритма. Алгоритм – это точное
предписание, определяющее вычислительный
процесс, ведущий от варьируемых начальных
данных к исходному результату.

Алгоритм
означает точное описание некоторого
процесса, инструкцию по его выполнению.
Разработка алгоритма является сложным
и трудоемким процессом. Алгоритмизация
– это техника разработки (составления)
алгоритма для решения задач на ЭВМ.

Для
решения задач программист должен
составить подробное описание
последовательности действий,
которые необходимо
выполнить центральному процессору
компьютера. Составление такого пошагового
описания процесса решения задачи
называется 
алгоритмизацией,
а алгоритмом называется конечный набор
правил, расположенных в определенном
логическом порядке, позволяющий
исполнителю решать любую конкретную
задачу из некоторого класса однотипных
задач.

Составление
алгоритмов и вопросы их существования
являются предметом серьезных математических
исследований. Алгоритм должен удовлетворять
определенным требованиям. Принято
выделять следующие семь:

  1. Наличие
    ввода
     исходных
    данных.

  2. Наличие
    вывода
     результата
    выполнения.

  3. Однозначность (компьютер
    «понимает» только однозначные
    инструкции).

  4. Общность –
    алгоритм предназначен для решения
    некоторого класса задач.

  5. Корректность –
    алгоритм должен давать правильное
    решение задачи.

  6. Конечность –
    решение задачи должно быть получено
    за конечное число шагов.

  7. Эффективность –
    для решения задачи должны использоваться
    ограниченные ресурсы компьютера
    (процессорное время, объем оперативной
    памяти и т.д.).

Свойства
алгоритма:

  1. Массовость –
    алгоритм должен описывать круг однотипных
    задач, исходные данные которых могут
    изменяться в определенных пределах.

  2. Детерминированность –
    это обусловленность всех шагов алгоритма
    потребностью решения данных задач.
    Свойство детерминированности выражается
    в том, что при заданных значениях
    параметров алгоритм выполняется
    формально, т.е. строго выполняется
    последовательностьдействий до появления
    результата.

  3. Понятность 
    предписания алгоритма должны быть
    сформулированы так, чтобы они понимались
    одинаково разработчиком и исполнителем,
    т.е. они должны быть однозначно понятны.

  4. Дискретность 
    четкое разделение всего пути решения
    задачи на отдельные этапы (шаги) так,
    чтобы ход выполнения алгоритма проходил
    поэтапно, вовремя корректируя действия
    исполнителя.

  5. Результативность –
    точное выполнение предписаний алгоритма
    должно привести к результату за n шагов,
    если правильно разработана исходная
    модель и сам алгоритм.

Всякий
человек при планировании деятельности
обязательно выполняет две операции:

  1. Оценивает
    исходные данные (создает исходную
    модель).

  2. Прогнозирует
    результат (прогнозирует какую-то
    конечную модель).

Суть
решения задачи в переходе от исходной
модели к прогнозируемому результату,
через конечное число действий.

Несмотря
на многообразие алгоритмов все они
строятся из 3-х типов алгоритмических
структур.

^ Линейным
алгоритмом
 называется
алгоритмом, в котором все указанные в
последствии действия исполняются и
притом только один раз.

Разветвляющимся
алгоритмом
 называется
алгоритм, в котором выполняется одна
из ветвей действий при заданных значениях
параметра.

Циклический
алгоритм 

алгоритм в котором какая-то совокупность
действий повторяется несколько раз при
изменяющихся значениях параметра.
^

Изобразительные
средства для описания (представление)
алгоритма

Для
записи алгоритма решения задачи
применяются следующие изобразительные
способы их представления:

  • Словесно-
    формульное описание

Блок-схема
(схема графических символов)

  • Алгоритмические
    языки

Операторные
схемы

  • Псевдокод

Для
записи алгоритма существует общая
методика:

  • Каждый
    алгоритм должен иметь имя, которое
    раскрывает его смысл.

Необходимо
обозначить начало и конец алгоритма.

Описать
входные и выходные данные.

  • Указать
    команды, которые позволяют выполнять
    определенные действия над выделенными
    данными 

Общий
вид алгоритма

Алгоритм:
Название алгоритма

Описание
данных

Начало

Команды

Конец

Формульно-словесный
способ записи алгоритма характеризуется
тем, что описание осуществляется с
помощью слов и формул. Содержание
последовательности этапов выполнения
алгоритмов записывается на естественном
профессиональном языке предметной
области в произвольной форме.

Графический
способ описания алгоритма (блок — схема)
получил самое широкое распространение.
Для графического описания алгоритмов
используются схемы алгоритмов или
блочные символы (блоки), которые
соединяются между собой линиями
связи.

Блок-схемой называется
направленный граф, в узлах которого
содержаться элементы (блоки), геометрическая
конфигурация которых показывает, что
делает этот блок.

Каждый
этап вычислительного процесса 
представляется геометрическими фигурами
(блоками). Они делятся на арифметические
или вычислительные (прямоугольник),
логические (ромб) и блоки ввода-вывода
данных (параллелограмм). 

Основные
блоки.(Рис.1)

Порядок
выполнения этапов указывается стрелками,
соединяющими блоки. Геометрические
фигуры размещаются сверху вниз и слева
на право. Нумерация блоков производится
в порядке их размещения в
схеме.

Алгоритмические
языки  — это специальное средство,
предназначенное для записи
алгоритмов в аналитическом виде.
Алгоритмические языки близки к
математическим выражениям и к естественным
языкам. Каждый алгоритмический язык
имеет свой словарь. Алгоритм, записанный
на алгоритмическом языке, выполняется
по строгим правилам этого конкретного
языка.

Операторные
схемы алгоритмов. Суть этого способа
описания алгоритма заключается в том,
что каждый оператор обозначается буквой
(например, А – арифметический оператор,
Р – логический оператор и т.д.).

Операторы
записываются слева направо в
последовательности их выполнения,
причем, каждый оператор имеет индекс,
указывающий порядковый номер оператора.
Алгоритм записывается в одну строку в
виде последовательности операторов.
 

Псевдокод
– система команд абстрактной машины.
Этот способ записи алгоритма с помощью
операторов близких к алгоритмическим
языкам.
^

Принципы
разработки алгоритмов и программ

Типы
алгоритмических процессов

По
структуре выполнения алгоритмы и
программы делятся на три вида:

  • Линейные

Ветвящиеся

  • Циклические

Линейный
алгоритм (линейная структура) – это
такой алгоритм, в котором все действия
выполняются последовательно друг за
другом и только один раз. Схема представляет
собой последовательность блоков, которые
располагаются сверху вниз в порядке их
выполнения. Первичные и промежуточные
данные не оказывают влияния на направление
процесса вычисления.

Алгоритмы
разветвляющейся структуры

На
практике часто встречаются задачи, в
которых в зависимости от первоначальных
условий или промежуточных результатов
необходимо выполнить вычисления по
одним или другим формулам. 

Такие
задачи можно описать с помощью алгоритмов
разветвляющейся структуры. В таких
алгоритмах выбор направления продолжения
вычисления осуществляется по итогам
проверки заданного условия. Ветвящиеся
процессы описываются оператором IF
(условие). 

(Рис.2)

Циклические
вычислительные процессы
Для
решения многих задач характерно
многократное повторение отдельных
участков вычислений. Для решения таких
задач применяются алгоритмы циклической
структуры (циклические алгоритмы). Цикл
– последовательность команд, которая
повторяется до тех пор, пока не будет
выполнено заданное условие. Циклическое
описание многократно повторяемых
процессов значительно снижает трудоемкость
написания программ.
Существуют
две схемы циклических вычислительных
процессов.

(Рис.3)
(Рис.4)
Особенностью
первой схемы является то, что проверка
условия выхода из цикла проводится до
выполнения тела цикла. В том случае,
если условие выхода из цикла выполняется,
то тело цикла не выполняется ни
разу. 

Особенностью
второй  схемы является то, что цикл
выполняется хоты бы один раз, так как
первая проверка условия выхода из цикла
осуществляется после того, как тело
цикла выполнено.

Существуют
циклы с известным числом повторений и
итерационные циклы. При итерационном
цикле выход из тела цикла, как правило,
происходит при достижении заданной
точности вычисления.

Алгоритм
любой сложности может быть представлен
комбинацией трех базовых структур:

  • следование;

ветвление
(в полной и сокращенной форме);

  • цикл
    (с предусловием или постусловием).

Характерной
особенностью этих структур является
наличие у них одного входа и одного
выхода. 

7

Соседние файлы в папке Вар-2.12

  • #
  • #
  • #
  • #
  • #

1.4. Сервисное программное обеспечение ПК и основы алгоритмизации

1.4.2. Основы алгоритмизации и языки программирования

Алгоритм и его свойства

Решение задач на компьютере основано на понятии алгоритма. Алгоритм – это точное предписание, определяющее вычислительный процесс, ведущий от варьируемых начальных данных к исходному результату.

Алгоритм означает точное описание некоторого процесса, инструкцию по его выполнению. Разработка алгоритма является сложным и трудоемким процессом. Алгоритмизация – это техника разработки (составления) алгоритма для решения задач на ЭВМ.

Изобразительные средства для описания (представление) алгоритма

Для записи алгоритма решения задачи применяются следующие изобразительные способы их представления:

  1. Словесно- формульное описание.
  2. Блок-схема (схема графических символов).
  3. Алгоритмические языки.
  4. Операторные схемы.
  5. Псевдокод.

Для записи алгоритма существует общая методика:

  1. Каждый алгоритм должен иметь имя, которое раскрывает его смысл.
  2. Необходимо обозначить начало и конец алгоритма.
  3. Описать входные и выходные данные.
  4. Указать команды, которые позволяют выполнять определенные действия над выделенными данными.

Общий вид алгоритма:

  • название алгоритма;
  • описание данных;
  • начало;
  • команды;
  • конец.

Формульно-словесный способ записи алгоритма характеризуется тем, что описание осуществляется с помощью слов и формул. Содержание последовательности этапов выполнения алгоритмов записывается на естественном профессиональном языке предметной области в произвольной форме.

Графический способ описания алгоритма (блок — схема) получил самое широкое распространение. Для графического описания алгоритмов используются схемы алгоритмов или блочные символы (блоки), которые соединяются между собой линиями связи.

Каждый этап вычислительного процесса  представляется геометрическими фигурами (блоками). Они делятся на арифметические или вычислительные (прямоугольник), логические (ромб) и блоки ввода-вывода данных (параллелограмм).

Схемы алгоритмов:

Схемы алгоритмов
Рис. 1.

Порядок выполнения этапов указывается стрелками, соединяющими блоки. Геометрические фигуры размещаются сверху вниз и слева на право. Нумерация блоков производится в порядке их размещения в схеме.

Алгоритмические языки  — это специальное средство, предназначенное для записи алгоритмов в аналитическом виде. Алгоритмические языки близки к математическим выражениям и к естественным языкам. Каждый алгоритмический язык имеет свой словарь. Алгоритм, записанный на алгоритмическом языке, выполняется по строгим правилам этого конкретного языка.

Операторные схемы алгоритмов. Суть этого способа описания алгоритма заключается в том, что каждый оператор обозначается буквой (например, А – арифметический оператор, Р – логический оператор и т.д.).

Операторы записываются слева направо в последовательности их выполнения, причем, каждый оператор имеет индекс, указывающий порядковый номер оператора. Алгоритм записывается в одну строку в виде последовательности операторов.

Псевдокод – система команд абстрактной машины. Этот способ записи алгоритма с помощью операторов близких к алгоритмическим языкам.

Принципы разработки алгоритмов и программ

Типы алгоритмических процессов

По структуре выполнения алгоритмы и программы делятся на три вида:

  • линейные;
  • ветвящиеся;
  • циклические;

Линейные вычислительные процессы

Линейный алгоритм (линейная структура) – это такой алгоритм, в котором все действия выполняются последовательно друг за другом и только один раз. Схема представляет собой последовательность блоков, которые располагаются сверху вниз в порядке их выполнения. Первичные и промежуточные данные не оказывают влияния на направление процесса вычисления.

Алгоритмы разветвляющейся структуры

На практике часто встречаются задачи, в которых в зависимости от первоначальных условий или промежуточных результатов необходимо выполнить вычисления по одним или другим формулам.

Такие задачи можно описать с помощью алгоритмов разветвляющейся структуры. В таких алгоритмах выбор направления продолжения вычисления осуществляется по итогам проверки заданного условия. Ветвящиеся процессы описываются оператором IF (условие).

Оператор IF (условие) для описания ветвящихся процессов
Рис. 2.

Циклические вычислительные процессы

Для решения многих задач характерно многократное повторение отдельных участков вычислений. Для решения таких задач применяются алгоритмы циклической структуры (циклические алгоритмы). Цикл – последовательность команд, которая повторяется до тех пор, пока не будет выполнено заданное условие. Циклическое описание многократно повторяемых процессов значительно снижает трудоемкость написания программ.

Существуют две схемы циклических вычислительных процессов.

Схема циклических вычислительных процессов 1 Схема циклических вычислительных процессов 2
Рис. 3.

Особенностью первой схемы является то, что проверка условия выхода из цикла проводится до выполнения тела цикла. В том случае, если условие выхода из цикла выполняется, то тело цикла не выполняется ни разу.

Особенностью второй  схемы является то, что цикл выполняется хоты бы один раз, так как первая проверка условия выхода из цикла осуществляется после того, как тело цикла выполнено.

Существуют циклы с известным числом повторений и итерационные циклы. При итерационном цикле выход из тела цикла, как правило, происходит при достижении заданной точности вычисления.

Языки программирования

Языки программирования – это искусственные языки записи алгоритмов для исполнения их на ЭВМ. Программирование (кодирование) — составление программы по заданному алгоритму.

Классификация языков программирования. В общем, языки программирования делятся на две группы: операторные и функциональные. К функциональным относятся ЛИСП, ПРОЛОГ и т.д.

Операторные языки делятся на процедурные и непроцедурные (Smalltalk, QBE). Процедурные делятся на машино — ориентированные и машино – независимые.

К машино – ориентированным языкам относятся: машинные языки, автокоды, языки символического кодирования, ассемблеры.

К машино – независимым языкам относятся:

  1. Процедурно – ориентированные (Паскаль, Фортран и др.).
  2. Проблемно – ориентированные (ЛИСП и др.).
  3. Объектно-ориентированные (Си++, Visual Basic, Java и др.).

Далее…>>> Тема: 1.1.1. Объект, предмет, методы и задачи экономической информатики

Алгоритм и его свойства

Решение задач на компьютере основано на понятии алгоритма. Алгоритм – это точное предписание, определяющее вычислительный процесс, ведущий от варьируемых начальных данных к исходному результату.

Алгоритм означает точное описание некоторого процесса, инструкцию по его выполнению. Разработка алгоритма является сложным и трудоемким процессом. Алгоритмизация – это техника разработки (составления) алгоритма для решения задач на ЭВМ.

Изобразительные средства для описания (представление) алгоритма

Для записи алгоритма решения задачи применяются следующие изобразительные способы их представления:

Словесно- формульное описание

Блок-схема (схема графических символов)

Алгоритмические языки

Операторные схемы

Псевдокод

Для записи алгоритма существует общая методика:

Каждый алгоритм должен иметь имя, которое раскрывает его смысл.

Необходимо обозначить начало и конец алгоритма.

Описать входные и выходные данные.

Указать команды, которые позволяют выполнять определенные действия над выделенными данными

Общий вид алгоритма

Алгоритм:

Название алгоритма

Описание данных

Начало

Команды

Конец

Формульно-словесный способ записи алгоритма характеризуется тем, что описание осуществляется с помощью слов и формул. Содержание последовательности этапов выполнения алгоритмов записывается на естественном профессиональном языке предметной области в произвольной форме.

Графический способ описания алгоритма (блок — схема) получил самое широкое распространение. Для графического описания алгоритмов используются схемы алгоритмов или блочные символы (блоки), которые соединяются между собой линиями связи.

Каждый этап вычислительного процесса представляется геометрическими фигурами (блоками). Они делятся на арифметические или вычислительные (прямоугольник), логические (ромб) и блоки ввода-вывода данных (параллелограмм).

Схемы алгоритмов:

Порядок выполнения этапов указывается стрелками, соединяющими блоки. Геометрические фигуры размещаются сверху вниз и слева на право. Нумерация блоков производится в порядке их размещения в схеме.

Алгоритмические языки — это специальное средство, предназначенное для записи алгоритмов в аналитическом виде. Алгоритмические языки близки к математическим выражениям и к естественным языкам. Каждый алгоритмический язык имеет свой словарь. Алгоритм, записанный на алгоритмическом языке, выполняется по строгим правилам этого конкретного языка.

Операторные схемы алгоритмов. Суть этого способа описания алгоритма заключается в том, что каждый оператор обозначается буквой (например, А – арифметический оператор, Р – логический оператор и т.д.).

Операторы записываются слева направо в последовательности их выполнения, причем, каждый оператор имеет индекс, указывающий порядковый номер оператора. Алгоритм записывается в одну строку в виде последовательности операторов.

Псевдокод – система команд абстрактной машины. Этот способ записи алгоритма с помощью операторов близких к алгоритмическим языкам.

Принципы разработки алгоритмов и программ

Типы алгоритмических процессов

По структуре выполнения алгоритмы и программы делятся на три вида:

Линейные

Ветвящиеся

Циклические

Линейный алгоритм (линейная структура) – это такой алгоритм, в котором все действия выполняются последовательно друг за другом и только один раз. Схема представляет собой последовательность блоков, которые располагаются сверху вниз в порядке их выполнения. Первичные и промежуточные данные не оказывают влияния на направление процесса вычисления.

Алгоритмы разветвляющейся структуры

На практике часто встречаются задачи, в которых в зависимости от первоначальных условий или промежуточных результатов необходимо выполнить вычисления по одним или другим формулам.

Такие задачи можно описать с помощью алгоритмов разветвляющейся структуры. В таких алгоритмах выбор направления продолжения вычисления осуществляется по итогам проверки заданного условия. Ветвящиеся процессы описываются оператором IF (условие).

Циклические вычислительные процессы

Для решения многих задач характерно многократное повторение отдельных участков вычислений. Для решения таких задач применяются алгоритмы циклической структуры (циклические алгоритмы). Цикл – последовательность команд, которая повторяется до тех пор, пока не будет выполнено заданное условие. Циклическое описание многократно повторяемых процессов значительно снижает трудоемкость написания программ.

Существуют две схемы циклических вычислительных процессов.

Особенностью первой схемы является то, что проверка условия выхода из цикла проводится до выполнения тела цикла. В том случае, если условие выхода из цикла выполняется, то тело цикла не выполняется ни разу.

Особенностью второй схемы является то, что цикл выполняется хоты бы один раз, так как первая проверка условия выхода из цикла осуществляется после того, как тело цикла выполнено.

Существуют циклы с известным числом повторений и итерационные циклы. При итерационном цикле выход из тела цикла, как правило, происходит при достижении заданной точности вычисления.

Языки программирования

Языки программирования – это искусственные языки записи алгоритмов для исполнения их на ЭВМ. Программирование (кодирование) — составление программы по заданному алгоритму.

Классификация языков программирования. В общем, языки программирования делятся на две группы: операторные и функциональные. К функциональным относятся ЛИСП, ПРОЛОГ и т.д.

Операторные языки делятся на процедурные и непроцедурные (Smalltalk, QBE). Процедурные делятся на машино — ориентированные и машино – независимые.

К машино – ориентированным языкам относятся: машинные языки, автокоды, языки символического кодирования, ассемблеры.

К машино – независимым языкам относятся:

Процедурно – ориентированные (Паскаль, Фортран и др.)

Проблемно – ориентированные (ЛИСП и др.)

Объектно-ориентированные (Си++, Visual Basic, Java и др.)

Средства и правила построения блок-схем

Блок-схема является формой представления алгоритма с помощью графических символов. Графические символы, их размеры, а также правила построения блок-схем определены государственными стандартами. Рассмотрим часто употребляемые графические символы (полный список включает 42 символа).

Процесс. Выполнение операции или группы операций, в результате чего изменяется значение, форма представления или расположения данных.

Внутри символа или же в виде комментария на естественном языке или в виде формулы записываются действия, которые производятся при выполнении операции или группы операций.

Решение. Выбор направления выполнения алгоритма или программы в зависимости от некоторых переменных условий.

Символ используется для изображения унифицированных структур:

РАЗВИЛКА ПОЛНАЯ

РАЗВИЛКА НЕПОЛНАЯ

ВЫБОР

ЦИКЛ-ДО

ЦИКЛ-ПОКА

Модификация. Выполнение операций, меняющих команды или группу команд, изменяющих программу.

Символ используется для изображения унифицированной структуры ЦИКЛ С ПАРАМЕТРОМ. Внутри символа записывается параметр цикла с указанием начального и конечного значений, а также шаг изменения цикла, если он не равен единице.

Предопределенный процесс. Использование ранее созданных и отдельно описанных алгоритмов или программ (процедур, функций, программных модулей).Символ служит для указания обращения к процедурам, функциям, программным модулям.

Ручной ввод. Ввод данных оператором в процесс обработки при помощи устройства, непосредственно сопряженного с компьютером (например, клавиатура).

Дисплей. Ввод — вывод данных в случае, если непосредственно подключенное к процессору устройство воспроизводит данные и позволяет оператору вносить изменения в процессе их обработки.

Документ. Ввод — вывод данных, носителем которых служит бумага.

Линия потока. Указание последовательности связей между символами.

Перечислим некоторые правила изображения линий потока:

1) линии потока должны быть параллельны линиям внешней рамки блок-схемы (границам листа, на котором изображена блок-схема);

2) направление линии потока сверху вниз и слева направо принимается за основное и стрелками не обозначается, в остальных случаях направление линии потока обозначается стрелками;

3) изменение направления линии потока производится под углом 90 градусов.

Соединитель. Указание связи между прерванными линиями потока, связывающими символы. Если блок-схема состоит из нескольких частей, расположенных на одной странице, то линия потока одной части заканчивается символом СОЕДИНИТЕЛЬ, а линия потока на продолжении блок-схемы начинается с этого же символа. Внутри символов СОЕДИНИТЕЛЬ ставятся одинаковые порядковые номера, соответствующие разорванной линии потока.

Межстраничный соединитель. Указание связи между разъединенными частями схем алгоритмов и программ, расположенных на разных листах.

Данный символ служит для тех же целей, что и соединитель, но при расположении частей блок-схемы на разных страницах.

Пуск — останов. Начало, конец, прерывание процесса обработки данных или выполнения программы.

Комментарий. Связь между элементами схемы и пояснениями.

Позволяет включать в блок-схему пояснения, формулы и другую информацию.

Размеры символов должны удовлетворять соотношению b = 1.5a (a и b указаны на рис. 1). На этом же рисунке показан пример использования символа КОММЕНТАРИЙ.

Рис. 1. Фрагмент блок-схемы

Каждому символу на блок-схеме присваивается порядковый номер. Для примера на рис. 1 символу ПРОЦЕСС присвоен порядковый номер 4.

Блок-схемы — это та часть документации к программе, которая почти всегда имеется в избытке. Между тем многие программы вообще не нуждаются в блок-схемах и лишь очень немногие из них требуют больше одного листа таковых.

Блок-схемы показывают структуру ветвления программы только в одном ее аспекте. Но даже эта структура видна достаточно четко, только если вся блок-схема помещается на одной странице, и о ней очень трудно получить хорошее представление, если блок-схема располагается на нескольких листах, связанных вместе нумерованными стрелками.

Блок-схема, помещающаяся на одной странице, для большой программы по существу превращается в общий план программы, перечень ее основных этапов или блоков, и, как таковая, она очень удобна. На рис. 15.1 показан такой граф подчиненности подпрограмм.

Конечно, такой граф и не следует стандартам блок-схем, и не нуждается в них. Все эти правила относительно вида элементов, стрелок, порядка нумерации и т. д. нужны только для того, чтобы можно было понять подробные блок-схемы.

Рис.15.1. Пример структуры программы

Подробные блок-схемы, однако, устарели; они только мешают, и в лучшем случае пригодны для обучения новичков, еще не умеющих алгоритмически мыслить. В свое время предложенные Голдстайном и Нейманом маленькие квадратики на блок-схемах вместе со своим содержанием выступали в качестве языков высокого уровня, объединяя абсолютно непонятные операторы машинного языка в группы, имеющие определенный смысл. Как давно уже указал Айверсон2, в систематическом языке высокого уровня такая группировка уже осуществлена, так что каждый квадратик просто соответствует оператору (рис. 15.2). Тогда сами квадратики превращаются в случайное и ненужное упражнение по рисованию, и от них можно отказаться. Но теперь не остается ничего, кроме стрелок. Стрелки, соединяющие оператор со следующим за ним, не нужны, сотрем их. Остаются только операторы перехода. Но если следовать хорошей практике, а использовать блочные структуры для минимизации числа операторов перехода, то останется совсем/немного стрелок, вот они-то очень сильно облегчают понимание. Эти стрелки можно перенести прямо ни распечатку программы и совсем избавиться от блок-схемы.

В действительности блок-схемы гораздо больше превозносятся, чем используются на практике. Я никогда не видел, чтобы опытный программист чертил блок-схемы, прежде чем написать программу. Когда стандарты организации требуют блок-схем, то почти неизменно они рисуются после. Многие программистские организации с гордостью пользуются специальными программами для построения «этого незаменимого инструмента программиста» по готовой машинной программе. Я не считаю этот универсальный опыт прискорбным проявлением дурного топа, признание в котором сопровождается нервным смехом. Напротив, это свидетельство здравого смысла, урок, проливающий свет на истинную пользу блок-схем.

Автор статьи

Михаил Анатольевич Ковалёв

Эксперт по предмету «Программирование»

Стать автором

Решение задач с использованием компьютера основано на понятии алгоритма, который является точным описанием вычислительного процесса, ведущего от варьируемых начальных данных к конечному результату.

Алгоритмы заложены в основе каждой программы, а также они встречаются во многих сферах деятельности человека (например, рецепты, схема вязания или танца).

Понятие алгоритма

Определение 2

Алгоритм представляет собой точное описание определенного процесса, инструкцию по его выполнению.

Процесс разработки алгоритма — достаточно сложный и трудоемкий.

Можно также сказать, что алгоритм представляет собой конечную последовательность команд для исполнителя, направленную на достижение конкретной цели.

Цель же, в свою очередь, является достижением желаемого результата.

В качестве исполнителя могут выступать люди, живые существа, автоматические устройства, способные к исполнению и восприятию команд.

Определение 3

Перечень команд, воспринимаемых и выполняемых (по возможности) исполнителем, называют системой команд.

Каждый алгоритм предназначен для конкретного исполнителя. Исполнение алгоритма начинается с первой команды. После того, как ее исполнили, переходят к следующей команде и так до конца алгоритма.

В качестве примера алгоритма можно вспомнить известный всем со школы арифметический способ сложения двух положительных чисел «столбиком». Алгоритм данной задачи представим в виде системы следующих действий:

  • выделим в слагаемых разряды единиц и сложим единицы;
  • при получении суммы меньшей 10 запишем ее в разряде единиц под нижним числом;
  • при получении суммы большей или равной 10 запишем в разряде единиц только количество единиц, затем выделим в слагаемых разряд десятков и запишем полученный при сложении единиц десяток над разрядом десятков первого (верхнего) слагаемого;
  • сложим десятки и т. д.

«Алгоритмизация. Понятие алгоритма. Свойства и способы описания алгоритмов.» 👇

Аналогичные указания дают для сложения единиц других разрядов числа. Системой-исполнителем этого алгоритма может стать как ЭВМ, так и человек.

Понятие алгоритма в теорию и практику обучения вошло в конце $50$-х годов прошлого столетия в связи с развитием программированного обучения и применением обучающимися машин.

Способы описания алгоритмов

Существуют различные способы описания алгоритмов. Приведем основные из них:

  • словесный (пошаговое описание);
  • табличный и в виде формул;
  • графический (в виде схем);
  • с использованием псевдокода (алгоритмического языка).

Алгоритмический язык является формальным языком, предназначенным для записи алгоритма. В его состав входят набор основных символов (алфавит), система точных правил построения текстов (синтаксис) и система соответствия синтаксически допустимых текстов языка описываемым действиям и объектам (семантика).

Множество языков программирования, используемых при ре¬шении задач на ЭВМ, являются алгоритмическими.

Псевдокод представляет собой способ описания логики программы до начала ее программирования и занимает промежуточное положение между машинным языками и естественными.

Под схемой алгоритма понимают графическое пред¬ставление последовательности шагов алгоритма, наглядно показывающее взаимосвязь опера¬ций, которые осуществляются в алгоритме на каждом шаге, и их очередность. Другими словами, для графического изображения структуры алгоритма используется блок-схема.

В соответствии с блок-схемой последовательность действий указывается с по¬мощью стрелок, которые соединяют отдельные блоки и показывают, какой блок и за каким должен быть выполнен.

Свойства алгоритмов

Существует ряд определенных требований к алгоритмам. Перечислим семь важных свойств, которыми должен обладать каждый алгоритм:

  1. Наличие ввода исходных данных.
  2. Наличие вывода результата выполнения.
  3. Однозначность, так как компьютеру понятны лишь однозначные инструкции.
  4. Общность, в соответствии с которой алгоритм может использоваться не только для решения одной задачи, но и целого класса задач.
  5. Корректность, согласно которой при выполнении алгоритма должно быть всегда правильное решение задачи.
  6. Конечность означает, что решение задачи необходимо получить за конечное число шагов.
  7. Эффективность означает, что для решения задачи необходимо использовать ограниченные ресурсы компьютера (объем оперативной памяти, процессорное время и т. д.).

Эффективность алгоритма определяют с учетом потребляемых ресурсов компьютера, к которым относят быстродействие (количество выполняемых операций и затраты трудоемкости на каждую из них) и общий объем оперативной памяти, которая выделяется под данные. Приведенные показатели могут иногда быть противоречивыми: так в результате повышения быстродействия могут потребоваться дополнительные расходы памяти и наоборот. При возможности улучшения одного показателя без ущерба для другого необходимо этого добиваться. В случаях, когда возникает дилемма, рекомендуется предпочесть экономию памяти в ущерб производительности, поскольку тактовая частота процессоров растет опережающими темпами по сравнению с объемами оперативной памяти.

Специалистами предлагается ряд мер для повышения эффективности.

Блок-схемы

Основные алгоритмические структуры изображаются с помощью специальных графических символов. Все составляющие блок-схемы соединяются между собой в той последовательности, в какой они должны быть исполнены.

Кроме того, в алгоритмах используются разветвляющие и циклические блоки.

Обязательными блоками являются блоки начала и конца алгоритма. Между ними размещаются остальные блоки алгоритма.

Операторный блок (блок действия) содержит команды обработки данных.

Блок проверки условия предполагает 2 варианта дальнейшего развития решения задачи, в зависимости от того или иного выполнения поставленного условия.

Блоки ввода или вывода данных. Для выполнения алгоритма необходимы не только команды, но и данные, поступающие из вне. Для получения этих данных используется блок ввода. Для того, чтобы можно было вывести результат выполнения программы, либо какое-нибудь сообщение используют блок вывода.

Ниже на рисунке представлены графические изображения основных блоков алгоритма.

Находи статьи и создавай свой список литературы по ГОСТу

Поиск по теме

Обновлено: 16.07.2023

Решение задач на компьютере основано на понятии алгоритма. Алгоритм — это точное предписание, определяющее вычислительный процесс, ведущий от варьируемых начальных данных к исходному результату.

Алгоритм означает точное описание некоторого процесса, инструкцию по его выполнению. Разработка алгоритма является сложным и трудоемким процессом. Алгоритмизация — это техника разработки (составления) алгоритма для решения задач на ЭВМ.

Изобразительные средства для описания (представление) алгоритма

Для записи алгоритма решения задачи применяются следующие изобразительные способы их представления:

Словесно- формульное описание

Блок-схема (схема графических символов)

Для записи алгоритма существует общая методика:

Каждый алгоритм должен иметь имя, которое раскрывает его смысл.

Необходимо обозначить начало и конец алгоритма.

Описать входные и выходные данные.

Указать команды, которые позволяют выполнять определенные действия над выделенными данными

Общий вид алгоритма

Формульно-словесный способ записи алгоритма характеризуется тем, что описание осуществляется с помощью слов и формул. Содержание последовательности этапов выполнения алгоритмов записывается на естественном профессиональном языке предметной области в произвольной форме.

Графический способ описания алгоритма (блок — схема) получил самое широкое распространение. Для графического описания алгоритмов используются схемы алгоритмов или блочные символы (блоки), которые соединяются между собой линиями связи.

Каждый этап вычислительного процесса представляется геометрическими фигурами (блоками). Они делятся на арифметические или вычислительные (прямоугольник), логические (ромб) и блоки ввода-вывода данных (параллелограмм).

Порядок выполнения этапов указывается стрелками, соединяющими блоки. Геометрические фигуры размещаются сверху вниз и слева на право. Нумерация блоков производится в порядке их размещения в схеме.

Алгоритмические языки — это специальное средство, предназначенное для записи алгоритмов в аналитическом виде. Алгоритмические языки близки к математическим выражениям и к естественным языкам. Каждый алгоритмический язык имеет свой словарь. Алгоритм, записанный на алгоритмическом языке, выполняется по строгим правилам этого конкретного языка.

Операторные схемы алгоритмов. Суть этого способа описания алгоритма заключается в том, что каждый оператор обозначается буквой (например, А — арифметический оператор, Р — логический оператор и т.д.).

Операторы записываются слева направо в последовательности их выполнения, причем, каждый оператор имеет индекс, указывающий порядковый номер оператора. Алгоритм записывается в одну строку в виде последовательности операторов.

Псевдокод — система команд абстрактной машины. Этот способ записи алгоритма с помощью операторов близких к алгоритмическим языкам.

Принципы разработки алгоритмов и программ

Типы алгоритмических процессов

По структуре выполнения алгоритмы и программы делятся на три вида:

Линейный алгоритм (линейная структура) — это такой алгоритм, в котором все действия выполняются последовательно друг за другом и только один раз. Схема представляет собой последовательность блоков, которые располагаются сверху вниз в порядке их выполнения. Первичные и промежуточные данные не оказывают влияния на направление процесса вычисления.

Алгоритмы разветвляющейся структуры

На практике часто встречаются задачи, в которых в зависимости от первоначальных условий или промежуточных результатов необходимо выполнить вычисления по одним или другим формулам.

Такие задачи можно описать с помощью алгоритмов разветвляющейся структуры. В таких алгоритмах выбор направления продолжения вычисления осуществляется по итогам проверки заданного условия. Ветвящиеся процессы описываются оператором IF (условие).

Циклические вычислительные процессы

Для решения многих задач характерно многократное повторение отдельных участков вычислений. Для решения таких задач применяются алгоритмы циклической структуры (циклические алгоритмы). Цикл — последовательность команд, которая повторяется до тех пор, пока не будет выполнено заданное условие. Циклическое описание многократно повторяемых процессов значительно снижает трудоемкость написания программ.

Существуют две схемы циклических вычислительных процессов.

Особенностью первой схемы является то, что проверка условия выхода из цикла проводится до выполнения тела цикла. В том случае, если условие выхода из цикла выполняется, то тело цикла не выполняется ни разу.

Особенностью второй схемы является то, что цикл выполняется хоты бы один раз, так как первая проверка условия выхода из цикла осуществляется после того, как тело цикла выполнено.

Существуют циклы с известным числом повторений и итерационные циклы. При итерационном цикле выход из тела цикла, как правило, происходит при достижении заданной точности вычисления.

Языки программирования — это искусственные языки записи алгоритмов для исполнения их на ЭВМ. Программирование (кодирование) — составление программы по заданному алгоритму.

Классификация языков программирования. В общем, языки программирования делятся на две группы: операторные и функциональные. К функциональным относятся ЛИСП, ПРОЛОГ и т.д.

Операторные языки делятся на процедурные и непроцедурные (Smalltalk, QBE). Процедурные делятся на машино — ориентированные и машино — независимые.

К машино — ориентированным языкам относятся: машинные языки, автокоды, языки символического кодирования, ассемблеры.

К машино — независимым языкам относятся:

Процедурно — ориентированные (Паскаль, Фортран и др.)

Проблемно — ориентированные (ЛИСП и др.)

Объектно-ориентированные (Си++, Visual Basic, Java и др.)

Средства и правила построения блок-схем

Блок-схема является формой представления алгоритма с помощью графических символов. Графические символы, их размеры, а также правила построения блок-схем определены государственными стандартами. Рассмотрим часто употребляемые графические символы (полный список включает 42 символа).

Процесс. Выполнение операции или группы операций, в результате чего изменяется значение, форма представления или расположения данных.

Внутри символа или же в виде комментария на естественном языке или в виде формулы записываются действия, которые производятся при выполнении операции или группы операций.

Решение. Выбор направления выполнения алгоритма или программы в зависимости от некоторых переменных условий.

Символ используется для изображения унифицированных структур:

Модификация. Выполнение операций, меняющих команды или группу команд, изменяющих программу.

Символ используется для изображения унифицированной структуры ЦИКЛ С ПАРАМЕТРОМ. Внутри символа записывается параметр цикла с указанием начального и конечного значений, а также шаг изменения цикла, если он не равен единице.

Предопределенный процесс. Использование ранее созданных и отдельно описанных алгоритмов или программ (процедур, функций, программных модулей).Символ служит для указания обращения к процедурам, функциям, программным модулям.

Ручной ввод. Ввод данных оператором в процесс обработки при помощи устройства, непосредственно сопряженного с компьютером (например, клавиатура).

Дисплей. Ввод — вывод данных в случае, если непосредственно подключенное к процессору устройство воспроизводит данные и позволяет оператору вносить изменения в процессе их обработки.

Документ. Ввод — вывод данных, носителем которых служит бумага.

Линия потока. Указание последовательности связей между символами.

Перечислим некоторые правила изображения линий потока:

1) линии потока должны быть параллельны линиям внешней рамки блок-схемы (границам листа, на котором изображена блок-схема);

2) направление линии потока сверху вниз и слева направо принимается за основное и стрелками не обозначается, в остальных случаях направление линии потока обозначается стрелками;

3) изменение направления линии потока производится под углом 90 градусов.

Соединитель. Указание связи между прерванными линиями потока, связывающими символы. Если блок-схема состоит из нескольких частей, расположенных на одной странице, то линия потока одной части заканчивается символом СОЕДИНИТЕЛЬ, а линия потока на продолжении блок-схемы начинается с этого же символа. Внутри символов СОЕДИНИТЕЛЬ ставятся одинаковые порядковые номера, соответствующие разорванной линии потока.

Межстраничный соединитель. Указание связи между разъединенными частями схем алгоритмов и программ, расположенных на разных листах.

Данный символ служит для тех же целей, что и соединитель, но при расположении частей блок-схемы на разных страницах.

Пуск — останов. Начало, конец, прерывание процесса обработки данных или выполнения программы.

Комментарий. Связь между элементами схемы и пояснениями.

Позволяет включать в блок-схему пояснения, формулы и другую информацию.

Размеры символов должны удовлетворять соотношению b = 1.5a (a и b указаны на рис. 1). На этом же рисунке показан пример использования символа КОММЕНТАРИЙ.

Рис. 1. Фрагмент блок-схемы

Каждому символу на блок-схеме присваивается порядковый номер. Для примера на рис. 1 символу ПРОЦЕСС присвоен порядковый номер 4.

Блок-схемы — это та часть документации к программе, которая почти всегда имеется в избытке. Между тем многие программы вообще не нуждаются в блок-схемах и лишь очень немногие из них требуют больше одного листа таковых.

Блок-схемы показывают структуру ветвления программы только в одном ее аспекте. Но даже эта структура видна достаточно четко, только если вся блок-схема помещается на одной странице, и о ней очень трудно получить хорошее представление, если блок-схема располагается на нескольких листах, связанных вместе нумерованными стрелками.

Блок-схема, помещающаяся на одной странице, для большой программы по существу превращается в общий план программы, перечень ее основных этапов или блоков, и, как таковая, она очень удобна. На рис. 15.1 показан такой граф подчиненности подпрограмм.

Конечно, такой граф и не следует стандартам блок-схем, и не нуждается в них. Все эти правила относительно вида элементов, стрелок, порядка нумерации и т. д. нужны только для того, чтобы можно было понять подробные блок-схемы.

Рис.15.1. Пример структуры программы

Подробные блок-схемы, однако, устарели; они только мешают, и в лучшем случае пригодны для обучения новичков, еще не умеющих алгоритмически мыслить. В свое время предложенные Голдстайном и Нейманом маленькие квадратики на блок-схемах вместе со своим содержанием выступали в качестве языков высокого уровня, объединяя абсолютно непонятные операторы машинного языка в группы, имеющие определенный смысл. Как давно уже указал Айверсон2, в систематическом языке высокого уровня такая группировка уже осуществлена, так что каждый квадратик просто соответствует оператору (рис. 15.2). Тогда сами квадратики превращаются в случайное и ненужное упражнение по рисованию, и от них можно отказаться. Но теперь не остается ничего, кроме стрелок. Стрелки, соединяющие оператор со следующим за ним, не нужны, сотрем их. Остаются только операторы перехода. Но если следовать хорошей практике, а использовать блочные структуры для минимизации числа операторов перехода, то останется совсем/немного стрелок, вот они-то очень сильно облегчают понимание. Эти стрелки можно перенести прямо ни распечатку программы и совсем избавиться от блок-схемы.

В действительности блок-схемы гораздо больше превозносятся, чем используются на практике. Я никогда не видел, чтобы опытный программист чертил блок-схемы, прежде чем написать программу. Когда стандарты организации требуют блок-схем, то почти неизменно они рисуются после. Многие программистские организации с гордостью пользуются специальными программами для построения «этого незаменимого инструмента программиста» по готовой машинной программе. Я не считаю этот универсальный опыт прискорбным проявлением дурного топа, признание в котором сопровождается нервным смехом. Напротив, это свидетельство здравого смысла, урок, проливающий свет на истинную пользу блок-схем.

Схема — это абстракция какого-либо процесса или системы, наглядно отображающая наиболее значимые части. Схемы широко применяются с древних времен до настоящего времени — чертежи древних пирамид, карты земель, принципиальные электрические схемы. Очевидно, древние мореплаватели хотели обмениваться картами и поэтому выработали единую систему обозначений и правил их выполнения. Аналогичные соглашения выработаны для изображения схем-алгоритмов и закреплены ГОСТ и международными стандартами.

Рассматриваемый ГОСТ практически полностью соответствует международному стандарту ISO 5807:1985.

Содержание:

Элементы блок-схем алгоритмов

Блок-схема представляет собой совокупность символов, соответствующих этапам работы алгоритма и соединяющих их линий. Пунктирная линия используется для соединения символа с комментарием. Сплошная линия отражает зависимости по управлению между символами и может снабжаться стрелкой. Стрелку можно не указывать при направлении дуги слева направо и сверху вниз. Согласно п. 4.2.4, линии должны подходить к символу слева, либо сверху, а исходить снизу, либо справа.

Есть и другие типы линий, используемые, например, для изображения блок-схем параллельных алгоритмов, но в текущей статье они, как и ряд специфических символов, не рассматриваются. Рассмотрены лишь основные символы, которых всегда достаточно студентам.

Примеры блок-схем

В качестве примеров, построены блок-схемы очень простых алгоритмов сортировки, при этом акцент сделан на различные реализации циклов, т.к. у студенты делают наибольшее число ошибок именно в этой части.

Сортировка вставками

Массив в алгоритме сортировки вставками разделяется на отсортированную и еще не обработанную части. Изначально отсортированная часть состоит из одного элемента, и постепенно увеличивается.

insertsort_flowchart

Блок-схема алгоритма сортировки вставками

bubblesort_flowchart

В приведенной блок-схеме для организации цикла используется символ ветвления. В главном цикле (i Блок-схема алгоритма сортировки пузырьком

На блок-схеме показано использование символов начала и конца цикла. Условие внешнего цикла (А) проверяется в конце (с постусловием), он работает до тех пор, пока переменная hasSwapped имеет значение true. Внутренний цикл использует предусловие для перебора пар сравниваемых элементов. В случае, если элементы расположены в неправильном порядке, выполняется их перестановка посредством вызова внешней процедуры (swap). Для того, чтобы было понятно назначение внешней процедуры и порядок следования ее аргументов, необходимо писать комментарии. В случае, если функция возвращает значение, комментарий может быть написан к символу терминатору конца.

Сортировка выбором

В сортировке выбором массив разделяется на отсортированную и необработанную части. Изначально отсортированная часть пустая, но постепенно она увеличивается. Алгоритм производит поиск минимального элемента необработанной части и меняет его местами с первым элементом той же части, после чего считается, что первый элемент обработан (отсортированная часть увеличивается).

selectsort_flowchart

Блок-схема сортировки выбором

На блоге можно найти другие примеры блок-схем:

Часть студентов традиционно пытается рисовать блок-схемы в Microsoft Word, но это оказывается сложно и не удобно. Например, в MS Word нет стандартного блока для терминатора начала и конца алгоритма (прямоугольник со скругленными краями, а не овал). Наиболее удобными, на мой взгляд, являются утилиты MS Visio и yEd [5], обе они позволяют гораздо больше, чем строить блок-схемы (например рисовать диаграммы UML), но первая является платной и работает только под Windows, вторая бесплатная и кроссплатфомренная. Все блок-схемы в этой статье выполнены с использованием yEd.

Нужны ли блок-схемы? Альтернативы

Частные конторы никакие блок-схемы не используют, в книжках по алгоритмам [6] вместо них применяют словесное описание (псевдокод) как более краткую форму. Возможно блок-схемы применяют на государственных предприятиях, которые должны оформлять документацию согласно требованиям ЕСПД, но есть сомнения — даже для регистрации программы в Государственном реестре программ для ЭВМ никаких блок-схем не требуется.

Тем не менее, рисовать блок-схемы заставляют школьников (примеры из учебников ГОСТ не соответствуют) — выносят вопросы на государственные экзамены (ГИА и ЕГЭ), студентов — перед защитой диплом сдается на нормоконтроль, где проверяется соответствие схем стандартам.

Разработка блок-схем выполняется на этапах проектирования и документирования, согласно каскадной модели разработки ПО, которая сейчас почти не применяется, т.к. сопровождается большими рисками, связанными с ошибками на этапах проектирования.

Появляются подозрения, что система образования прогнила и отстала лет на 20, однако аналогичная проблема наблюдается и за рубежом. Международный стандарт ISO 5807:1985 мало чем отличается от ГОСТ 19.701-90, более нового стандарта за рубежом нет. Там же производится множество программ для выполнения этих самых схем — Dia, MS Visio, yEd, …, а значит списывать их не собираются. Вместо блок-схем иногда применяют диаграммы деятельности UML [6], однако удобнее они оказываются, разве что при изображении параллельных алгоритмов.

Периодически поднимается вопрос о том, что ни блок-схемы, ни UML не нужны, да и документация тоже не нужна. Об этом твердят программисты, придерживающиеся методологии экстремального программирования (XP) [7], ходя даже в их кругу нет единого мнения.

В ряде случаев, программирование невозможно без рисования блок-схем, т.к. это один процесс — существуют визуальные языки программирования, такие как ДРАКОН [8], кроме того, блок-схемы используются для верификации алгоритмов (формального доказательства их корректности) методом индуктивных утверждений Флойда [9].

В общем, единого мнения нет. Очевидно, есть области, в которых без чего-то типа блок-схем обойтись нельзя, но более гибкой альтернативы нет. Для формальной верификации необходимо рисовать подробные блок-схемы, но для проектирования и документирования такие схемы не нужны — я считаю разумным утверждение экстремальных программистов о том, что нужно рисовать лишь те схемы, которые помогают в работе и не требуют больших усилий для поддержания в актуальном состоянии [10].

В этой статье будут рассмотрены примеры блок-схем, которые могут встретиться вам в учебниках по информатике и другой литературе. Блок-схема представляет собой алгоритм, по которому решается какая-либо задача, поставленная перед разработчиком. Сначала нужно ответить на вопрос, что такое алгоритм, как он представляется графически, а самое главное – как его решить, зная определенные параметры. Нужно сразу отметить, что алгоритмы бывают нескольких видов.

Что такое алгоритм?

Это слово ввел в обиход математик Мухаммед аль-Хорезми, который жил в период 763-850 года. Именно он является человеком, который создал правила выполнения арифметических действий (а их всего четыре). А вот ГОСТ от 1974 года, который гласит, что:

Алгоритм – это точное предписание, которое определяет вычислительный процесс. Причем имеется несколько переменных с заданными значениями, которые приводят расчеты к искомому результату.

Алгоритм позволяет четко указать исполнителю выполнять строгую последовательность действий, чтобы решить поставленную задачу и получить результат. Разработка алгоритма – это разбивание одной большой задачи на некую последовательность шагов. Причем разработчик алгоритма обязан знать все особенности и правила его составления.

Особенности алгоритма

Всего можно выделить восемь особенностей алгоритма (независимо от его вида):

  1. Присутствует функция ввода изначальных данных.
  2. Есть вывод некоего результата после завершения алгоритма. Нужно помнить, что алгоритм нужен для того, чтобы достичь определенной цели, а именно – получить результат, который имеет прямое отношение к исходным данным.
  3. У алгоритма должна быть структура дискретного типа. Он должен представляться последовательными шагами. Причем каждый следующий шаг может начаться только после завершения предыдущего.
  4. Алгоритм должен быть однозначным. Каждый шаг четко определяется и не допускает произвольной трактовки.
  5. Алгоритм должен быть конечным – необходимо, чтобы он выполнялся за строго определенное количество шагов.
  6. Алгоритм должен быть корректным – задавать исключительно верное решение поставленной задачи.
  7. Общность (или массовость) – он должен работать с различными исходными данными.
  8. Время, которое дается на решение алгоритма, должно быть минимальным. Это определяет эффективность решения поставленной задачи.

А теперь, зная, какие существуют блок-схемы алгоритмов, можно приступить к рассмотрению способов их записи. А их не очень много.

Словесная запись

Здесь четко ставится условие, при котором нужно выполнить два действия в строгой последовательности. Но это самые простые алгоритмы, существуют и более сложные. Иногда используются формулы, спецобозначения, но при обязательном условии – исполнитель должен все понимать.

Запись в графической форме

В этой записи участвуют элементы блок-схем. Все элементы стандартизированы, у каждой команды имеется определенная графическая запись. А конкретная команда должна записываться внутри каждого из блоков обычным языком или математическими формулами. Все блоки должны соединяться линиями – они показывают, какой именно порядок у выполняемых команд. Собственно, этот тип алгоритма более подходит для использования в программном коде, нежели словесный.

Запись на языках программирования

В том случае, если алгоритм необходим для того, чтобы задачу решала программа, установленная на ПК, то нужно его записывать специальным кодом. Для этого существует множество языков программирования. И алгоритм в этом случае называется программой.

Блок-схемы

Блок-схема – это представление алгоритма в графической форме. Все команды и действия представлены геометрическими фигурами (блоками). Внутри каждой фигуры вписывается вся информация о тех действиях, которые нужно выполнить. Связи изображены в виде обычных линий со стрелками (при необходимости).

Для оформления блок-схем алгоритмов имеется ГОСТ 19.701-90. Он описывает порядок и правила создания их в графической форме, а также основные методы решения. В этой статье приведены основные элементы блок-схем, которые используются при решении задач, например, по информатике. А теперь давайте рассмотрим правила построения.

Основные правила составления блок-схемы

Можно выделить такие особенности, которые должны быть у любой блок-схемы:

Графические элементы блок-схем для решения алгоритмов представлены в таблице:

Линейный тип алгоритмов

Это самый простой вид, который состоит из определенной последовательности действий, они не зависят от того, какие данные вписаны изначально. Есть несколько команд, которые выполняются однократно и только после того, как будет сделана предшествующая. Линейная блок-схема выглядит таким образом:

Пример линейного алгоритма

Причем связи могут идти как сверху вниз, так и слева направо. Используется такая блок-схема для записи алгоритмов вычислений по простым формулам, у которых не имеется ограничений на значения переменных, входящих в формулы для расчета. Линейный алгоритм – это составная часть сложных процессов вычисления.

Разветвляющиеся алгоритмы

Блок-схемы, построенные по таким алгоритмам, являются более сложными, нежели линейные. Но суть не меняется. Разветвляющийся алгоритм – это процесс, в котором дальнейшее действие зависит от того, как выполняется условие и какое получается решение. Каждое направление действия – это ветвь.

Разновидности циклов для решения алгоритмов

Это простые алгоритмы, которые решаются очень просто. Теперь давайте перейдем к более сложным.

Циклический алгоритм

Здесь все предельно понятно – циклическая блок-схема представляет алгоритм, в котором многократно повторяются однотипные вычисления. По определению, цикл – это определенная последовательность каких-либо действий, выполняемая многократно (более, чем один раз). И можно выделить несколько типов циклов:

  1. У которых известно число повторений действий (их еще называют циклами со счетчиком).
  2. У которых число повторений неизвестно – с постусловием и предусловием.

Независимо от того, какой тип цикла используется для решения алгоритма, у него обязательно должна присутствовать переменная, при помощи которой происходит выход. Именно она определяет количество повторений цикла. Рабочая часть (тело) цикла – это определенная последовательность действий, которая выполняется на каждом шаге. А теперь более детально рассмотрим все типы циклов, которые могут встретиться при составлении алгоритмов и решении задач по информатике.

Циклы со счетчиками

На рисунке изображена простая блок-схема, в которой имеется цикл со счетчиком. Такой тип алгоритмов показывает, что заранее известно количество повторений данного цикла. И это число фиксировано. При этом переменная, считающая число шагов (повторений), так и называется – счетчик. Иногда в учебниках можно встретить иные определения – параметр цикла, управляющая переменная.

Изображение цикла со счетчиком

Блок-схема очень наглядно иллюстрирует, как работает цикл со счетчиком. Прежде чем приступить к выполнению первого шага, нужно присвоить начальное значение счетчику – это может быть любое число, оно зависит от конкретного алгоритма. В том случае, когда конечное значение меньше величины счетчика, начнет выполняться определенная группа команд, которые составляют тело цикла.

После того, как тело будет выполнено, счетчик меняется на величину шага счетчика, обозначенную буквой h. В том случае, если значение, которое получится, будет меньше конечного, цикл будет продолжаться. И закончится он лишь в тогда, когда конечное значение будет меньше, чем счетчик цикла. Только в этом случае произойдет выполнение того действия, которое следует за циклом.

Как изображается счетчик цикла

Теперь вы полностью изучили описание блок-схемы, изображенной на рисунке. Можно перейти к дальнейшему изучению. Когда используется цикл со счетчиком, требуется соблюдать определенные условия:

  1. В теле не разрешается изменять (принудительно) значение счетчика.
  2. Запрещено передавать управление извне оператору тела. Другими словами, войти в цикл можно только из его начала.

Циклы с предусловием

Этот тип циклов применяется в тех случаях, когда количество повторений заранее неизвестно. Цикл с предусловием – это тип алгоритма, в котором непосредственно перед началом выполнения тела осуществляется проверка условия, при котором допускается переход к следующему действию. Обратите внимание на то, как изображаются элементы блок-схемы.

В блок-схемах алгоритмов допускается осуществлять проверку не истинности, а ложности начального условия. При этом из цикла произойдет выход только в том случае, если значение условия окажется истинным. Оба варианта правильные, их использование зависит от того, какой конкретно удобнее использовать для решения той или иной задачи. Такой тип цикла имеет одну особенность – тело может не выполниться в случае, когда условие ложно или истинно (в зависимости от варианта, который применяется для решения алгоритма).

Ниже приведена блок-схема, которая описывает все эти действия:

Изображение цикла с предусловием

Что такое цикл с постусловием?

Если внимательно присмотреться, то этот вид циклов чем-то похож на предыдущий. Самостоятельно построить блок-схему, описывающую этот цикл, мы сейчас и попробуем. Особенность заключается в том, что неизвестно заранее число повторений. А условие задается уже после того, как произошел выход из тела. Отсюда видно, что тело, независимо от решения, будет выполняться как минимум один раз. Для наглядности взгляните на блок-схему, описывающую выполнение условия и операторов:

Изображение цикла с постусловием

Ничего сложного в построении алгоритмов с циклами нет, достаточно в них только один раз разобраться. А теперь перейдем к более сложным конструкциям.

Сложные циклы

Пример сложного цикла

Вот и все, вы рассмотрели основные особенности построения блок-схем для решения алгоритмов, знаете принципы и правила. Теперь можно рассмотреть конкретные примеры блок-схем из жизни. Например, в психологии такие конструкции используются для того, чтобы человек решил какой-то вопрос:

Пример из жизни решения алгоритма

Или пример из биологии для решения поставленной задачи:

Второй пример решения алгоритма по блок-схеме

Решение задач с блок-схемами

А теперь рассмотрим примеры задач с блок-схемами, которые могут попасться в учебниках информатики. Например, задана блок-схема, по которой решается какой-то алгоритм:

Решение задачи по математике

При этом пользователь самостоятельно вводит значения переменных. Допустим, х=16, а у=2. Процесс выполнения такой:

  1. Производится ввод значений х и у.
  2. Выполняется операция преобразования: х=√16=4.
  3. Выполняется условие: у=у 2 =4.
  4. Производится вычисление: х=(х+1)=(4+1)=5.
  5. Дальше вычисляется следующая переменная: у=(у+х)=(5+4)=9.
  6. Выводится решение: у=9.

На этом примере блок-схемы по информатике хорошо видно, как происходит решение алгоритма. Нужно обратить внимание на то, что значения х и у задаются на начальном этапе и они могут быть любыми.

Понятие блок-схемы. Основные элементы блок-схем.
Понятие алгоритма является одним из основных понятий вычислительной математики и информатики.

Алгоритм — строго определенная последовательность действий для некоторого исполнителя, приводящая к поставленной цели или заданному результату за конечное число шагов.

Любой алгоритм составляется в расчете на конкретного исполнителя с учетом его возможностей. Исполнитель — субъект, способный исполнять некоторый набор команд. Совокупность команд, которые исполнитель может понять и выполнить, называется системой команд исполнителя.

Для выполнения алгоритма исполнителю недостаточно только самого алгоритма. Выполнить алгоритм — значит применить его к решению конкретной задачи, т. е. выполнить запланированные действия по отношению к определенным входным данным. Поэтому исполнителю необходимо иметь исходные (входные) данные — те, что задаются до начала алгоритма.

В результате выполнения алгоритма исполнитель должен получить искомый результат — выходные данные, которые исполнитель выдает как результат выполненной работы. В процессе работы исполнитель может создавать и использовать данные, не являющиеся выходными, — промежуточные данные.

Наглядным и удобным способом изображения алгоритмов для исполнителя-человека являются блок-схемы.

Блок-схема — это схематичное представление процесса, системы или компьютерного алгоритма. Блок-схемы часто применяются в разных сферах деятельности, чтобы документировать, изучать, планировать, совершенствовать и объяснять сложные процессы с помощью простых логичных диаграмм. Для построения блок-схем применяются прямоугольники, овалы, ромбы и некоторые другие фигуры (для обозначения конкретных операций), а также соединительные стрелки, которые указывают последовательность шагов или направление процесса. Блок-схемы варьируются от незамысловатых, нарисованных вручную до подробных, составленных на компьютере диаграмм с множеством шагов и процессов. Если учесть все возможные вариации, блок-схемы можно признать одним из самых распространенных видов схем во всем мире. Они широко используются в разных сферах как технической, так и нетехнической направленности.

Блок-схема алгоритма – это его графическое изображение в виде схемы связанных между собой с помощью линий перехода блоков – специальных графических объектов, каждый из которых соответствует определенным шагам алгоритма.

Блок–схема — это ориентированный граф, указывающий порядок выполнения команд в алгоритме, по сути, это графический способ записи алгоритма.

Внутри блока дается описание соответствующих действий. Блоки, как правило, располагаются сверху вниз. Линии соединения отдельных блоков показывают направление процесса обработки в схеме. Стрелки на соединяющих линиях не ставятся при направлениях сверху вниз и слева направо; противоположные направления показывают стрелкой на линии.

Вершинами графа являются геометрические фигуры, внутри которых записывается указание (команда) алгоритма или помечается его начало и конец, как правило, в блок – схемах используют следующие фигуры – Рис.1.

Рис. 1. Фигуры блок-схем

  • линейная последовательность (следование),
  • выбор (разветвление),
  • повторение (цикл).

Повторение (цикл) – это набор действий, которые могут выполняться многократно. Этот набор включает проверку условия, определяющего количество повторений цикла. Различают три варианта циклов:

 цикл с предусловием,

 цикл с постусловием,

 цикл с параметром.

Для упрощения блок-схем при изображении цикла с параметром можно использовать специальный блок-заголовок цикла с параметром. Такой вариант показан на рис. 8.

Разберем примеры для лучшего понимания.

Пример 1. Составить блок- схему для вычисления значения функции.

Эта функция не является элементарной, так как значение у зависит не только от значения аргумента х, но и от промежутка, к которому относится х. Блок-схема, вычисляющая значение функции представлена на Рис. 9

Рис. 9. Блок-схема решения примера 1.

Рассмотрим свойства этого алгоритма.

1. Алгоритм обладает свойством дискретности, так как состоит из отдельных блоков, в каждом из которых записано одно указание (команда) алгоритма.

2. Алгоритм обладает свойством определённости, так как все его указания имеют однозначный смысл.

3. Он понятен исполнителю, умеющему сравнивать числа, вычислять их разность и произведение, значит, обладает свойством понятности.

4. Алгоритм вычисляет значение у для любого значения х, значит, обладает свойством массовости.

5. Результат для любого х достигается выполнением 4 указаний, значит, алгоритм обладает свойством результативности.

6. Алгоритм можно выполнить формально, даже не зная, что такое функция, поэтому он обладает свойством формальности.
Пример 2. Имеются три контейнера – черный, белый и полосатый. В полосатом контейнере находятся белые и черные шары. Составить блок-схему процесса разложения шаров по контейнерам, соответствующим цвету шаров.

Если решать задачу словестно, то алгоритм будет выглядеть так:

1. Достать шар из полосатого контейнера и перейти к шагу 2.

2. Если он белый, перейти к шагу 3, иначе перейти к шагу 4.

3. Опустить шар в белый контейнер и перейти к шагу 5.

4. Опустить шар в черный контейнер и перейти к шагу 5.

5. Если в полосатом контейнере еще есть шары, то перейти к шагу 1, иначе перейти к шагу 6.

6. Закончить процесс.

Составим блок-схему процесса разложения белых и черных шаров из полосатого контейнера.

Рис.10. Блок-схема решения задачи 2.
Рассмотрим свойства этого алгоритма:

1. Он дискретен, так как состоит из 6 отдельных указаний (шагов).

2. Все указания имеют однозначный смысл и не требуют от исполнителя решений, не предусмотренных алгоритмом, значит, он обладает свойством определенности.

3. Алгоритм понятен исполнителю, который умеет различать черный и белый цвета, понимает значение термина полосатый, значит, он обладает свойством понятности.

4. Алгоритм позволяет разложить по контейнерам любое количество шаров, значит, он обладает свойством массовости.

5. Для любого количества шаров алгоритм позволяет разложить их за конечное число шагов, поэтому он результативен.

6. Алгоритм формален, так как не требует от исполнителя никаких знаний и размышлений по поводу производимых действий.
Пример 3. Алгоритм целочисленных преобразований представлен в виде фрагмента блок–схемы. Знаком := в нем обозначен оператор присваивания некоторого значения указанной переменной. Запись X := 1 означает, что переменная Х принимает значение 1.

Определить результат работы алгоритма для исходных данных Х = 7, Y = 12.

  1. Блок ввода данных определит исходные значения переменных Х и Y (7 и 12 соответственно).
  2. В первом условном блоке осуществляется сравнение значений Х и Y. Поскольку условие, записанное в блоке, неверно (7

Читайте также:

      

  • Введение в профессиональную деятельность реферат
  •   

  • Реферат на тему парк горького
  •   

  • Реферат на тему теория и методика занятий волейболом
  •   

  • Личность как субъект организационного поведения реферат
  •   

  • Реферат на тему правда ли акулы опасны

Понравилась статья? Поделить с друзьями:
  • Точное описание некоторого процесса инструкция по его выполнению
  • Точная инструкция определяющая процесс достижения поставленной цели за конечное число шагов
  • Точка доступа tp link cpe210 инструкция
  • Точка доступа tp link cpe210 инструкция
  • Точильно шлифовальный станок 3б633 инструкция по эксплуатации тирасполь 1967